
BIRATIONAL GEOMETRY EXERCISES

Unless otherwise stated all varieties are defined over C.
Exercise 0.

(1) Let X = Pn × Pm. Define O(a, b) = p∗O(a) ⊗ q∗O(b) where p
and q are the projections onto the first and second coordinates,
respectively. For what values of a and b is O(a, b)... (1) ample,
(2) big, (3) nef, (4) pseudo-effective?

(2) Find an example of (1) a nef divisor which is not ample, (2) a
big divisor which is not nef, (3) a pseudo-effective divisor which
is not big.

Let X be a projective variety and let D be a Q-Cartier Q-Weil divi-
sor.

(1) If D is semi-ample it is nef (the converse is false).
(2) If D is effective, nef, big, semi-ample or ample then it is pseudo-

effective.
(3) If f : Y → X is any morphism from a projective variety and D

is nef, then f ∗D is nef.
(4) If f : Y → X is a birational morphism from a projective variety

and D is big, then f ∗D is big.
(5) If f : Y → X is a finite morphism and D is ample, then f ∗D is

ample.

Exercise 1.

(1) Let X be a smooth variety and let f : X 99K Y be a rational
map which is not a morphism. Show that Y contains a rational
curve.

(2) Let f : X 99K Y be rational map between smooth proper curves.
Show that it is in fact a morphism. Deduce that smooth proper
curves which are birational to one another are in fact isomor-
phic.

(3) Let C be a smooth projective curve defined over an algebraically
closed field. Show that if ω∗

C is ample then C ∼= P1.

Exercise 2. Let X be a normal projective variety.

(1) Let A be an ample divisor. Show that A · C > 0 for any pro-
jective curve C ⊂ X.

(2) Show that semi-ample divisors are nef.
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(3) Let A be an ample line bundle and let L be a nef line bundle.
Then A⊗ L is an ample line bundle. Deduce that the nef cone
is the closure of the ample cone.

(4) We say a divisor is big if kD ∼ A+E for some k ∈ N where A
is ample and E ≥ 0. Show that H0(X,O(mD)) ≥ CmdimX for
some C > 0. If X is projective, show that the converse holds,
i.e., if H0(X,O(mD)) ≥ CmdimX for some C > 0 then D is
big.

(5) Show that NE(X) does not contain a line.
(6) (∗) Find an example of a non-projective variety with a big di-

visor. Find an example of a variety where NE(X) contains a
line.

Exercise 3. Let X be a smooth projective surface such that KX

is nef. Show that if X ′ is smooth and birational to X ′ then there is
a morphism X ′ → X. Deduce the existence of minimal resolutions
for singular surfaces, i.e., if Y is a singular surface then there exists a
resolution of singularities X → Y such that if X ′ → Y is any other
resolution of singularities then there exists a morphsim X ′ → X. Do
minimal resolutions exist in higher dimensions?

Exercise 4. If D is big and nef and D ∼Q KX +∆ where ∆ ≥ 0
and (X,∆) is klt then show that D is semi-ample. (∗) Find an example
of a big and nef divisor which is not semi-ample.

Exercise 5.

(1) LetX be a smooth projective variety and let Z be a normal pro-
jective variety. Suppose that there exists a dominant rational
map P1 × Z 99K X. Show that KX is not pseudo-effective.

(2) Deduce that if X is rationally connected then X is not pseudo-
effective.

(3) Find an example of a rationally connected Calabi-Yau variety.
Can such a variety be smooth?

Exercise 6.

(1) Let X be a hypersurface of degree d in Pn. When is X Fano?
Calabi-Yau? General type? What if we assume that X is only
a complete intersection?

(2) Let Y → Pn be a double cover of Pn ramified along a hypersur-
face of degree d. Compute KY . When is it Fano? Calabi-Yau?
General type?

Exercise 7. Let X be a smooth surface such that KX is pseudo-
effective. Suppose that KX · C < 0 where C is a smooth curve. Show
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that C ∼= P1. Find an example of a smooth surface X, a pseudo-
effective divisor D and a curve C of genus g > 0 such that D · C < 0.

Exercise 8. Let n ≥ 1. Show that X = {xy+ z2 +w2n = 0} ⊂ A4

is not Q-factorial, i.e., there exists an effective divisor D ⊂ X which is
not Q-Cartier.

Exercise 9. Let X be a normal projective variety and let A be an
ample line bundle. Show that A|Z is ample for any subvariety Z ⊂ X.
If A is big, is it the case that A|Z is big for any subvariety Z ⊂ X?

Exercise 10.

(1) Show that X := {xy−zw = 0} ⊂ A4 is not Q-factorial and that
blowing up a non-Q-Cartier Weil divisor X gives a resolution
of singularities of X.

(2) Show that there are two possible ways of resolving X, and that
they are connected by a flop (this is called the Atiyah flop).

(3) (∗) Find an example of a flip (hint: it might be easier to find
an example of a fourfold flip, or try using toric geometry).

(4) Find an example of a flop which is not the Atiyah flop.

Exercise 11. Let X be the blow up P3 at 4 general points. Let
L1, . . . , L6 be the strict transform of the lines between any two points.
Show that Li can be flopped. Show that this flop is locally isomorphic
to the Atiyah flop.

Let X → W be the morphism which contracts all six lines and let
X 99K X ′/W be the rational map given by flopping all six lines. Show
thatX ′ ∼= X as varieties over Speck, but are not isomorphic as varieties
over W .

Exercise 12. Let F : P2 99K P2 be the Cremona involution [x : y :
z] 7→ [x−1 : y−1 : z−1]. Show that F can be realised as the blow up of
P2 at 3 points, followed by the blow down of three curves. Provide a
similar description of the Cremona involuation on P3.

Exercise 13. Compute the minimal resolution of {xy−zm = 0} ⊂
A3. Find a resolution of singularities of Speck[x2, y2, z2, xy, xz, yz].
Can you find one with only one exceptional divisor?

Exercise 14. Let S1 and S2 be two smooth surfaces such that there
exists a birational map f : S1 99K S2. Show that H0(S1,O(mKS1)) =
H0(S2,O(mKS2)). Deduce that P2 and a K3 surface are not birational.

Exercise 15. Let S be a smooth surface and f : S → C be a
morphism to a curve such that at least one fibre of f is isomorphic
to P1. Show that S is birational to C × P1. Show by example that if
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X → S is a morphism from a threefold to a surface such that at least
one fibre is P1 then X is not necessarily birational to S×P1 (Hint: find
a curve C over the field K := C(x, y) which is not isomorphic to P1

K ,
but C ×K K ∼= P1

K
where K is an algebraic closure of K.)

Exercise 16. Let E be an elliptic curve. Show that there exists
an exact sequence of vector bundles 0 → OE → F → OE → 0 such
that F ̸= OE ⊕OE. Let X = PE(F). Show that X contains a curve C
such that C2 = 0, but h0(X,O(C)) = 1, in particular, C is not a fibre
in a fibration.

Exercise 17. Let S be a smooth projective surface. Show that if
S contains no rational curves then KS is nef. Show that if S contains
no rational curves and if KS is big, then KS is ample. Find an example
of a surface where KS is not ample, and does not contain any rational
curves.

Exercise 18.

(1) Show that if A is an abelian variety, then A contains no rational
curves.

(2) Deduce that if X is a smooth projective variety and a : X →
Alb(X) is albanese morphism then a maps rational curves in X
to points.

(3) If X → Alb(X) is an embedding deduce that KX is nef.

Exercise 19. Find examples of projective surfacesX which contain
rational curves where

(1) −KX is ample;
(2) O(KX) ∼= OX ;
(3) KX is ample.

Exercise 20. Show that if the flip exists, then it is unique.

Exercise 21. (∗) Show by example that the output of the MMP
is not necessarily unique. Prove the following theorem of Kawamata:
if X is smooth and f1 : X 99K X1 and f2 : X 99K X2 are two MMPs,
then α : X1 99K X2 is a sequence of flops.
Here is the skeleton of Kawamata’s proof. You can fill in the details,

or try to discover a new approach.

(1) First, show that X1 and X2 are isomorphic in codimension one
(this can be shown as a consequence of the negativity lemma).

(2) Let H2 be an ample divisor X2 and let H1 := α1
∗H2. Show that

we can run a KX1 + tH1-MMP for 0 < t ≪ 1.
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(3) Show that the output of this MMP is X2 and deduce that each
step of this MMP is a KX1-flop.

Definition (Discrepancy) Let X be a normal variety such that
KX is Q-Cartier. Given a birational morphism p : X ′ → X we may
write KX′ = p∗KX+

∑
E a(E,X)E where E runs over all p-exceptional

divisors. The number a(E,X) is called the discrepancy.
We say that X is terminal (resp. canonical, log terminal, log canon-

ical) provided a(E,X) > 0 (resp. ≥ 0, > −1, ≥ −1) for all divisors E
on all birational models X ′ → X.

Negativity Lemma If f : X → Y is a proper birational morphism
and D is a divisor such that f∗D ≥ 0 and −D if f -nef then D ≥ 0.
Exercise 22. (∗) Use the negativity lemma to deduce that flips

preserve terminal (resp. canonical, log terminal, log canonical) singu-
larities.

Exercise 23. Show that a cubic surface is isomorphic to P2 blown
up in 6 points. There are several ways of doing this, but try to prove
it using ideas from the MMP.

Exercise 24. Let f : P2 99K P1 be the rational map associated to
a pencil of degree d curves on P2. Deduce that f defines a foliation F ,
and compute KF . When is F a Fano foliation?

Exercise 25. We say a variety X is of Fano type if there exists
a Q-divisor ∆ such that (X,∆) is klt and −(KX +∆) is ample. Find
an example of a variety which is not Fano, but is of Fano type. Is P2

blown up at 9 points of Fano type?

Exercise 26. Let f : X → B be a smooth fibration. Show that
−KX/B cannot be ample. Deduce that there are no smooth Fano foli-
ations.

Exercise 27. Let X be a normal variety and let D1, . . . , Dk

be big Q-divisors such that
⊕

m1,...,mk≥0H
0(X,m1D1 + · · ·+mkDk) is

finitely generated and let V be the subcone of the big cone generated
by D1, . . . , Dk.

For a Q-diviosr D ∈ V we define R(D) =
⊕

m≥0H
0(X,mD). Show

that R(D) is finitely generated.
Fix a Q-divisor D ∈ V and show that {D′ : ProjR(D′) ∼= ProjR(D)}

is a convex subcone of V .

Definition (MMP with scaling) Let X1 be a normal projective
variety and let ∆1 ≥ 0 be a Q-divisor such that (X1,∆1) is klt and let
A1 be a divisor such KX1 +∆1 + A1 is nef.
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We define λ1 := inf{t : KX1 + ∆1 + tA1 is nef.} and by the Cone
theorem there exists an extremal ray R1 such that KX1 +∆1 + λ1A1 is
zero on R1.

The first step of our MMP with scaling ϕ : X1 99K X2 is either the
divisorial contraction or flip associated to R1. LetX2,∆2 and A2 be the
strict transforms of X1,∆1 and A1, respectively. We can again define
λ2 := inf{t : KX2 + ∆2 + tA2 is nef.} and find an extremal ray R2 on
which KX2 +∆+ λ2A2 is zero.

Continuing this process we get a sequence of divisorial contractions
and flips, and rational numbers λ1 ≥ λ2 ≥ . . . called the MMP with
scaling of A1.
Remark: As remarked in the lectures, if ∆ is big, then an MMP

with scaling of an ample divisor always terminates. There is a key
distinction here with a general MMP: we are no longer allowed to choose
an arbitrary KXi

+∆i-negative extremal ray, rather it is chosen for us
by Ai.

Exercise 28. Show that the MMP with scaling can be run...

(1) for uniruled varieties, and terminates in a Mori fibre space; and
(2) for varieties of general type and terminates in a minimal model.

Exercise 29 Show the following fundamental properties of the dis-
crepancy.

(1) The discrepancy is independent of the choice of birational model
X ′ → X.

(2) Smooth varieties have terminal singularities.
(3) Propose a definition of terminal, etc. for pairs (X,∆). Show

that if p : X ′ → X is birational and we write KX′ + ∆′ =
p∗(KX+∆) where p∗∆

′ = ∆ (note that here ∆′ is not necessarily
effective) then (X,∆) is terminal (resp. canonical, ...) if and
only if (X ′,∆′) is terminal (resp. canonical, ...).

(4) Let X be a normal variety with KX Q-Cartier. X is termi-
nal (resp. canonical, log terminal, log canonical) if and only
if there exists a log resolution of X which extracts divisors of
discrepancy > 0 (resp. ≥ 0, > −1, ≥ −1).


