
RATIONALITY AND HYPERBOLICITY SUMMER SCHOOL:
RATIONALITY OF THREEFOLDS OVER NON-CLOSED FIELDS

EXERCISES

SARAH FREI

1. Lecture 4: Examples and generalizing to non-closed fields

Exercise 1. Let X be a smooth complex cubic threefold. Show that J2(X) ∼= Prym∆̃/∆ for
∆ a plane quintic curve. Hint: recall that we saw this curve back in Exercise 8 from Lecture
1.

Exercise 2. Let Q ⊂ P5 be a smooth quadric 4-fold.

(1) Show that Q contains 2-planes.
Here’s the idea: For any point x ∈ Q, TxQ ∩ Q is a quadric of dimension 3.

Check that it is singular, and it is the cone over a smooth quadric surface Q′ (See
[Har92, Lecture 22] for a nice introduction to quadrics). Now use lines on Q′ to
produce 2-planes on Q.

(2) Let F := F2(Q), the Fano variety of 2-planes on Q. Show that dimF = 3.
Use the incidence correspondence Ψ := {(x,Λ) : x ∈ Λ ⊂ Q} ⊂ Q× F . Show that

for x ∈ Q, the fiber of Ψ → Q over x is 1-dimensional. Show that for Λ ∈ F , the
fiber of Ψ → F over Λ is 2-dimensional. (cf. Exercise 3 from Lecture 1)

(3) What can you say about 2-planes if Q is not smooth, but is rather a cone over a
smooth quadric 3-fold?

(4) Show that if Q is smooth, F2(Q) has two connected components, and if Q is a cone
over a smooth quadric 3-fold, F2(Q) has only one connected component.

Exercise 3. Let X be a smooth threefold complete intersection of two quadrics. This
exercise outlines the proof of Reid’s result that J2(X) ∼= J(C).
Let k = C and fix a line s ⊂ X. Since X is the base locus of Q → P1, this gives a line in

Qλ for all λ ∈ P1. Let C̃s := {(λ,Λ) : s ⊂ Λ ⊂ Qλ} ⊂ F2(Q/P1), so that C̃s parametrizes
the 2-planes in the fibers of Q → P1 which contain the line s.

(1) Show that C̃s is a smooth curve and that p|C̃s
: C̃s → C is an isomorphism.

(2) Show that there is a morphism r : C̃s → F1(X). Hint: Given a 2-plane Λ ⊂ Qλ,
consider Λ ∩X.
Let r′ : C → F1(X) be r precomposed with the isomorphism C

∼−→ C̃s, and Γr′ ∈
CH2(C × F1(X)) the cycle class of the graph of r′.

(3) Show that Γr′ induces a map J(C) → Alb(F1(X)).
Next, let T := {(s, x) : x ∈ s} ⊂ F1(X)×X, and consider T ∈ CH2(F1(X)×X).

(4) Show that T induces a map Alb(F1(X)) → J2(X).

Reid shows that the two morphisms in (3) and (4) are isomorphisms.
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Exercise 4. Let C be a geometrically rational curve over a field k. Show that C is rational
if and only if C(k) ̸= ∅.

The Lang-Nishimura Theorem is overkill here; you can show that C being rational implies
C(k) ̸= ∅ without it.

The following exercises are to familiarize yourself with torsors and the Weil-Châtelet group.
Let G be a smooth algebraic group scheme over a field k. A G-torsor over k (or a torsor

under G or a principal homogeneous space for G) is a k-variety X equipped with a
right action of G such that Xk̄ equipped with the right action of Gk̄ is isomorphic to Gk̄

(equipped with the right action of translation).
This is equivalent to saying that there is a morphism µ : G ×X → X (giving the action

of G on X) for which µ(k̄) : G(k̄) × X(k̄) → X(k̄) is a simple transitive action of G(k̄) on
X(k̄).

Exercise 5. Check that PicdC satisfies the definition of being a Pic0C-torsor.

Exercise 6 (From [Poo17, Examples 5.5.3 and 5.12.8]). Let T := V (x2+2y2− 1) ⊂ A2
Q and

X := V (x2 + 2y2 + 3) ⊂ A2
Q.

(1) Show that T is a group scheme with multiplication given by

m : T × T → T

((x1, y1), (x2, y2)) 7→ (x1x2 − 2y1y2, x1y2 + y1x2).

(In fact TQ̄
∼= Gm,Q̄.)

(2) Show that X is a T -torsor over Q.
(In fact, it is a non-trivial torsor since X(Q) = ∅.)

Exercise 7. Let C be a smooth projective genus one curve over k (and note that C(k) may
be empty). Show that C is a torsor under the elliptic curve Pic0C .

The collection of all G-torsors up to isomorphism is parametrized by the cohomology set
H1(k,G(k̄)). When G is commutative, this cohomology set is an abelian group.

For an abelian variety A, the Weil-Châtelet group

WC(A) := {torsors under A}/isomorphism

is an abelian group.

Exercise 8. The group operation on the Weil-Châtelet group of an abelian variety A can be
described as follows. Let T1 and T2 be A-torsors, and T1×A T2 the quotient of T1×T2 by the
A-action where, for a ∈ A, a · (t1, t2) := (a + t1, [−1]a + t2) (we write the action additively
since A is abelian!). Here, [−1] : A → A is the standard involution on A (i.e. it is the inverse
morphism for the group structure on A).

(1) Show that the diagonal action of A on T1 × T2 descends to an action on T1 ×A T2.
(2) Let [T1] + [T2] := [T1 ×A T2]. Show that this operation gives a group law on WC(A),

where the inverse of a torsor T is T with the action a · t := [−1]a+ t.

For an A-torsor X, we will write [X] for its class in WC(A). We list here some of the nice
properties of WC(Pic0C) for C a smooth projective curve:

(1) [Pic0C ] = 0.
(2) [T ] = 0 if and only if T (k) ̸= ∅ if and only if T ∼= Pic0C .
(3) For all d ∈ Z, [PicdC ] = d[Pic1C ].
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Exercise 9. Use the structure of PicC and the description of the group operation in Exer-
cise 8 to prove the third property of the Weil-Châtelet group of Pic0C : that for all d ∈ Z,
[PicdC ] = d[Pic1C ].

Exercise 10. Let C be a smooth projective curve over k of genus g ≥ 2, and let m = 2g−2.
Show that for all t ∈ Z, [PictmC ] = [Pic0C ] = 0.
This shows that the subgroup ⟨Pic1C⟩ ⩽ WC(Pic0C) is a finite cyclic group, and the order

of this subgroup is called the period of C.
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