
RATIONALITY AND HYPERBOLICITY SUMMER SCHOOL:
RATIONALITY OF THREEFOLDS OVER NON-CLOSED FIELDS

EXERCISES

SARAH FREI

Lecture 2: The intermediate Jacobian obstruction

Some background on abelian varieties:1 Let V be a g-dimensional complex vector
space, and Λ ⊂ V a lattice (which means a discrete subgroup of rank 2g, i.e. Λ ∼= Z2g, such
that SpanR Λ = V ).
A polarization on V/Λ is a non-degenerate, skew-symmetric bilinear form q : Λ×Λ → Z

such that

(1) qR : V × V → R satisfies qR(iv, iw) = qR(v, w), and
(2) the Hermitian form H(v, w) := qR(iv, w) + iqR(v, w) is positive definite.

The polarization is principal if q is unimodular (which means that Λ∨ := HomZ(Λ,Z) ∼= Λ).
A complex abelian variety A of dimension g is a complex torus V/Λ equipped with a

polarization. There is an isomorphism H1(A,Z) ∼= Λ, where V = H0(A,Ω1
A)

∨, and the
inclusion H1(A,Z) ↪→ H0(A,Ω1

A)
∨ is given by

γ 7→
(
ω 7→

∫
γ

ω

)
.

There is an association between polarizations as defined above and ample line bundles, so
that q corresponds to a divisor class θ, and q is principal if and only if H0(A,OA(θ)) = 1. In
this case, the class θ gives a well defined divisor, Θ, which is well-defined up to translation
on A.

There is a natural homomorphism Λ → Λ∨, and this induces a map λ : A → A∨ := V ∨/Λ∨.
We call A∨ the dual abelian variety to A.

A principally polarized abelian variety is an abelian variety equipped with a principal
polarization.

Exercise 1. Show that a complex abelian variety is principally polarized if and only if it is
isomorphic to its dual. (This follows directly from the definition, so this exercise is just to
check that the definitions make sense.)

Date: June 20, 2023.
1This will be less helpful for today’s exercises and more-so for Lecture 3; it’s included here if you want to
think more about abelian varieties and the role they played in Lecture 2.
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Throughout, we will write hp,q(X) := dimHp,q(X); these dimensions are called the Hodge
numbers of X. They are collected in a Hodge diamond–for example, for a surface:

h2,2

h2,1 h1,2

h2,0 h1,1 h0,1

h1,0 h0,1

h0,0

Exercise 2 (Warm-up with Hodge numbers).

(1) Make sure you understand why, for example for a surface, all other hp,q = 0 outside
of those in the diamond.

(2) Let X be a smooth projective complex surface. Write χ(X,OX) in terms of Hodge
numbers.

(3) Write down the Hodge diamond for P2.
(4) Show that the Hodge diamond is symmetric across the vertical center axis, and also

has 180◦ rotational symmetry. Hint: Serre duality.

Exercise 3. Let X be a smooth complex cubic threefold. Show that J2(X) ∼= J(Blℓ X) for
ℓ a line in X.

Exercise 4. For a slight variation on Exercise 1.7 (from day 1), let X ⊂ P4 be a one nodal
cubic threefold, i.e. the singular locus is one ordinary double point; see [Huy23, Sections
1.5.4, 5.5.1] for more on this setting. By a node p ∈ X, we mean that the exceptional divisor
Ep ⊂ BlpX is a smooth quadric surface when considered as a subvariety of the exceptional
divisor E ∼= P3 ⊂ Blp P4.

(1) First, show that X is rational.
(2) After a linear change of coordinates, we may assume the singular point of X is

p = [0 : 0 : 0 : 0 : 1] ∈ X ⊂ P4. Show that X can be written as X = V (F + x4G) for
F ∈ H0(P3,O(3)) and G ∈ H0(P3,O(2)), where P3 = V (x4).

(3) Show that when you resolve the birational isomorphism from part (1) as

BlpX

""||
X // P3

there is an isomorphism BlpX ∼= BlC P3, where C = V (F ) ∩ F (G).
(4) Conclude that J(BlpX) ∼= J(C). This can be taken to be the definition of J(X).

Show also that dim J(X) = 4, which differs from the case of a smooth cubic threefold.

Exercise 5. Let X ⊂ P4 be a smooth cubic threefold. Show that h1,2(X) = h2,1(X) =
dimH2(X,Ω1

X) = 5. If you aren’t familiar with computing Hodge numbers, an approach
is outlined below. The method relies on cohomology long exact sequences from short exact
sequences of bundles on X and P4.
The proof proceeds via two main equalities:

(A) h2(X,Ω1
X) = h3(X,OX(−3)), and

(B) h3(X,OX(−3)) = h0(X,OX(1)).
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(1) Use (A) and (B) along with the divisor short exact sequence

0 → OP4(−3) → OP4 → OX → 0

to show the desired equality, that h1,2(X) = 5.
(2) Use adjunction to show that ωX

∼= OX(−2).
(3) Show (B) using Serre duality.
(4) From the cotangent sequence

0 → OX(−3) → ΩP4|X → ΩX → 0,

where IX/I
2
X

∼= OX(−3), write out the long exact sequence on cohomology. Show
that (A) holds if h2(X,ΩP2|X) = h3(X,ΩP4|X) = 0.

(5) Finally, show the vanishing in part (4) using the long exact sequence on cohomology
from the Euler sequence:

0 → ΩP4|X → OX(−1)⊕5 → OX → 0.

To show the vanishing of the cohomology groups of OX(−1), use the divisor short
exact sequence from (1) along with Serre duality.
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