Projective Planes and Beyond

Thematic Program on Rationality and Hyperbolicity
Undergraduate Workshop
Juan Migliore
June 12-16, 2023
Slides available by emailing migliore.1@nd.edu or from the conference website.

Lecture 3: Who or what lives in projective space?

Lecture 3: Who or what lives in projective space?

Or: Projective varieties and graded rings

Introduction to \mathbb{P}_{k}^{n}

Recall that classical projective planes \mathbb{P}_{k}^{2} were defined via

- 1-dimensional subspaces (points) and
- 2-dimensional subspaces (lines)
of a 3-dimensional vector space.

Introduction to \mathbb{P}_{k}^{n}

Recall that classical projective planes \mathbb{P}_{k}^{2} were defined via

- 1-dimensional subspaces (points) and
- 2-dimensional subspaces (lines)
of a 3-dimensional vector space.

Questions.

- What happens if we pass to an ($n+1$)-dimensional vector space? (We'll define \mathbb{P}_{k}^{n}.)
- And are there other interesting subsets of \mathbb{P}_{k}^{2} or \mathbb{P}_{k}^{n} besides points and lines?

Recall: $\mathbb{P}_{\mathbb{R}}^{2}$ comes equipped with a set of coordinates over \mathbb{R}.

Recall: $\mathbb{P}_{\mathbb{R}}^{2}$ comes equipped with a set of coordinates over \mathbb{R}.

A line through the origin passing through a point $(a, b, c) \in \mathbb{R}^{3}$ $((a, b, c) \neq(0,0,0))$ can be described as

$$
\{(t a, t b, t c) \mid t \in \mathbb{R}\}
$$

Recall: $\mathbb{P}_{\mathbb{R}}^{2}$ comes equipped with a set of coordinates over \mathbb{R}.
A line through the origin passing through a point $(a, b, c) \in \mathbb{R}^{3}$ $((a, b, c) \neq(0,0,0))$ can be described as

$$
\{(t a, t b, t c) \mid t \in \mathbb{R}\} .
$$

So

$$
\mathbb{P}_{\mathbb{R}}^{2}=\left\{\begin{array}{l|l}
{[a, b, c]} & \begin{array}{r}
(a, b, c) \neq(0,0,0) \text { and } \\
{[a, b, c]=[t a, t b, t c] \forall 0 \neq t \in \mathbb{R}}
\end{array}
\end{array}\right\}
$$

(E.g. $[1,2,3]=[2,4,6]$ in $\mathbb{P}_{\mathbb{R}}^{2}$.)

Recall: $\mathbb{P}_{\mathbb{R}}^{2}$ comes equipped with a set of coordinates over \mathbb{R}.
A line through the origin passing through a point $(a, b, c) \in \mathbb{R}^{3}$ $((a, b, c) \neq(0,0,0))$ can be described as

$$
\{(t a, t b, t c) \mid t \in \mathbb{R}\} .
$$

So

$$
\mathbb{P}_{\mathbb{R}}^{2}=\left\{\begin{array}{l|l}
{[a, b, c]} & \begin{array}{r}
(a, b, c) \neq(0,0,0) \text { and } \\
{[a, b, c]=[t a, t b, t c] \forall 0 \neq t \in \mathbb{R}}
\end{array}
\end{array}\right\}
$$

(E.g. $[1,2,3]=[2,4,6]$ in $\mathbb{P}_{\mathbb{R}}^{2}$.)

And the same works over any field k in place of \mathbb{R}. More precisely:

A line through the origin in k^{n+1} passing through a point

$$
\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in k^{n+1}, \quad\left(a_{0}, a_{1}, \ldots, a_{n}\right) \neq(0,0, \ldots, 0)
$$

can be described as

$$
\left\{\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right) \mid t \in k\right\} .
$$

A line through the origin in k^{n+1} passing through a point

$$
\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in k^{n+1}, \quad\left(a_{0}, a_{1}, \ldots, a_{n}\right) \neq(0,0, \ldots, 0)
$$

can be described as

$$
\left\{\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right) \mid t \in k\right\}
$$

So
$\mathbb{P}_{k}^{n}=\left\{\begin{array}{l|l}{\left[a_{0}, a_{1}, \ldots, a_{n}\right]} & \begin{array}{l}\left(a_{0}, a_{1}, \ldots, a_{n}\right) \neq(0,0, \ldots, 0) \text { and } \\ {\left[a_{0}, a_{1}, \ldots, a_{n}\right]=\left[t a_{0}, t a_{1}, \ldots, t a_{n}\right]} \\ \forall 0 \neq t \in k\end{array}\end{array}\right\}$

These are homogeneous coordinates for points in \mathbb{P}_{k}^{n}.

In the same way that
a line in $\mathbb{P}_{k}^{2} \longleftrightarrow$ a 2-dimensional linear vector subspace of k^{3},
we get

> an s-dimensional linear variety in $\mathbb{P}_{k}^{n}$$\leftrightarrow \leadsto \begin{gathered}(s+1) \text {-dimensional (linear) } \\ \text { vector subspace of } k^{n+1}\end{gathered}$

But we can do much more!

Vanishing loci and projective varieties

(Reference: Cox, Little and O'Shea.)
If $P \in \mathbb{P}_{k}^{n}$ is a point, it has $n+1$ coordinates, each of which is an element of k.

Vanishing loci and projective varieties

(Reference: Cox, Little and O'Shea.)
If $P \in \mathbb{P}_{k}^{n}$ is a point, it has $n+1$ coordinates, each of which is an element of k.

Thus for a polynomial f to vanish at P, f has to be a polynomial in $n+1$ variables, with coefficients in k.

Vanishing loci and projective varieties

(Reference: Cox, Little and O'Shea.)
If $P \in \mathbb{P}_{k}^{n}$ is a point, it has $n+1$ coordinates, each of which is an element of k.

Thus for a polynomial f to vanish at P, f has to be a polynomial in $n+1$ variables, with coefficients in k.

So we focus on $R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.

Vanishing loci and projective varieties

(Reference: Cox, Little and O'Shea.)
If $P \in \mathbb{P}_{k}^{n}$ is a point, it has $n+1$ coordinates, each of which is an element of k.

Thus for a polynomial f to vanish at P, f has to be a polynomial in $n+1$ variables, with coefficients in k.

So we focus on $R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.

Question: Let $P \in \mathbb{P}_{k}^{n}$ and $f \in R$. Is the statement

$$
f \text { vanishes at } P
$$

well-defined?

Example 1. $n=2, \quad P=[1,2,3], \quad f_{1}=x_{0}+x_{1}+x_{2}-6$.

Example 1. $n=2, \quad P=[1,2,3], \quad f_{1}=x_{0}+x_{1}+x_{2}-6$.

$$
f_{1}(1,2,3)=1+2+3-6=0
$$

Example 1. $n=2, \quad P=[1,2,3], \quad f_{1}=x_{0}+x_{1}+x_{2}-6$.

$$
f_{1}(1,2,3)=1+2+3-6=0
$$

BUT $[1,2,3]=[2,4,6]$ and

$$
f_{1}(2,4,6)=2+4+6-6 \neq 0
$$

Example 1. $n=2, \quad P=[1,2,3], \quad f_{1}=x_{0}+x_{1}+x_{2}-6$.

$$
f_{1}(1,2,3)=1+2+3-6=0
$$

BUT $[1,2,3]=[2,4,6]$ and

$$
f_{1}(2,4,6)=2+4+6-6 \neq 0
$$

Example 2. $n=2, \quad P=[1,2,3], \quad f_{2}=x_{0}+x_{1}-x_{2}$.

Example 1. $n=2, \quad P=[1,2,3], \quad f_{1}=x_{0}+x_{1}+x_{2}-6$.

$$
f_{1}(1,2,3)=1+2+3-6=0
$$

BUT $[1,2,3]=[2,4,6]$ and

$$
f_{1}(2,4,6)=2+4+6-6 \neq 0
$$

Example 2. $n=2, \quad P=[1,2,3], \quad f_{2}=x_{0}+x_{1}-x_{2}$.

$$
f_{2}(1,2,3)=1+2-3=0
$$

and in fact

$$
f_{2}(t, 2 t, 3 t)=t+2 t-3 t=0 \quad \text { for all } t
$$

The important difference between

$$
f_{1}=x_{0}+x_{1}+x_{2}-6 \quad \text { and } \quad f_{2}=x_{0}+x_{1}-x_{2}
$$

is that f_{2} is homogeneous while f_{1} is not.

The important difference between

$$
f_{1}=x_{0}+x_{1}+x_{2}-6 \quad \text { and } \quad f_{2}=x_{0}+x_{1}-x_{2}
$$

is that f_{2} is homogeneous while f_{1} is not.

Lemma. Let

$$
P=\left[a_{0}, a_{1}, \ldots, a_{n}\right] \in \mathbb{P}_{k}^{n}
$$

and let

$$
f \in R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]
$$

be a homogeneous polynomial of degree d. Then

$$
f\left(a_{0}, \ldots, a_{n}\right)=0 \quad \text { iff } \quad f\left(t a_{0}, \ldots, t a_{n}\right)=0 \quad \forall t \in k
$$

The important difference between

$$
f_{1}=x_{0}+x_{1}+x_{2}-6 \quad \text { and } \quad f_{2}=x_{0}+x_{1}-x_{2}
$$

is that f_{2} is homogeneous while f_{1} is not.

Lemma. Let

$$
P=\left[a_{0}, a_{1}, \ldots, a_{n}\right] \in \mathbb{P}_{k}^{n}
$$

and let

$$
f \in R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]
$$

be a homogeneous polynomial of degree d. Then

$$
f\left(a_{0}, \ldots, a_{n}\right)=0 \quad \text { iff } \quad f\left(t a_{0}, \ldots, t a_{n}\right)=0 \quad \forall t \in k
$$

Proof: $\quad \forall t, \quad f\left(t a_{0}, \ldots, t a_{n}\right)=t^{d} f\left(a_{0}, \ldots, a_{n}\right)$ (exercise).

Remark. Vanishing can also be well-defined for nonhomogeneous polynomials.

Remark. Vanishing can also be well-defined for nonhomogeneous polynomials.

For example, $P=[0,0,1], f=x_{0}+x_{1}^{2}$.

Remark. Vanishing can also be well-defined for nonhomogeneous polynomials.

For example, $P=[0,0,1], f=x_{0}+x_{1}^{2}$.
Notation. If $P=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$, we write $f(P)=0$ (when it's well-defined) in place of $f\left(a_{0}, a_{1}, \ldots, a_{n}\right)=0$.

Remark. Vanishing can also be well-defined for nonhomogeneous polynomials.

For example, $P=[0,0,1], f=x_{0}+x_{1}^{2}$.
Notation. If $P=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$, we write $f(P)=0$ (when it's well-defined) in place of $f\left(a_{0}, a_{1}, \ldots, a_{n}\right)=0$.

Definition. A subset $V \subseteq \mathbb{P}_{k}^{n}$ is a projective algebraic variety if there exist homogeneous polynomials

$$
f_{1}, \ldots, f_{s} \in R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]
$$

such that

$$
V=\left\{P \in \mathbb{P}_{k}^{n} \mid f_{i}(P)=0 \text { for all } 1 \leq i \leq s\right\} .
$$

We write $V=\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)$. Note $\left\{f_{1}, \ldots, f_{s}\right\}$ is a finite set.

Note also \emptyset and \mathbb{P}_{k}^{n}
are projective varieties.

Note also

$$
\mathbb{V}(1)=\emptyset \quad \text { and } \quad \mathbb{P}_{k}^{n}=\mathbb{V}(0)
$$

are projective varieties.

Note also

$$
\mathbb{V}(1)=\emptyset \quad \text { and } \quad \mathbb{P}_{k}^{n}=\mathbb{V}(0)
$$

are projective varieties.

Recall from yesterday:

Note also

$$
\mathbb{V}(1)=\emptyset \quad \text { and } \quad \mathbb{P}_{k}^{n}=\mathbb{V}(0)
$$

are projective varieties.
Recall from yesterday:

Definition/Proposition. (See for instance Cox-Little-O'Shea.) An ideal $I \subset R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ is homogeneous if either of the following equivalent conditions holds.

Note also

$$
\mathbb{V}(1)=\emptyset \quad \text { and } \quad \mathbb{P}_{k}^{n}=\mathbb{V}(0)
$$

are projective varieties.
Recall from yesterday:
Definition/Proposition. (See for instance Cox-Little-O'Shea.) An ideal $I \subset R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ is homogeneous if either of the following equivalent conditions holds. (We'll use both at different times.)

Note also

$$
\mathbb{V}(1)=\emptyset \quad \text { and } \quad \mathbb{P}_{k}^{n}=\mathbb{V}(0)
$$

are projective varieties.
Recall from yesterday:

Definition/Proposition. (See for instance Cox-Little-O'Shea.) An ideal $I \subset R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ is homogeneous if either of the following equivalent conditions holds.

- If $f \in I$ then the homogeneous components of f are also in I;

Note also

$$
\mathbb{V}(1)=\emptyset \quad \text { and } \quad \mathbb{P}_{k}^{n}=\mathbb{V}(0)
$$

are projective varieties.
Recall from yesterday:

Definition/Proposition. (See for instance Cox-Little-O'Shea.) An ideal $I \subset R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ is homogeneous if either of the following equivalent conditions holds.

- If $f \in I$ then the homogeneous components of f are also in I;
- the ideal I has a generating set consisting of homogeneous polynomials.

Note also

$$
\mathbb{V}(1)=\emptyset \quad \text { and } \quad \mathbb{P}_{k}^{n}=\mathbb{V}(0)
$$

are projective varieties.
Recall from yesterday:

Definition/Proposition. (See for instance Cox-Little-O'Shea.) An ideal $I \subset R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ is homogeneous if either of the following equivalent conditions holds.

- If $f \in I$ then the homogeneous components of f are also in I;
- the ideal I has a generating set consisting of homogeneous polynomials.

What are the connections with projective varieties?

- 1st connection. Let I be a homogeneous ideal. Define

$$
\mathbb{V}(I)=\left\{P \in \mathbb{P}_{k}^{n} \mid f(P)=0 \quad \forall f \in I\right\}
$$

- 1st connection. Let / be a homogeneous ideal. Define

$$
\mathbb{V}(I)=\left\{P \in \mathbb{P}_{k}^{n} \mid f(P)=0 \quad \forall f \in I\right\}
$$

Proposition. $\mathbb{V}(I)$ is a projective variety.
(The issue is that right now it's defined as the vanishing locus of an infinite set of polynomials, not a finite set.)

- 1st connection. Let / be a homogeneous ideal. Define

$$
\mathbb{V}(I)=\left\{P \in \mathbb{P}_{k}^{n} \mid f(P)=0 \quad \forall f \in I\right\}
$$

Proposition. $\mathbb{V}(I)$ is a projective variety.
(The issue is that right now it's defined as the vanishing locus of an infinite set of polynomials, not a finite set.)

Proof:
$I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ (Hilbert Basis Theorem)

- 1st connection. Let / be a homogeneous ideal. Define

$$
\mathbb{V}(I)=\left\{P \in \mathbb{P}_{k}^{n} \mid f(P)=0 \quad \forall f \in I\right\}
$$

Proposition. $\mathbb{V}(I)$ is a projective variety.
(The issue is that right now it's defined as the vanishing locus of an infinite set of polynomials, not a finite set.)

Proof:
$I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ (Hilbert Basis Theorem) where the f_{i} are homogeneous (definition of homogeneous ideal).

- 1st connection. Let / be a homogeneous ideal. Define

$$
\mathbb{V}(I)=\left\{P \in \mathbb{P}_{k}^{n} \mid f(P)=0 \quad \forall f \in I\right\}
$$

Proposition. $\mathbb{V}(I)$ is a projective variety.
(The issue is that right now it's defined as the vanishing locus of an infinite set of polynomials, not a finite set.)

Proof:

$I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ (Hilbert Basis Theorem) where the f_{i} are homogeneous (definition of homogeneous ideal).

Claim: $\mathbb{V}(I)=\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)$.

- 1st connection. Let / be a homogeneous ideal. Define

$$
\mathbb{V}(I)=\left\{P \in \mathbb{P}_{k}^{n} \mid f(P)=0 \quad \forall f \in I\right\}
$$

Proposition. $\mathbb{V}(I)$ is a projective variety.
(The issue is that right now it's defined as the vanishing locus of an infinite set of polynomials, not a finite set.)

Proof:
$I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ (Hilbert Basis Theorem) where the f_{i} are homogeneous (definition of homogeneous ideal).

Claim: $\mathbb{V}(I)=\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)$.
\subseteq : Obvious because $f_{i} \in I$ for $1 \leq i \leq s$.

- 1st connection. Let / be a homogeneous ideal. Define

$$
\mathbb{V}(I)=\left\{P \in \mathbb{P}_{k}^{n} \mid f(P)=0 \quad \forall f \in I\right\}
$$

Proposition. $\mathbb{V}(I)$ is a projective variety.
(The issue is that right now it's defined as the vanishing locus of an infinite set of polynomials, not a finite set.)

Proof:
$I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ (Hilbert Basis Theorem) where the f_{i} are homogeneous (definition of homogeneous ideal).

Claim: $\mathbb{V}(I)=\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)$.
\subseteq : Obvious because $f_{i} \in I$ for $1 \leq i \leq s$.
2: Let $P \in \mathbb{V}\left(f_{1}, \ldots, f_{s}\right)$ and $f \in I$ (not necessarily homogeneous). Then $f(P)=\sum_{i=1}^{s} A_{i}(P) f_{i}(P)=0$.

- 2nd Connection. Let $S \subset \mathbb{P}_{k}^{n}$ be any set (not necessarily a variety) and assume k is infinite.

Definition.
$\mathbb{I}(S)=\left\{f \in R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right] \mid f(P)=0\right.$ for all $\left.P \in S\right\}$.
(Part of this definition is that " $f(P)=0$ " has to be well-defined.)

- 2nd Connection. Let $S \subset \mathbb{P}_{k}^{n}$ be any set (not necessarily a variety) and assume k is infinite.

Definition.
$\mathbb{I}(S)=\left\{f \in R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right] \mid f(P)=0\right.$ for all $\left.P \in S\right\}$.
(Part of this definition is that " $f(P)=0$ " has to be well-defined.)

Proposition. $\mathbb{I}(S)$ is a homogeneous ideal.

- 2nd Connection. Let $S \subset \mathbb{P}_{k}^{n}$ be any set (not necessarily a variety) and assume k is infinite.

Definition.
$\mathbb{I}(S)=\left\{f \in R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right] \mid f(P)=0\right.$ for all $\left.P \in S\right\}$.
(Part of this definition is that " $f(P)=0$ " has to be well-defined.)

Proposition. $\mathbb{I}(S)$ is a homogeneous ideal.

Proof:

It's clear that $\mathbb{I}(S)$ is an ideal: it's closed under addition and under multiplication by any element of R.

- 2nd Connection. Let $S \subset \mathbb{P}_{k}^{n}$ be any set (not necessarily a variety) and assume k is infinite.

Definition.
$\mathbb{I}(S)=\left\{f \in R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right] \mid f(P)=0\right.$ for all $\left.P \in S\right\}$.
(Part of this definition is that " $f(P)=0$ " has to be well-defined.)

Proposition. $\mathbb{I}(S)$ is a homogeneous ideal.

Proof:

It's clear that $\mathbb{I}(S)$ is an ideal: it's closed under addition and under multiplication by any element of R.

Only issue: why is it a homogeneous ideal?

Let $f \in \mathbb{I}(S)$. Decompose f as a sum of homogeneous

 components:$$
f=f_{0}+f_{1}+f_{2}+\cdots+f_{d}
$$

where f_{i} is homogeneous of degree i.

Let $f \in \mathbb{I}(S)$. Decompose f as a sum of homogeneous

 components:$$
f=f_{0}+f_{1}+f_{2}+\cdots+f_{d}
$$

where f_{i} is homogeneous of degree i.

We want to show that each $f_{i} \in \mathbb{I}(S)$.

Let $f \in \mathbb{I}(S)$. Decompose f as a sum of homogeneous

 components:$$
f=f_{0}+f_{1}+f_{2}+\cdots+f_{d}
$$

where f_{i} is homogeneous of degree i.

We want to show that each $f_{i} \in \mathbb{I}(S)$.

Let $P=\left[a_{0}, a_{1}, \ldots, a_{n}\right] \in S$.

Let $f \in \mathbb{I}(S)$. Decompose f as a sum of homogeneous

 components:$$
f=f_{0}+f_{1}+f_{2}+\cdots+f_{d}
$$

where f_{i} is homogeneous of degree i.

We want to show that each $f_{i} \in \mathbb{I}(S)$.

Let $P=\left[a_{0}, a_{1}, \ldots, a_{n}\right] \in S$.
We know $f(P)=0$, and

$$
P=\left[t a_{0}, t a_{1}, \ldots, t a_{n}\right]
$$

for any $0 \neq t \in k$ (which, again, is infinite).

So

$$
0=f(P)=f_{0}\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right)+\cdots+f_{d}\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right)
$$

So

$$
\begin{aligned}
& 0=f(P)=f_{0}\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right)+\cdots+f_{d}\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right) \\
& =f_{0}\left(a_{0}, \ldots, a_{n}\right)+t \cdot f_{1}\left(a_{0}, \ldots, a_{n}\right)+\cdots+t^{d} \cdot f_{d}\left(a_{0}, \ldots, a_{n}\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
& 0=f(P)=f_{0}\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right)+\cdots+f_{d}\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right) \\
& =f_{0}\left(a_{0}, \ldots, a_{n}\right)+t \cdot f_{1}\left(a_{0}, \ldots, a_{n}\right)+\cdots+t^{d} \cdot f_{d}\left(a_{0}, \ldots, a_{n}\right) .
\end{aligned}
$$

This polynomial in one variable vanishes for each value of t (of which there are infinitely many).

So

$$
\begin{aligned}
& 0=f(P)=f_{0}\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right)+\cdots+f_{d}\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right) \\
& =f_{0}\left(a_{0}, \ldots, a_{n}\right)+t \cdot f_{1}\left(a_{0}, \ldots, a_{n}\right)+\cdots+t^{d} \cdot f_{d}\left(a_{0}, \ldots, a_{n}\right) .
\end{aligned}
$$

This polynomial in one variable vanishes for each value of t (of which there are infinitely many).

But a non-zero polynomial in one variable has finitely many roots.

So

$$
\begin{aligned}
& 0=f(P)=f_{0}\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right)+\cdots+f_{d}\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right) \\
& =f_{0}\left(a_{0}, \ldots, a_{n}\right)+t \cdot f_{1}\left(a_{0}, \ldots, a_{n}\right)+\cdots+t^{d} \cdot f_{d}\left(a_{0}, \ldots, a_{n}\right) .
\end{aligned}
$$

This polynomial in one variable vanishes for each value of t (of which there are infinitely many).

But a non-zero polynomial in one variable has finitely many roots.

Hence the coefficients are zero:

$$
f_{i}(P)=f_{i}\left(a_{0}, a_{1}, \ldots, a_{n}\right)=0
$$

So

$$
\begin{aligned}
& 0=f(P)=f_{0}\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right)+\cdots+f_{d}\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right) \\
& =f_{0}\left(a_{0}, \ldots, a_{n}\right)+t \cdot f_{1}\left(a_{0}, \ldots, a_{n}\right)+\cdots+t^{d} \cdot f_{d}\left(a_{0}, \ldots, a_{n}\right) .
\end{aligned}
$$

This polynomial in one variable vanishes for each value of t (of which there are infinitely many).

But a non-zero polynomial in one variable has finitely many roots.

Hence the coefficients are zero:

$$
f_{i}(P)=f_{i}\left(a_{0}, a_{1}, \ldots, a_{n}\right)=0
$$

so $f_{i} \in \mathbb{I}(S)$, as desired, since $P \in S$ was an arbitrary point.

So

$$
\begin{aligned}
& 0=f(P)=f_{0}\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right)+\cdots+f_{d}\left(t a_{0}, t a_{1}, \ldots, t a_{n}\right) \\
& =f_{0}\left(a_{0}, \ldots, a_{n}\right)+t \cdot f_{1}\left(a_{0}, \ldots, a_{n}\right)+\cdots+t^{d} \cdot f_{d}\left(a_{0}, \ldots, a_{n}\right) .
\end{aligned}
$$

This polynomial in one variable vanishes for each value of t (of which there are infinitely many).

But a non-zero polynomial in one variable has finitely many roots.

Hence the coefficients are zero:

$$
f_{i}(P)=f_{i}\left(a_{0}, a_{1}, \ldots, a_{n}\right)=0
$$

so $f_{i} \in \mathbb{I}(S)$, as desired, since $P \in S$ was an arbitrary point.
Thus $\mathbb{I}(S)$ is a homogeneous ideal.

So we have

$$
\begin{aligned}
\left\{\text { varieties in } \mathbb{P}_{k}^{n}\right\} & \rightsquigarrow\left\{\begin{array}{c}
\text { homogeneous ideals } \\
\text { in } k\left[x_{0}, \ldots, x_{n}\right]
\end{array}\right\} \\
V & \mapsto \mathbb{I}(V)
\end{aligned}
$$

and

$$
\left\{\begin{array}{c}
\left.\begin{array}{c}
\text { homogeneous ideals } \\
\text { in } k\left[x_{0}, \ldots, x_{n}\right]
\end{array}\right\}
\end{array} \begin{array}{ll}
\rightsquigarrow & \left\{\text { varieties in } \mathbb{P}_{k}^{n}\right\} \\
I & \mapsto \mathbb{V}(I)
\end{array}\right.
$$

So we have

$$
\begin{aligned}
\left\{\text { varieties in } \mathbb{P}_{k}^{n}\right\} & \rightsquigarrow\left\{\begin{array}{c}
\text { homogeneous ideals } \\
\text { in } k\left[x_{0}, \ldots, x_{n}\right]
\end{array}\right\} \\
V & \mapsto \mathbb{I}(V)
\end{aligned}
$$

and

$$
\left\{\begin{array}{c}
\begin{array}{c}
\text { homogeneous ideals } \\
\text { in } k\left[x_{0}, \ldots, x_{n}\right]
\end{array}
\end{array}\right\} \begin{array}{ll}
& \rightsquigarrow
\end{array} \begin{aligned}
& \left\{\text { varieties in } \mathbb{P}_{k}^{n}\right\} \\
& I
\end{aligned}
$$

Questions. How are these maps related? Are they inverses of each other? Are there other relations?

Proposition. If $V \subset \mathbb{P}_{k}^{n}$ is a variety then $\mathbb{V}(\mathbb{I}(V))=V$.

Proposition. If $V \subset \mathbb{P}_{k}^{n}$ is a variety then $\mathbb{V}(\mathbb{I}(V))=V$.

Proof:

\supseteq : Let $P \in V$. We want to show that $P \in \mathbb{V}(\mathbb{I}(V))$.
I.e. We want to show that if $f \in \mathbb{I}(V)$ then $f(P)=0$. Clear.

Proposition. If $V \subset \mathbb{P}_{k}^{n}$ is a variety then $\mathbb{V}(\mathbb{I}(V))=V$.

Proof:

\supseteq : Let $P \in V$. We want to show that $P \in \mathbb{V}(\mathbb{I}(V))$.
I.e. We want to show that if $f \in \mathbb{I}(V)$ then $f(P)=0$. Clear.
\subseteq :
Let $V=\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)$.

Proposition. If $V \subset \mathbb{P}_{k}^{n}$ is a variety then $\mathbb{V}(\mathbb{I}(V))=V$.

Proof:

\supseteq : Let $P \in V$. We want to show that $P \in \mathbb{V}(\mathbb{I}(V))$.
I.e. We want to show that if $f \in \mathbb{I}(V)$ then $f(P)=0$. Clear.
\subseteq :
Let $V=\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)$. Note $f_{i} \in \mathbb{I}(V)$ for $1 \leq i \leq s$.

Proposition. If $V \subset \mathbb{P}_{k}^{n}$ is a variety then $\mathbb{V}(\mathbb{I}(V))=V$.

Proof:

\supseteq : Let $P \in V$. We want to show that $P \in \mathbb{V}(\mathbb{I}(V))$.
I.e. We want to show that if $f \in \mathbb{I}(V)$ then $f(P)=0$. Clear.
\subseteq :
Let $V=\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)$. Note $f_{i} \in \mathbb{I}(V)$ for $1 \leq i \leq s$.
Let $P \in \mathbb{V}(\mathbb{I}(V))$.

Proposition. If $V \subset \mathbb{P}_{k}^{n}$ is a variety then $\mathbb{V}(\mathbb{I}(V))=V$.

Proof:

\supseteq : Let $P \in V$. We want to show that $P \in \mathbb{V}(\mathbb{I}(V))$.
I.e. We want to show that if $f \in \mathbb{I}(V)$ then $f(P)=0$. Clear.
\subseteq :
Let $V=\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)$. Note $f_{i} \in \mathbb{I}(V)$ for $1 \leq i \leq s$.
Let $P \in \mathbb{V}(\mathbb{I}(V))$. We want to show that $P \in V$.

Proposition. If $V \subset \mathbb{P}_{k}^{n}$ is a variety then $\mathbb{V}(\mathbb{I}(V))=V$.

Proof:

\supseteq : Let $P \in V$. We want to show that $P \in \mathbb{V}(\mathbb{I}(V))$.
I.e. We want to show that if $f \in \mathbb{I}(V)$ then $f(P)=0$. Clear.
\subseteq :
Let $V=\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)$. Note $f_{i} \in \mathbb{I}(V)$ for $1 \leq i \leq s$.
Let $P \in \mathbb{V}(\mathbb{I}(V))$. We want to show that $P \in V$.
By definition, $f(P)=0$ for all $f \in \mathbb{I}(V)$.

Proposition. If $V \subset \mathbb{P}_{k}^{n}$ is a variety then $\mathbb{V}(\mathbb{I}(V))=V$.

Proof:

\supseteq : Let $P \in V$. We want to show that $P \in \mathbb{V}(\mathbb{I}(V))$.
I.e. We want to show that if $f \in \mathbb{I}(V)$ then $f(P)=0$. Clear.
\subseteq :
Let $V=\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)$. Note $f_{i} \in \mathbb{I}(V)$ for $1 \leq i \leq s$.
Let $P \in \mathbb{V}(\mathbb{I}(V))$. We want to show that $P \in V$.
By definition, $f(P)=0$ for all $f \in \mathbb{I}(V)$.
In particular, $f_{i}(P)=0$ for $1 \leq i \leq s$. Thus

$$
P \in \mathbb{V}\left(f_{1}, \ldots, f_{s}\right)=V
$$

Proposition. If $V \subset \mathbb{P}_{k}^{n}$ is a variety then $\mathbb{V}(\mathbb{I}(V))=V$.

Proof:

\supseteq : Let $P \in V$. We want to show that $P \in \mathbb{V}(\mathbb{I}(V))$.
I.e. We want to show that if $f \in \mathbb{I}(V)$ then $f(P)=0$. Clear.
\subseteq :
Let $V=\mathbb{V}\left(f_{1}, \ldots, f_{s}\right)$. Note $f_{i} \in \mathbb{I}(V)$ for $1 \leq i \leq s$.
Let $P \in \mathbb{V}(\mathbb{I}(V))$. We want to show that $P \in V$.
By definition, $f(P)=0$ for all $f \in \mathbb{I}(V)$.
In particular, $f_{i}(P)=0$ for $1 \leq i \leq s$. Thus

$$
P \in \mathbb{V}\left(f_{1}, \ldots, f_{s}\right)=V
$$

Note for \subseteq it was crucial that V was a variety.

Reversing the roles does not (quite) work:
Example. $I=\left\langle x_{0}^{2}\right\rangle$. Then

$$
\mathbb{I}(\mathbb{V}(I))=\left\langle x_{0}\right\rangle \subsetneq\left\langle x_{0}^{2}\right\rangle .
$$

Reversing the roles does not (quite) work:
Example. $I=\left\langle x_{0}^{2}\right\rangle$. Then

$$
\mathbb{I}(\mathbb{V}(I))=\left\langle x_{0}\right\rangle \subsetneq\left\langle x_{0}^{2}\right\rangle .
$$

Definition. An ideal $/$ is radical if it has the following property: If $f \in R$ and $f^{s} \in I$ for some s then $f \in I$.

Reversing the roles does not (quite) work:
Example. $I=\left\langle x_{0}^{2}\right\rangle$. Then

$$
\mathbb{I}(\mathbb{V}(I))=\left\langle x_{0}\right\rangle \subsetneq\left\langle x_{0}^{2}\right\rangle .
$$

Definition. An ideal $/$ is radical if it has the following property: If $f \in R$ and $f^{s} \in I$ for some s then $f \in I$.

Example 1. $\left\langle x_{0}\right\rangle$ is radical but $\left\langle x_{0}^{2}\right\rangle$ is not.

Reversing the roles does not (quite) work:
Example. $I=\left\langle x_{0}^{2}\right\rangle$. Then

$$
\mathbb{I}(\mathbb{V}(I))=\left\langle x_{0}\right\rangle \subsetneq\left\langle x_{0}^{2}\right\rangle .
$$

Definition. An ideal $/$ is radical if it has the following property:

$$
\text { If } f \in R \text { and } f^{s} \in I \text { for some } s \text { then } f \in I
$$

Example 1. $\left\langle x_{0}\right\rangle$ is radical but $\left\langle x_{0}^{2}\right\rangle$ is not.
Example 2. $P=[0,0,1] \in \mathbb{P}^{2} . \mathbb{I}(P)$ is radical since
$f^{s} \in \mathbb{I}(P)$

Reversing the roles does not (quite) work:
Example. $I=\left\langle x_{0}^{2}\right\rangle$. Then

$$
\mathbb{I}(\mathbb{V}(I))=\left\langle x_{0}\right\rangle \subsetneq\left\langle x_{0}^{2}\right\rangle .
$$

Definition. An ideal $/$ is radical if it has the following property:

$$
\text { If } f \in R \text { and } f^{s} \in I \text { for some } s \text { then } f \in I
$$

Example 1. $\left\langle x_{0}\right\rangle$ is radical but $\left\langle x_{0}^{2}\right\rangle$ is not.
Example 2. $P=[0,0,1] \in \mathbb{P}^{2} . \mathbb{I}(P)$ is radical since
$f^{s} \in \mathbb{I}(P) \Rightarrow f^{s}(P)=0$

Reversing the roles does not (quite) work:
Example. $I=\left\langle x_{0}^{2}\right\rangle$. Then

$$
\mathbb{I}(\mathbb{V}(I))=\left\langle x_{0}\right\rangle \subsetneq\left\langle x_{0}^{2}\right\rangle .
$$

Definition. An ideal $/$ is radical if it has the following property:

$$
\text { If } f \in R \text { and } f^{s} \in I \text { for some } s \text { then } f \in I
$$

Example 1. $\left\langle x_{0}\right\rangle$ is radical but $\left\langle x_{0}^{2}\right\rangle$ is not.
Example 2. $P=[0,0,1] \in \mathbb{P}^{2} . \mathbb{I}(P)$ is radical since
$f^{s} \in \mathbb{I}(P) \Rightarrow f^{s}(P)=0 \Rightarrow f(P)^{s}=0$

Reversing the roles does not (quite) work:
Example. $I=\left\langle x_{0}^{2}\right\rangle$. Then

$$
\mathbb{I}(\mathbb{V}(I))=\left\langle x_{0}\right\rangle \subsetneq\left\langle x_{0}^{2}\right\rangle .
$$

Definition. An ideal $/$ is radical if it has the following property:

$$
\text { If } f \in R \text { and } f^{s} \in I \text { for some } s \text { then } f \in I \text {. }
$$

Example 1. $\left\langle x_{0}\right\rangle$ is radical but $\left\langle x_{0}^{2}\right\rangle$ is not.
Example 2. $P=[0,0,1] \in \mathbb{P}^{2} . \mathbb{I}(P)$ is radical since
$f^{s} \in \mathbb{I}(P) \Rightarrow f^{s}(P)=0 \Rightarrow f(P)^{s}=0 \Rightarrow f(P)=0$

Reversing the roles does not (quite) work:
Example. $I=\left\langle x_{0}^{2}\right\rangle$. Then

$$
\mathbb{I}(\mathbb{V}(I))=\left\langle x_{0}\right\rangle \subsetneq\left\langle x_{0}^{2}\right\rangle .
$$

Definition. An ideal $/$ is radical if it has the following property:

$$
\text { If } f \in R \text { and } f^{s} \in I \text { for some } s \text { then } f \in I \text {. }
$$

Example 1. $\left\langle x_{0}\right\rangle$ is radical but $\left\langle x_{0}^{2}\right\rangle$ is not.
Example 2. $P=[0,0,1] \in \mathbb{P}^{2} . \mathbb{I}(P)$ is radical since
$f^{s} \in \mathbb{I}(P) \Rightarrow f^{s}(P)=0 \Rightarrow f(P)^{s}=0 \Rightarrow f(P)=0 \Rightarrow f \in \mathbb{I}(P)$.

Definition. Given an ideal $I \subset R=k\left[x_{0}, \ldots, x_{n}\right]$, the radical of I is

$$
\sqrt{I}=\left\{f \in R \mid f^{t} \in I \text { for some } t \geq 1\right\}
$$

Example. $I=\left\langle x_{0}^{2}\right\rangle \Rightarrow \sqrt{I}=\left\langle x_{0}\right\rangle$.

Definition. Given an ideal $I \subset R=k\left[x_{0}, \ldots, x_{n}\right]$, the radical of I is

$$
\sqrt{I}=\left\{f \in R \mid f^{t} \in I \text { for some } t \geq 1\right\}
$$

Example. $I=\left\langle x_{0}^{2}\right\rangle \Rightarrow \sqrt{I}=\left\langle x_{0}\right\rangle$.

Proposition. If I is homogeneous then so is \sqrt{I}. (Exercise.)

Definition. Given an ideal $I \subset R=k\left[x_{0}, \ldots, x_{n}\right]$, the radical of I is

$$
\sqrt{I}=\left\{f \in R \mid f^{t} \in I \text { for some } t \geq 1\right\}
$$

Example. $I=\left\langle x_{0}^{2}\right\rangle \Rightarrow \sqrt{I}=\left\langle x_{0}\right\rangle$.

Proposition. If I is homogeneous then so is \sqrt{I}. (Exercise.)

Theorem. (Hilbert's Projective Strong Nullstellensatz) Let k be algebraically closed. Let I be a homogeneous ideal. If $V=\mathbb{V}(I)$ is non-empty then

$$
\mathbb{I}(\mathbb{V}(I))=\sqrt{I}
$$

Fact. (Largely Hilbert's Projective Strong Nullstellensatz.) Assume k is algebraically closed (e.g. $k=\mathbb{C}$). We have a bijection

$$
\left\{\begin{array}{c}
\text { nonempty } \\
\text { varieties in } \mathbb{P}_{k}^{n}
\end{array}\right\} \leadsto\left\{\begin{array}{c}
\text { proper, radical } \\
\text { homogeneous ideals } \\
\text { in } k\left[x_{0}, \ldots, x_{n}\right]
\end{array}\right\}
$$

where \mathbb{V} and \mathbb{I} are inverses of each other;

Fact. (Largely Hilbert's Projective Strong Nullstellensatz.)
Assume k is algebraically closed (e.g. $k=\mathbb{C}$). We have a bijection

$$
\left\{\begin{array}{c}
\text { nonempty } \\
\text { varieties in } \mathbb{P}_{k}^{n}
\end{array}\right\} \quad u \rightarrow\left\{\begin{array}{c}
\text { proper, radical } \\
\text { homogeneous ideals } \\
\text { in } k\left[x_{0}, \ldots, x_{n}\right]
\end{array}\right\}
$$

where \mathbb{V} and \mathbb{I} are inverses of each other; in particular

$$
\mathbb{I}(\mathbb{V}(I))=I .
$$

Hence \mathbb{V} and \mathbb{I} are order-reversing bijections that are inverses of each other.

Fact. Unions and intersections of projective varieties are again projective varieties:

$$
\begin{aligned}
& \mathbb{V}\left(I_{1}\right) \cup \mathbb{V}\left(I_{2}\right)=\mathbb{V}\left(I_{1} \cap I_{2}\right) . \\
& \mathbb{V}\left(I_{1}\right) \cap \mathbb{V}\left(I_{2}\right)=\mathbb{V}\left(I_{1}+I_{2}\right) .
\end{aligned}
$$

(Check that intersections and sums of homogeneous ideals are again homogeneous ideals!)

Fact. Unions and intersections of projective varieties are again projective varieties:

$$
\begin{aligned}
& \mathbb{V}\left(I_{1}\right) \cup \mathbb{V}\left(I_{2}\right)=\mathbb{V}\left(I_{1} \cap I_{2}\right) . \\
& \mathbb{V}\left(I_{1}\right) \cap \mathbb{V}\left(I_{2}\right)=\mathbb{V}\left(I_{1}+I_{2}\right) .
\end{aligned}
$$

(Check that intersections and sums of homogeneous ideals are again homogeneous ideals!)

In fact, finite unions and arbitrary intersections of projective varieties are again projective varieties.

Fact. Unions and intersections of projective varieties are again projective varieties:

$$
\begin{aligned}
& \mathbb{V}\left(I_{1}\right) \cup \mathbb{V}\left(I_{2}\right)=\mathbb{V}\left(I_{1} \cap I_{2}\right) . \\
& \mathbb{V}\left(I_{1}\right) \cap \mathbb{V}\left(I_{2}\right)=\mathbb{V}\left(I_{1}+I_{2}\right) .
\end{aligned}
$$

(Check that intersections and sums of homogeneous ideals are again homogeneous ideals!)

In fact, finite unions and arbitrary intersections of projective varieties are again projective varieties.

Projective varieties form the closed sets in the Zariski topology for \mathbb{P}_{k}^{n}. (Details omitted.)

Independent conditions and linear equations

We want to talk about what it means for a set of points to impose independent conditions on forms of fixed degree d.

Then we'll talk about how you check if this holds or not for a given set and given degree.

To simplify things, let's do this by a series of examples.

Independent conditions and linear equations

We want to talk about what it means for a set of points to impose independent conditions on forms of fixed degree d.

Then we'll talk about how you check if this holds or not for a given set and given degree.

To simplify things, let's do this by a series of examples.

Example 1. Let $P=[2,3,4] \in \mathbb{P}^{2}$ and fix the degree to be 3 . How do we describe the set of homogeneous polynomials of degree 3 vanishing at P ?

To work in \mathbb{P}^{2} we need 3 variables, say x, y, z. A typical homogeneous polynomial of degree 3 has the form

$$
\begin{aligned}
a_{1} x^{3}+a_{2} x^{2} y+a_{3} x^{2} z+ & a_{4} x y^{2}+a_{5} x y z+a_{6} x z^{2}+ \\
& a_{7} y^{3}+a_{8} y^{2} z+a_{9} y z^{2}+a_{10} z^{3}
\end{aligned}
$$

To work in \mathbb{P}^{2} we need 3 variables, say x, y, z. A typical homogeneous polynomial of degree 3 has the form

$$
\begin{aligned}
a_{1} x^{3}+a_{2} x^{2} y+a_{3} x^{2} z+ & a_{4} x y^{2}+a_{5} x y z+a_{6} x z^{2}+ \\
& a_{7} y^{3}+a_{8} y^{2} z+a_{9} y z^{2}+a_{10} z^{3} .
\end{aligned}
$$

To vanish at the point $[2,3,4]$ means we need

$$
\begin{aligned}
& a_{1}\left(2^{3}\right)+a_{2}\left(2^{2}\right)(3)+a_{3}\left(2^{2}\right)(4)+a_{4}(2)\left(3^{2}\right)+a_{5}(2)(3)(4)+ \\
& \quad a_{6}(2)\left(4^{2}\right)+a_{7}\left(3^{3}\right)+a_{8}\left(3^{2}\right)(4)+a_{9}(3)\left(4^{2}\right)+a_{10}\left(4^{3}\right)=0 .
\end{aligned}
$$

i.e.
$8 a_{1}+12 a_{2}+16 a_{3}+18 a_{4}+24 a_{5}+32 a_{6}+27 a_{7}+$ $36 a_{8}+48 a_{9}+64 a_{10}=0$.

So the condition on the polynomial

$$
\begin{aligned}
a_{1} x^{3}+a_{2} x^{2} y+a_{3} x^{2} z+ & a_{4} x y^{2}+a_{5} x y z+a_{6} x z^{2}+ \\
& a_{7} y^{3}+a_{8} y^{2} z+a_{9} y z^{2}+a_{10} z^{3}
\end{aligned}
$$

to vanish at the point $P=[2,3,4]$ is given by a homogeneous linear equation in the 10 variables a_{1}, \ldots, a_{10}.

So the condition on the polynomial

$$
\begin{aligned}
a_{1} x^{3}+a_{2} x^{2} y+a_{3} x^{2} z+ & a_{4} x y^{2}+a_{5} x y z+a_{6} x z^{2}+ \\
& a_{7} y^{3}+a_{8} y^{2} z+a_{9} y z^{2}+a_{10} z^{3}
\end{aligned}
$$

to vanish at the point $P=[2,3,4]$ is given by a homogeneous linear equation in the 10 variables a_{1}, \ldots, a_{10}.

In the 10-dimensional vector space of forms of degree 3 in x, y, z, the solution space is $10-1=9$ dimensional.

Example 2. Suppose we have points $P_{1}, \ldots, P_{7} \in \mathbb{P}^{2}$. How do we describe the homogeneous polynomials of degree 3 vanishing on these 7 points?

Example 2. Suppose we have points $P_{1}, \ldots, P_{7} \in \mathbb{P}^{2}$. How do we describe the homogeneous polynomials of degree 3 vanishing on these 7 points?

Each point corresponds to a homogeneous linear equation in a_{1}, \ldots, a_{10}.

So we get a system of seven homogeneous linear equations!

Example 2. Suppose we have points $P_{1}, \ldots, P_{7} \in \mathbb{P}^{2}$. How do we describe the homogeneous polynomials of degree 3 vanishing on these 7 points?

Each point corresponds to a homogeneous linear equation in a_{1}, \ldots, a_{10}.

So we get a system of seven homogeneous linear equations!
Each new equation "should" knock the dimension down by one.
How do we check if that's the case, i.e. if the points impose independent conditions?

We want to know if our equations are independent.
That's true if and only if none of the equations is a linear combination of the other six.

We want to know if our equations are independent.
That's true if and only if none of the equations is a linear combination of the other six.

For example, what does it mean for the 7th equation to be a linear combination of the previous six?

It means that any solution of all the first six equations is automatically a solution of the 7th.

We want to know if our equations are independent.
That's true if and only if none of the equations is a linear combination of the other six.

For example, what does it mean for the 7th equation to be a linear combination of the previous six?

It means that any solution of all the first six equations is automatically a solution of the 7th.

Translation: it means that any homogenous polynomial of degree 3 that vanishes at the first six points has to vanish at the 7th point as well.

Conclusion: The equations are independent if and only if the following statement is true:

Given any of the seven points, say P_{i}, you can find a homogeneous polynomial of degree 3 vanishing at the other six but not vanishing at P_{i}.

Conclusion: The equations are independent if and only if the following statement is true:

Given any of the seven points, say P_{i}, you can find a homogeneous polynomial of degree 3 vanishing at the other six but not vanishing at P_{i}.

Example 3.

Any cubic vanishing at all but P_{7} also vanishes at P_{7}.

Conclusion: The equations are independent if and only if the following statement is true:

Given any of the seven points, say P_{i}, you can find a homogeneous polynomial of degree 3 vanishing at the other six but not vanishing at P_{i}.

Example 3.

Any cubic vanishing at all but P_{7} also vanishes at P_{7}.
Conclusion: the points do not impose independent conditions on cubics.

Example 4.

Exercise: For each of the points, P_{i}, find a cubic (union of 3 lines) containing the remaining 6 but not containing P_{i}.

Conclusion: the points do impose independent conditions on cubics.

Remark. Let Z be a set of d points in \mathbb{P}^{n}.

Assume that the Hilbert function $h_{R / \mathbb{I}(Z)}(t)=d$ for some t. (We know it's true for $t \gg 0$.)

Then Z imposes independent conditions on homogeneous polynomials of degree t.

Why?

$$
h_{R / \mathbb{I}(Z)}(t)=\operatorname{dim} R_{t}-\operatorname{dim} \mathbb{I}(Z)_{t}
$$

so

$$
\operatorname{dim} R_{t}-\operatorname{dim} \mathbb{I}(Z)_{t}=d \Rightarrow \operatorname{dim} \mathbb{I}(Z)_{t}=\operatorname{dim} R_{t}-d
$$

i.e. the d points impose independent conditions.

Hilbert functions and Hilbert polynomials for varieties

Let $V \subseteq \mathbb{P}^{n}$ be a projective variety. Let $R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.

Hilbert functions and Hilbert polynomials for varieties

Let $V \subseteq \mathbb{P}^{n}$ be a projective variety. Let $R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.
Since $\mathbb{I}(V)$ is a homogeneous ideal, the quotient $R / \mathbb{I}(V)$ is a standard graded k-algebra.

Hilbert functions and Hilbert polynomials for varieties

Let $V \subseteq \mathbb{P}^{n}$ be a projective variety. Let $R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.
Since $\mathbb{I}(V)$ is a homogeneous ideal, the quotient $R / \mathbb{I}(V)$ is a standard graded k-algebra.

Let $h_{V}(t)=\operatorname{dim}_{k}[R / \mathbb{I}(V)]_{t}$ be the Hilbert function of V.

Hilbert functions and Hilbert polynomials for varieties

Let $V \subseteq \mathbb{P}^{n}$ be a projective variety. Let $R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.
Since $\mathbb{I}(V)$ is a homogeneous ideal, the quotient $R / \mathbb{I}(V)$ is a standard graded k-algebra.

Let $h_{V}(t)=\operatorname{dim}_{k}[R / \mathbb{I}(V)]_{t}$ be the Hilbert function of V.
$h_{V}(t)$ conveys a lot of geometric information about V.

Hilbert functions and Hilbert polynomials for varieties

Let $V \subseteq \mathbb{P}^{n}$ be a projective variety. Let $R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.
Since $\mathbb{I}(V)$ is a homogeneous ideal, the quotient $R / \mathbb{I}(V)$ is a standard graded k-algebra.

Let $h_{V}(t)=\operatorname{dim}_{k}[R / \mathbb{I}(V)]_{t}$ be the Hilbert function of V.
$h_{V}(t)$ conveys a lot of geometric information about V.
What follows are some illustrations, and are not central to this lecture.

Theorem. (Hilbert-Serre)
There is a polynomial $P_{V}(t) \in \mathbb{Q}[t]$ such that

$$
P_{V}(t)=h_{V}(t)
$$

for all $t \gg 0$.

Theorem. (Hilbert-Serre)
There is a polynomial $P_{V}(t) \in \mathbb{Q}[t]$ such that

$$
P_{V}(t)=h_{V}(t)
$$

for all $t \gg 0$.

Fact.

1. $\operatorname{dim}(V)=\operatorname{deg}\left(P_{V}(t)\right)$. Call this integer r.

Theorem. (Hilbert-Serre) There is a polynomial $P_{V}(t) \in \mathbb{Q}[t]$ such that

$$
P_{V}(t)=h_{V}(t)
$$

for all $t \gg 0$.

Fact.

1. $\operatorname{dim}(V)=\operatorname{deg}\left(P_{V}(t)\right)$. Call this integer r.
2. $\operatorname{deg}(V)=(r!) \cdot\left[\right.$ leading coefficient of $\left.P_{V}(t)\right]$.

Theorem. (Hilbert-Serre)
There is a polynomial $P_{V}(t) \in \mathbb{Q}[t]$ such that

$$
P_{V}(t)=h_{V}(t)
$$

for all $t \gg 0$.

Fact.

1. $\operatorname{dim}(V)=\operatorname{deg}\left(P_{V}(t)\right)$. Call this integer r.
2. $\operatorname{deg}(V)=(r!) \cdot\left[\right.$ leading coefficient of $\left.P_{V}(t)\right]$.
3. The arithmetic genus of V is $p_{a}(V)=(-1)^{r} P_{V}(0)-1$.

Theorem. (Hilbert-Serre)
There is a polynomial $P_{V}(t) \in \mathbb{Q}[t]$ such that

$$
P_{V}(t)=h_{V}(t)
$$

for all $t \gg 0$.

Fact.

1. $\operatorname{dim}(V)=\operatorname{deg}\left(P_{V}(t)\right)$. Call this integer r.
2. $\operatorname{deg}(V)=(r!) \cdot\left[\right.$ leading coefficient of $\left.P_{V}(t)\right]$.
3. The arithmetic genus of V is $p_{a}(V)=(-1)^{r} P_{V}(0)-1$.

Takeaway: the Hilbert polynomial comes from the Hilbert function, and it gives important information about V.

Examples.

1. If V is a finite set of points then P_{V} is a constant, equal to the number of points. $\operatorname{deg}(V)$ is equal to the number of points.

Examples.

1. If V is a finite set of points then P_{V} is a constant, equal to the number of points.

$\operatorname{deg}(V)$ is equal to the number of points.

2. V is a curve if and only if $P_{V}(t)$ is a polynomial of degree 1.

Then

$$
P_{V}(t)=(\operatorname{deg} V) t-p_{a}(V)+1
$$

2. (cont.) Examples:
2.1 Let V be the so-called twisted cubic curve in $\mathbb{P}_{\mathbb{R}}^{3}$,

$$
V=\left\{\left[s^{3}, s^{2} t, s t^{2}, t^{3}\right][s, t] \in \mathbb{P}_{\mathbb{R}}^{1}\right\} .
$$

2. (cont.) Examples:

2.1 Let V be the so-called twisted cubic curve in $\mathbb{P}_{\mathbb{R}}^{3}$,

$$
V=\left\{\left[s^{3}, s^{2} t, s t^{2}, t^{3}\right][s, t] \in \mathbb{P}_{\mathbb{R}}^{1}\right\} .
$$

Then $\mathbb{I}(V)=\left\langle w z-x y, x^{2}-w y, y^{2}-x z\right\rangle \subset \mathbb{R}[w, x, y \cdot z]$
2. (cont.) Examples:
2.1 Let V be the so-called twisted cubic curve in $\mathbb{P}_{\mathbb{R}}^{3}$,

$$
V=\left\{\left[s^{3}, s^{2} t, s t^{2}, t^{3}\right][s, t] \in \mathbb{P}_{\mathbb{R}}^{1}\right\} .
$$

Then $\mathbb{I}(V)=\left\langle w z-x y, x^{2}-w y, y^{2}-x z\right\rangle \subset \mathbb{R}[w, x, y \cdot z]$ and $P_{V}(t)=3 t+1$.

2. (cont.) Examples:

2.1 Let V be the so-called twisted cubic curve in $\mathbb{P}_{\mathbb{R}}^{3}$,

$$
V=\left\{\left[s^{3}, s^{2} t, s t^{2}, t^{3}\right][s, t] \in \mathbb{P}_{\mathbb{R}}^{1}\right\} .
$$

Then $\mathbb{I}(V)=\left\langle w z-x y, x^{2}-w y, y^{2}-x z\right\rangle \subset \mathbb{R}[w, x, y . z]$ and $P_{V}(t)=3 t+1$.

So V has degree 3 and arithmetic genus 0 .
2. (cont.) Examples:
2.1 Let V be the so-called twisted cubic curve in $\mathbb{P}_{\mathbb{R}}^{3}$,

$$
V=\left\{\left[s^{3}, s^{2} t, s t^{2}, t^{3}\right][s, t] \in \mathbb{P}_{\mathbb{R}}^{1}\right\} .
$$

Then $\mathbb{I}(V)=\left\langle w z-x y, x^{2}-w y, y^{2}-x z\right\rangle \subset \mathbb{R}[w, x, y \cdot z]$
and $P_{V}(t)=3 t+1$.
So V has degree 3 and arithmetic genus 0 .
2.2 Let V be the complete intersection in \mathbb{P}_{k}^{3} of a surface of degree a and a surface of degree b.
2. (cont.) Examples:
2.1 Let V be the so-called twisted cubic curve in $\mathbb{P}_{\mathbb{R}}^{3}$,

$$
V=\left\{\left[s^{3}, s^{2} t, s t^{2}, t^{3}\right][s, t] \in \mathbb{P}_{\mathbb{R}}^{1}\right\} .
$$

Then $\mathbb{I}(V)=\left\langle w z-x y, x^{2}-w y, y^{2}-x z\right\rangle \subset \mathbb{R}[w, x, y . z]$
and $P_{V}(t)=3 t+1$.
So V has degree 3 and arithmetic genus 0 .
2.2 Let V be the complete intersection in \mathbb{P}_{k}^{3} of a surface of degree a and a surface of degree b. Then

$$
\operatorname{deg}(V)=a b \text { and } p_{a}(V)=\frac{1}{2} a b(a+b-4)+1 .
$$

2. (cont.) Examples:
2.1 Let V be the so-called twisted cubic curve in $\mathbb{P}_{\mathbb{R}}^{3}$,

$$
V=\left\{\left[s^{3}, s^{2} t, s t^{2}, t^{3}\right][s, t] \in \mathbb{P}_{\mathbb{R}}^{1}\right\} .
$$

Then $\mathbb{I}(V)=\left\langle w z-x y, x^{2}-w y, y^{2}-x z\right\rangle \subset \mathbb{R}[w, x, y \cdot z]$
and $P_{V}(t)=3 t+1$.
So V has degree 3 and arithmetic genus 0 .
2.2 Let V be the complete intersection in \mathbb{P}_{k}^{3} of a surface of degree a and a surface of degree b. Then

$$
\operatorname{deg}(V)=a b \text { and } p_{a}(V)=\frac{1}{2} a b(a+b-4)+1 .
$$

E.g. $a=2, b=3$ gives a curve of degree 6 and arithmetic genus 4.
2. (cont.)
2.3 Let V be a curve of degree 6 and arithmetic genus 0 in \mathbb{P}_{k}^{3} (e.g. a smooth rational sextic curve).

Then $P_{V}(t)=6 t+1$.
In particular for $t \gg 0$ (in fact $t \geq 3$ will do)

$$
\operatorname{dim}[R / I(V)]_{t}=6 t+1
$$

SO

$$
\operatorname{dim}[I(V)]_{t}=\binom{t+3}{3}-(6 t+1)=\frac{1}{6}\left(t^{3}+6 t^{2}-25 t\right)
$$

This gives the dimension of the vector space of forms of degree t vanishing on V.

Since the Hilbert function determines the Hilbert polynomial, it is (at least) as important.

In fact, looking at specific (low) degrees of the Hilbert function gives info you'd never spot from the Hilbert polynomial.

