BIRATIONAL GEOMETRY EXERCISES

Unless otherwise stated all varieties are defined over \mathbb{C}.
Exercise 0.
(1) Let $X=\mathbb{P}^{n} \times \mathbb{P}^{m}$. Define $\mathcal{O}(a, b)=p^{*} \mathcal{O}(a) \otimes q^{*} \mathcal{O}(b)$ where p and q are the projections onto the first and second coordinates, respectively. For what values of a and b is $\mathcal{O}(a, b) \ldots$ (1) ample, (2) big, (3) nef, (4) pseudo-effective?
(2) Find an example of (1) a nef divisor which is not ample, (2) a big divisor which is not nef, (3) a pseudo-effective divisor which is not big.
Let X be a projective variety and let D be a \mathbb{Q}-Cartier \mathbb{Q}-Weil divisor.
(1) If D is semi-ample it is nef (the converse is false).
(2) If D is effective, nef, big, semi-ample or ample then it is pseudoeffective.
(3) If $f: Y \rightarrow X$ is any morphism from a projective variety and D is nef, then $f^{*} D$ is nef.
(4) If $f: Y \rightarrow X$ is a birational morphism from a projective variety and D is big, then $f^{*} D$ is big.
(5) If $f: Y \rightarrow X$ is a finite morphism and D is ample, then $f^{*} D$ is ample.

Exercise 1.

(1) Let X be a smooth variety and let $f: X \rightarrow Y$ be a rational map which is not a morphism. Show that Y contains a rational curve.
(2) Let $f: X \rightarrow Y$ be rational map between smooth proper curves. Show that it is in fact a morphism. Deduce that smooth proper curves which are birational to one another are in fact isomorphic.
(3) Let C be a smooth projective curve defined over an algebraically closed field. Show that if ω_{C}^{*} is ample then $C \cong \mathbb{P}^{1}$.

Exercise 2. Let X be a normal projective variety.
(1) Let A be an ample divisor. Show that $A \cdot C>0$ for any projective curve $C \subset X$.
(2) Show that semi-ample divisors are nef.
(3) Let A be an ample line bundle and let L be a nef line bundle. Then $A \otimes L$ is an ample line bundle. Deduce that the nef cone is the closure of the ample cone.
(4) We say a divisor is big if $k D \sim A+E$ for some $k \in \mathbb{N}$ where A is ample and $E \geq 0$. Show that $H^{0}(X, \mathcal{O}(m D)) \geq C m^{\operatorname{dim} X}$ for some $C>0$. If X is projective, show that the converse holds, i.e., if $H^{0}(X, \mathcal{O}(m D)) \geq C m^{\operatorname{dim} X}$ for some $C>0$ then D is big.
(5) Show that $\overline{N E}(X)$ does not contain a line.
(6) (*) Find an example of a non-projective variety with a big divisor. Find an example of a variety where $\overline{N E}(X)$ contains a line.

Exercise 3. Let X be a smooth projective surface such that K_{X} is nef. Show that if X^{\prime} is smooth and birational to X^{\prime} then there is a morphism $X^{\prime} \rightarrow X$. Deduce the existence of minimal resolutions for singular surfaces, i.e., if Y is a singular surface then there exists a resolution of singularities $X \rightarrow Y$ such that if $X^{\prime} \rightarrow Y$ is any other resolution of singularities then there exists a morphsim $X^{\prime} \rightarrow X$. Do minimal resolutions exist in higher dimensions?

Exercise 4. If D is big and nef and $D \sim_{\mathbb{Q}} K_{X}+\Delta$ where $\Delta \geq 0$ and (X, Δ) is klt then show that D is semi-ample. (*) Find an example of a big and nef divisor which is not semi-ample.

Exercise 5.

(1) Let X be a smooth projective variety and let Z be a normal projective variety. Suppose that there exists a dominant rational map $\mathbb{P}^{1} \times Z \rightarrow X$. Show that K_{X} is not pseudo-effective.
(2) Deduce that if X is rationally connected then X is not pseudoeffective.
(3) Find an example of a rationally connected Calabi-Yau variety. Can such a variety be smooth?

Exercise 6.

(1) Let X be a hypersurface of degree d in \mathbb{P}^{n}. When is X Fano? Calabi-Yau? General type? What if we assume that X is only a complete intersection?
(2) Let $Y \rightarrow \mathbb{P}^{n}$ be a double cover of \mathbb{P}^{n} ramified along a hypersurface of degree d. Compute K_{Y}. When is it Fano? Calabi-Yau? General type?

Exercise 7. Let X be a smooth surface such that K_{X} is pseudoeffective. Suppose that $K_{X} \cdot C<0$ where C is a smooth curve. Show
that $C \cong \mathbb{P}^{1}$. Find an example of a smooth surface X, a pseudoeffective divisor D and a curve C of genus $g>0$ such that $D \cdot C<0$.

Exercise 8. Let $n \geq 1$. Show that $X=\left\{x y+z^{2}+w^{2 n}=0\right\} \subset \mathbb{A}^{4}$ is not \mathbb{Q}-factorial, i.e., there exists an effective divisor $D \subset X$ which is not \mathbb{Q}-Cartier.

Exercise 9. Let X be a normal projective variety and let A be an ample line bundle. Show that $\left.A\right|_{Z}$ is ample for any subvariety $Z \subset X$. If A is big, is it the case that $\left.A\right|_{Z}$ is big for any subvariety $Z \subset X$?

Exercise 10.

(1) Show that $X:=\{x y-z w=0\} \subset \mathbb{A}^{4}$ is not \mathbb{Q}-factorial and that blowing up a non- \mathbb{Q}-Cartier Weil divisor X gives a resolution of singularities of X.
(2) Show that there are two possible ways of resolving X, and that they are connected by a flop (this is called the Atiyah flop).
(3) (*) Find an example of a flip (hint: it might be easier to find an example of a fourfold flip, or try using toric geometry).
(4) Find an example of a flop which is not the Atiyah flop.

Exercise 11. Let X be the blow up \mathbb{P}^{3} at 4 general points. Let L_{1}, \ldots, L_{6} be the strict transform of the lines between any two points. Show that L_{i} can be flopped. Show that this flop is locally isomorphic to the Atiyah flop.

Let $X \rightarrow W$ be the morphism which contracts all six lines and let $X \rightarrow X^{\prime} / W$ be the rational map given by flopping all six lines. Show that $X^{\prime} \cong X$ as varieties over Speck, but are not isomorphic as varieties over W.

Exercise 12. Let $F: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ be the Cremona involution $[x: y$: $z] \mapsto\left[x^{-1}: y^{-1}: z^{-1}\right]$. Show that F can be realised as the blow up of \mathbb{P}^{2} at 3 points, followed by the blow down of three curves. Provide a similar description of the Cremona involuation on \mathbb{P}^{3}.

Exercise 13. Compute the minimal resolution of $\left\{x y-z^{m}=0\right\} \subset$ \mathbb{A}^{3}. Find a resolution of singularities of $\operatorname{Spec} k\left[x^{2}, y^{2}, z^{2}, x y, x z, y z\right]$. Can you find one with only one exceptional divisor?

Exercise 14. Let S_{1} and S_{2} be two smooth surfaces such that there exists a birational map $f: S_{1} \rightarrow S_{2}$. Show that $H^{0}\left(S_{1}, \mathcal{O}\left(m K_{S_{1}}\right)\right)=$ $H^{0}\left(S_{2}, \mathcal{O}\left(m K_{S_{2}}\right)\right)$. Deduce that \mathbb{P}^{2} and a K3 surface are not birational.

Exercise 15. Let S be a smooth surface and $f: S \rightarrow C$ be a morphism to a curve such that at least one fibre of f is isomorphic to \mathbb{P}^{1}. Show that S is birational to $C \times \mathbb{P}^{1}$. Show by example that if
$X \rightarrow S$ is a morphism from a threefold to a surface such that at least one fibre is \mathbb{P}^{1} then X is not necessarily birational to $S \times \mathbb{P}^{1}$ (Hint: find a curve C over the field $K:=\mathbb{C}(x, y)$ which is not isomorphic to \mathbb{P}_{K}^{1}, but $C \times_{K} \bar{K} \cong \mathbb{P}_{\bar{K}}^{1}$ where \bar{K} is an algebraic closure of K.)

Exercise 16. Let E be an elliptic curve. Show that there exists an exact sequence of vector bundles $0 \rightarrow \mathcal{O}_{E} \rightarrow \mathcal{F} \rightarrow \mathcal{O}_{E} \rightarrow 0$ such that $F \neq \mathcal{O}_{E} \oplus \mathcal{O}_{E}$. Let $X=\mathbb{P}_{E}(\mathcal{F})$. Show that X contains a curve C such that $C^{2}=0$, but $h^{0}(X, \mathcal{O}(C))=1$, in particular, C is not a fibre in a fibration.

Exercise 17. Let S be a smooth projective surface. Show that if S contains no rational curves then K_{S} is nef. Show that if S contains no rational curves and if K_{S} is big, then K_{S} is ample. Find an example of a surface where K_{S} is not ample, and does not contain any rational curves.

Exercise 18.

(1) Show that if A is an abelian variety, then A contains no rational curves.
(2) Deduce that if X is a smooth projective variety and $a: X \rightarrow$ $\operatorname{Alb}(X)$ is albanese morphism then a maps rational curves in X to points.
(3) If $X \rightarrow \operatorname{Alb}(X)$ is an embedding deduce that K_{X} is nef.

Exercise 19. Find examples of projective surfaces X which contain rational curves where
(1) $-K_{X}$ is ample;
(2) $\mathcal{O}\left(K_{X}\right) \cong \mathcal{O}_{X}$;
(3) K_{X} is ample.

Exercise 20. Show that if the flip exists, then it is unique.
Exercise 21. (*) Show by example that the output of the MMP is not necessarily unique. Prove the following theorem of Kawamata: if X is smooth and $f_{1}: X \rightarrow X_{1}$ and $f_{2}: X \rightarrow X_{2}$ are two MMPs, then $\alpha: X_{1} \rightarrow X_{2}$ is a sequence of flops.

Here is the skeleton of Kawamata's proof. You can fill in the details, or try to discover a new approach.
(1) First, show that X_{1} and X_{2} are isomorphic in codimension one (this can be shown as a consequence of the negativity lemma).
(2) Let H_{2} be an ample divisor X_{2} and let $H_{1}:=\alpha_{*}^{1} H_{2}$. Show that we can run a $K_{X_{1}}+t H_{1}$-MMP for $0<t \ll 1$.
(3) Show that the output of this MMP is X_{2} and deduce that each step of this MMP is a $K_{X_{1}}$-flop.

Definition (Discrepancy) Let X be a normal variety such that K_{X} is \mathbb{Q}-Cartier. Given a birational morphism $p: X^{\prime} \rightarrow X$ we may write $K_{X^{\prime}}=p^{*} K_{X}+\sum_{E} a(E, X) E$ where E runs over all p-exceptional divisors. The number $a(E, X)$ is called the discrepancy.

We say that X is terminal (resp. canonical, log terminal, log canonical) provided $a(E, X)>0$ (resp. $\geq 0,>-1, \geq-1$) for all divisors E on all birational models $X^{\prime} \rightarrow X$.

Negativity Lemma If $f: X \rightarrow Y$ is a proper birational morphism and D is a divisor such that $f_{*} D \geq 0$ and $-D$ if f-nef then $D \geq 0$.

Exercise 22. (*) Use the negativity lemma to deduce that flips preserve terminal (resp. canonical, log terminal, log canonical) singularities

Exercise 23. Show that a cubic surface is isomorphic to \mathbb{P}^{2} blown up in 6 points. There are several ways of doing this, but try to prove it using ideas from the MMP.

Exercise 24. Let $f: \mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$ be the rational map associated to a pencil of degree d curves on \mathbb{P}^{2}. Deduce that f defines a foliation \mathcal{F}, and compute $K_{\mathcal{F}}$. When is \mathcal{F} a Fano foliation?

Exercise 25. We say a variety X is of Fano type if there exists a \mathbb{Q}-divisor Δ such that (X, Δ) is klt and $-\left(K_{X}+\Delta\right)$ is ample. Find an example of a variety which is not Fano, but is of Fano type. Is \mathbb{P}^{2} blown up at 9 points of Fano type?

Exercise 26. Let $f: X \rightarrow B$ be a smooth fibration. Show that $-K_{X / B}$ cannot be ample. Deduce that there are no smooth Fano foliations.

Exercise 27. Let X be a normal variety and let D_{1}, \ldots, D_{k} be big \mathbb{Q}-divisors such that $\bigoplus_{m_{1}, \ldots, m_{k} \geq 0} H^{0}\left(X, m_{1} D_{1}+\cdots+m_{k} D_{k}\right)$ is finitely generated and let V be the subcone of the big cone generated by D_{1}, \ldots, D_{k}.

For a \mathbb{Q}-diviosr $D \in V$ we define $R(D)=\bigoplus_{m \geq 0} H^{0}(X, m D)$. Show that $R(D)$ is finitely generated.

Fix a \mathbb{Q}-divisor $D \in V$ and show that $\left\{D^{\prime}: \operatorname{Proj} R\left(D^{\prime}\right) \cong \operatorname{Proj} R(D)\right\}$ is a convex subcone of V.

Definition (MMP with scaling) Let X_{1} be a normal projective variety and let $\Delta_{1} \geq 0$ be a \mathbb{Q}-divisor such that $\left(X_{1}, \Delta_{1}\right)$ is klt and let A_{1} be a divisor such $K_{X_{1}}+\Delta_{1}+A_{1}$ is nef.

We define $\lambda_{1}:=\inf \left\{t: K_{X_{1}}+\Delta_{1}+t A_{1}\right.$ is nef. $\}$ and by the Cone theorem there exists an extremal ray R_{1} such that $K_{X_{1}}+\Delta_{1}+\lambda_{1} A_{1}$ is zero on R_{1}.

The first step of our MMP with scaling $\phi: X_{1} \rightarrow X_{2}$ is either the divisorial contraction or flip associated to R_{1}. Let X_{2}, Δ_{2} and A_{2} be the strict transforms of X_{1}, Δ_{1} and A_{1}, respectively. We can again define $\lambda_{2}:=\inf \left\{t: K_{X_{2}}+\Delta_{2}+t A_{2}\right.$ is nef. $\}$ and find an extremal ray R_{2} on which $K_{X_{2}}+\Delta+\lambda_{2} A_{2}$ is zero.

Continuing this process we get a sequence of divisorial contractions and flips, and rational numbers $\lambda_{1} \geq \lambda_{2} \geq \ldots$ called the MMP with scaling of A_{1}.

Remark: As remarked in the lectures, if Δ is big, then an MMP with scaling of an ample divisor always terminates. There is a key distinction here with a general MMP: we are no longer allowed to choose an arbitrary $K_{X_{i}}+\Delta_{i}$-negative extremal ray, rather it is chosen for us by A_{i}.

Exercise 28. Show that the MMP with scaling can be run...
(1) for uniruled varieties, and terminates in a Mori fibre space; and
(2) for varieties of general type and terminates in a minimal model.

Exercise 29 Show the following fundamental properties of the discrepancy.
(1) The discrepancy is independent of the choice of birational model $X^{\prime} \rightarrow X$.
(2) Smooth varieties have terminal singularities.
(3) Propose a definition of terminal, etc. for pairs (X, Δ). Show that if $p: X^{\prime} \rightarrow X$ is birational and we write $K_{X^{\prime}}+\Delta^{\prime}=$ $p^{*}\left(K_{X}+\Delta\right)$ where $p_{*} \Delta^{\prime}=\Delta$ (note that here Δ^{\prime} is not necessarily effective) then (X, Δ) is terminal (resp. canonical, ...) if and only if $\left(X^{\prime}, \Delta^{\prime}\right)$ is terminal (resp. canonical, ...).
(4) Let X be a normal variety with $K_{X} \mathbb{Q}$-Cartier. X is terminal (resp. canonical, log terminal, log canonical) if and only if there exists a \log resolution of X which extracts divisors of discrepancy >0 (resp. $\geq 0,>-1, \geq-1$).

