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Review of projective planes

A projective plane, denoted P2, consists of:

I a set P, whose elements are called points;

I a collection L of subsets, called lines;

such that the following axioms hold:

P1. For any two distinct points, there is exactly one line through
them.

P2. Any two distinct lines meet in exactly one point.

P3. There exist four points such that no three are collinear.
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Consequences for finite projective planes:

1. Any two lines of P2 have the same number of points. We
denote this number by d + 1, and say that the plane has
order d .

2. Through every point in P2 there pass d + 1 lines.

3. There are d2 + d + 1 points and d2 + d + 1 lines in P2.

4. This reflects the general notion of duality.
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Example. The Fano projective plane (picture from Wikipedia):

This is a plane of order 2. There are exactly 7 = 22 + 2 + 1
points. The lines are all subsets of three points, as indicated
(there are 7 of them).
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Question. Consider given a pair (P,L), where P is the set of
points and L is a collection of subsets called lines.

How do we recognize if (P,L) is a projective plane? Can we
find a necessary and sufficient condition other than checking
the axioms?

And “how many” projective planes are there out there?

Here is one approach from combinatorics: Pure O-sequences.
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Pure O-sequences

The study of finite projective planes can be approached through
algebraic combinatorics.

One way that this is realized is through the notion of the pure
O-sequence corresponding to our projective plane of order d .

First let’s define pure O-sequences in general (independently of
projective planes), then say which ones correspond to finite
projective planes.
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LetMe = {m1, . . . ,mr} be a set of distinct monomials of the
same degree e (not necessarily squarefree in general) in some
polynomial ring k [x1, . . . , xn].

For each 1 ≤ i ≤ e, letMi be the monomials of degree i that
divide at least one of m1, . . . ,mr .

The pure O-sequence associated toMe is the sequence

(1, |M1|, . . . , |Me−1|, |Me|).
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Example. Let R = k [x , y , z] and e = 3. Let

M3 = {x3, xyz, x2y , y3}.

Then
M2 = {x2, xy , xz, yz, y2}

M1 = {x , y , z}

leading to the pure O-sequence

(1,3,5,4).
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Remark. Algebraic point of view:

For each degree, collect the monomials not in the
corresponding listMi .

Fact: Together these generate a monomial ideal, I (i.e. an ideal
generated by monomials), whose quotient, R/I, has Hilbert
function equal to the pure O-sequence.

(We’ll come back to ideals, quotients and Hilbert functions more
carefully. This remark is just for completeness now.)
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Example (cont).

M3 = {x3, xyz, x2y , y3}

M2 = {x2, xy , xz, yz, y2}

M1 = {x , y , z}

Then

I = 〈z2, x2z, xy2, xz2, y2z, yz2, z3〉 = 〈z2, x2z, xy2, y2z〉.

Again, we’ll come back to this.

Let’s see how we can associate a pure O-sequence to a finite
projective plane, using the Fano plane as an example.
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x1

x2 x3

x4

x5
x6

x7

1. Label each point with a different variable. Recall that the
plane has q = 22 + 2 + 1 = 7 points and 7 lines, and order
d = 2.

2. Collect and count the (squarefree) monomials of degree
d + 1 = 3 corresponding to points on a line:

x1x2x5, x1x4x6, x1x3x7, x2x4x7, x2x3x6, x3x4x5, x5x6x7
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3. These monomials will be our setM3 generating our pure
O-sequence. Note |M3| = 7 (there are 7 lines).

4. Since two points lie on exactly one line, we get

|M2| = 7 ·
(

3
2

)
= 7 · 3 = 21 =

(
7
2

)
.

5. Since there are 7 points (hence 7 variables), we get

|M1| = 7.

This leads to the pure O-sequence

(1,7,21,7).

This is the pure O-sequence associated to the Fano plane.
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Theorem. A projective plane of order d exists if and only if(
1,q,q

(
d + 1

2

)
,q
(

d + 1
3

)
, . . . ,q

(
d + 1

d

)
,q
)
.

is a pure O-sequence, where q = d2 + d + 1, d ≥ 2.

Note again: the monomials generating such a sequence must
be squarefree.

Easy exercise:

q
(

d + 1
2

)
=

(
q
2

)
.

The above theorem is not a trivial argument, although some of
our facts are immediate (q points, q lines, . . . ).
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This provides an algebraic approach to finite projective planes.

See for instance

D. Cook II, J.M., U. Nagel and F. Zanello, An algebraic
approach to finite projective planes, Journal of Algebraic
Combinatorics 43 (2016), 495–519.

We described algebraic properties of algebras associated to
finite projective planes, obtained as above.

Some of these properties are related to the characteristic of the
field defining the polynomial ring in which we place our
monomials.
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Graded rings and Hilbert functions

Our next goal is to realize our pure O-sequences as Hilbert
functions, and then move on studying Hilbert functions more
generally.

We need a little bit of background. Some of this material is
taken from Commutative Algebra by Atiyah and Macdonald.
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Let R = k [x0, x1, . . . , xn] be the set of polynomials in the
variables x0, x1, . . . , xn with coefficients in a field k .

First of all, R has the structure of a commutative ring with unity.
Specifically,

I it has two binary operations (you can add polynomials and
you can multiply polynomials);

I (R,+) is an abelian group;

I multiplication is associative;

I the distributive properties hold;

I multiplication is commutative;

I the polynomial 1 is the multiplicative identity element.
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An ideal I ⊂ R is a subset of R for which

I (I,+) ⊂ (R,+) is an additive subgroup;

I if f ∈ I and h ∈ R then hf ∈ I.

In particular, (I,+) ⊂ (R,+) is a normal subgroup (since (R,+)
is commutative).

Then the quotient group R/I not only has the structure of a
group, but in fact it also inherits a ring structure from R.

The elements of R/I are the cosets f + I of I in R.

Multiplication is defined by (f + I) · (g + I) = fg + I.
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Facts:

I The mapping φ : R → R/I given by φ(f ) = f + I is a
surjective ring homomorphism.

I There is a one-to-one order-preserving correspondence
between the ideals J of R which contain I and the ideals J
of R/I, given by J = φ−1(J).
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Now let’s look at the polynomial ring R = k [x0, x1, . . . , xn].

Note that any polynomial can be decomposed in a unique way
as the sum of terms of the same degree. E.g.

f = x4y + 2xyz + 3y + 4z2 + 5y5 + 6x + 7x2y + 8y2z2 + 9x4

= (x4y + 5y5) + (8y2z2 + 9x4) + (2xyz + 7x2y) + 4z2 + (6x + 3y)

The parts in parentheses are the homogeneous components
of f .

In general, a polynomial is homogeneous if the monomials in
each term (ignoring the coefficients) all have the same degree.

A homogeneous polynomial is sometimes called a form.
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The polynomial ring R is an example of a graded ring.

Specifically, a graded ring consists of

I a ring, A;

I a family (An)n≥0 of subgroups of the additive group of A;

I such that A =
⊕∞

t=0 At

I and AsAt ⊆ As+t for all s, t ≥ 0.

In the case of the polynomial ring R, we have

Rt = {homogeneous polynomials of degree t}
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Notice that Rt is a little more than an additive subgroup of R:

it has the structure of a k -vector space!!!

In particular, if R = k [x0, x1, . . . , xn] then

dimk Rt =

(
n + t

n

)
with basis given by the monomials of degree t (exercise).

Example. R = k [x , y , z], so n = 2. Then the vector space of
homogeneous polynomials of degree t = 3 has basis

x3, x2y , x2z, xy2, xyz, xz2, y3, y2z, yz2, z3

and

dimk R3 =

(
2 + 3

2

)
= 10.
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Now we want to look at graded quotient algebras of R and their
Hilbert functions.

We need homogeneous ideals in order to make it work.

Definition/Proposition. (See for instance Cox-Little-O’Shea; this
is also in the exercises for today’s lecture.)

An ideal I ⊂ R = k [x0, x1, . . . , xn] is homogeneous if either of
the following equivalent conditions holds.

I If f ∈ I then the homogeneous components of f are also
in I;

I the ideal I has a generating set consisting of
homogeneous polynomials.
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Theorem. Assume I ⊂ R = k [x0, x1, . . . , xn] is a homogeneous
ideal.

Then:

1. We also have a decomposition I =
⊕
t≥0

It , where It is a

(finite dimensional) k-vector subspace of Rt ;

2. In this situation the quotient ring R/I is a standard graded
k-algebra:

R/I =
⊕
t≥0

[R/I]t .

3. We have dim[R/I]t = dimRt − dim It .
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Definition. If A =
⊕

t At is a standard graded k -algebra then

hA(t) = dimk At

is the Hilbert function of A.

Example. If n = 3, so R = k [x0, x1, x2, x3], then hR(t) is the
sequence(

0 + 3
3

)
,

(
1 + 3

3

)
,

(
2 + 3

3

)
,

(
3 + 3

3

)
,

(
4 + 3

3

)
,

(
5 + 3

3

)
, . . . ,

(
t + 3

3

)
, . . .

= 1, 4, 10, 20, 35, 56, . . . .

We’ll have examples of graded quotients of R in a minute.
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Monomial ideals, and pure O-sequences revisited

A monomial is obviously homogeneous (since “all terms” of the
monomial have the same degree).

So a monomial ideal is always a homogeneous ideal!

Hence if I =
⊕

t≥0 It is a monomial ideal then R/I has the
structure of a graded k -algebra.

Let m1, . . . ,mr be a basis for It . Then the monomials of degree
t not in this list can be taken as a basis for [R/I]t , and it
computes the Hilbert function hR/I(t).

As promised, this means a pure O-sequence is the Hilbert
function of a suitable monomial ideal.
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Example. Let R = k [x , y , z] and e = 3. Let

M3 = {x3, xyz, x2y , y3}

M2 = {x2, xy , xz, yz, y2}

M1 = {x , y , z}

Then

I = 〈z2, x2z, xy2, xz2, y2z, yz2, z3〉 = 〈z2, x2z, xy2, y2z〉.

{hR/I(t) | t ≥ 0} is the pure O-sequence (1,3,5,4).
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Macaulay’s theorem

Question. What are all the possible Hilbert functions of
standard graded k -algebras k [x0, . . . , xn]/I?

Note we are really talking about all standard graded k -algebras,
not just monomial k -algebras.

The amazing fact is that this question actually has a clean
answer! (See Bruns-Herzog “Cohen-Macaulay Rings” for
proofs.)

We need a little notation.
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Definition. A sequence (1,h1,h2, . . . ) (possibly infinite) is an
O-sequence if it is the Hilbert function of some standard graded
algebra R/I.

Question (rephrased): What are all the possible O-sequences
for standard graded k -algebras?

Definition Let m and i be positive integers. The i-binomial
expansion of m is the expression

m =

(
mi

i

)
+

(
mi−1

i − 1

)
+ ...+

(
mj

j

)
,

where mi > mi−1 > ... > mj ≥ j ≥ 1.

Such an expansion always exists and is unique.
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Example. m = 20, i = 4. Then

20 =

(
6
4

)
+

(
4
3

)
+

(
2
2

)
15 + 4 + 1

So m4 = 6, m3 = 4, m2 = 2.
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Given the i-binomial expansion

m =

(
mi

i

)
+

(
mi−1

i − 1

)
+ ...+

(
mj

j

)
of m we define

m〈i〉 =
(

mi + 1
i + 1

)
+

(
mi−1 + 1

i

)
+ ...+

(
mj + 1
j + 1

)
,

Example. If m = 20 and i = 4 we saw that

20 =

(
6
4

)
+

(
4
3

)
+

(
2
2

)
. Hence

20〈4〉 =
(

7
5

)
+

(
5
4

)
+

(
3
3

)
= 21 + 5 + 1 = 27.
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Macaulay’s Theorem. A sequence

(1,h1,h2, . . . )

(possibly infinite) is an O-sequence if and only if hj+1 ≤ h〈j〉j for
all j ≥ 1.

(Note that this does not involve the number of variables, n.)
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Example. The sequence

(1,4,10,17,26,28)

is an O-sequence, but the sequence

(1,4,10,17,27,28)

is not.

The issue is the 3-binomial expansion of 17 is

17 =

(
5
3

)
+

(
4
2

)
+

(
1
1

)
so

17〈3〉 =
(

6
4

)
+

(
5
3

)
+

(
2
2

)
= 15 + 10 + 1 = 26.
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Remark. Macaulay’s theorem is very simple, but finding a
standard k -algebra for a given O-sequence can be very
challenging, depending on what you are looking for.

It can involve a lot of geometry. We’ll see some of this in the
next lecture.

One approach is via a certain kind of monomial ideal called a
lex-segment ideal. Details omitted.
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