RATIONALITY AND HYPERBOLICITY SUMMER SCHOOL: RATIONALITY OF THREEFOLDS OVER NON-CLOSED FIELDS EXERCISES

SARAH FREI

1. Lecture 4: Examples and generalizing to non-Closed fields

Exercise 1. Let X be a smooth complex cubic threefold. Show that $J^{2}(X) \cong \operatorname{Prym}_{\tilde{\Delta} / \Delta}$ for Δ a plane quintic curve. Hint: recall that we saw this curve back in Exercise 8 from Lecture 1.

Exercise 2. Let $Q \subset \mathbb{P}^{5}$ be a smooth quadric 4-fold.
(1) Show that Q contains 2-planes.

Here's the idea: For any point $x \in Q, T_{x} Q \cap Q$ is a quadric of dimension 3. Check that it is singular, and it is the cone over a smooth quadric surface Q^{\prime} (See [Har92, Lecture 22] for a nice introduction to quadrics). Now use lines on Q^{\prime} to produce 2-planes on Q.
(2) Let $F:=F_{2}(Q)$, the Fano variety of 2-planes on Q. Show that $\operatorname{dim} F=3$.

Use the incidence correspondence $\Psi:=\{(x, \Lambda): x \in \Lambda \subset Q\} \subset Q \times F$. Show that for $x \in Q$, the fiber of $\Psi \rightarrow Q$ over x is 1-dimensional. Show that for $\Lambda \in F$, the fiber of $\Psi \rightarrow F$ over Λ is 2-dimensional. (cf. Exercise 3 from Lecture 1)
(3) What can you say about 2-planes if Q is not smooth, but is rather a cone over a smooth quadric 3 -fold?
(4) Show that if Q is smooth, $F_{2}(Q)$ has two connected components, and if Q is a cone over a smooth quadric 3 -fold, $F_{2}(Q)$ has only one connected component.

Exercise 3. Let X be a smooth threefold complete intersection of two quadrics. This exercise outlines the proof of Reid's result that $J^{2}(X) \cong J(C)$.

Let $k=\mathbb{C}$ and fix a line $s \subset X$. Since X is the base locus of $\mathcal{Q} \rightarrow \mathbb{P}^{1}$, this gives a line in Q_{λ} for all $\lambda \in \mathbb{P}^{1}$. Let $\tilde{C}_{s}:=\left\{(\lambda, \Lambda): s \subset \Lambda \subset Q_{\lambda}\right\} \subset \mathcal{F}_{2}\left(\mathcal{Q} / \mathbb{P}^{1}\right)$, so that \tilde{C}_{s} parametrizes the 2-planes in the fibers of $\mathcal{Q} \rightarrow \mathbb{P}^{1}$ which contain the line s.
(1) Show that \tilde{C}_{s} is a smooth curve and that $\left.p\right|_{\tilde{C}_{s}}: \tilde{C}_{s} \rightarrow C$ is an isomorphism.
(2) Show that there is a morphism $r: \tilde{C}_{s} \rightarrow F_{1}(X)$. Hint: Given a 2-plane $\Lambda \subset Q_{\lambda}$, consider $\Lambda \cap X$.
Let $r^{\prime}: C \rightarrow F_{1}(X)$ be r precomposed with the isomorphism $C \xrightarrow{\sim} \tilde{C}_{s}$, and $\Gamma_{r^{\prime}} \in$ $\mathrm{CH}^{2}\left(C \times F_{1}(X)\right)$ the cycle class of the graph of r^{\prime}.
(3) Show that $\Gamma_{r^{\prime}}$ induces a map $J(C) \rightarrow \operatorname{Alb}\left(F_{1}(X)\right)$.

Next, let $T:=\{(s, x): x \in s\} \subset F_{1}(X) \times X$, and consider $T \in \mathrm{CH}^{2}\left(F_{1}(X) \times X\right)$.
(4) Show that T induces a map $\operatorname{Alb}\left(F_{1}(X)\right) \rightarrow J^{2}(X)$.

Reid shows that the two morphisms in (3) and (4) are isomorphisms.

Exercise 4. Let C be a geometrically rational curve over a field k. Show that C is rational if and only if $C(k) \neq \emptyset$.

The Lang-Nishimura Theorem is overkill here; you can show that C being rational implies $C(k) \neq \emptyset$ without it.

The following exercises are to familiarize yourself with torsors and the Weil-Châtelet group.
Let G be a smooth algebraic group scheme over a field k. A G-torsor over k (or a torsor under G or a principal homogeneous space for G) is a k-variety X equipped with a right action of G such that $X_{\bar{k}}$ equipped with the right action of $G_{\bar{k}}$ is isomorphic to $G_{\bar{k}}$ (equipped with the right action of translation).
This is equivalent to saying that there is a morphism $\mu: G \times X \rightarrow X$ (giving the action of G on X) for which $\mu(\bar{k}): G(\bar{k}) \times X(\bar{k}) \rightarrow X(\bar{k})$ is a simple transitive action of $G(\bar{k})$ on $X(\bar{k})$.
Exercise 5. Check that $\operatorname{Pic}_{C}^{d}$ satisfies the definition of being a Pic_{C}^{0}-torsor.
Exercise 6 (From [Poo17, Examples 5.5.3 and 5.12.8]). Let $T:=V\left(x^{2}+2 y^{2}-1\right) \subset \mathbb{A}_{\mathbb{Q}}^{2}$ and $X:=V\left(x^{2}+2 y^{2}+3\right) \subset \mathbb{A}_{\mathbb{Q}}^{2}$.
(1) Show that T is a group scheme with multiplication given by

$$
\begin{aligned}
m: T \times T & \rightarrow T \\
\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & \mapsto\left(x_{1} x_{2}-2 y_{1} y_{2}, x_{1} y_{2}+y_{1} x_{2}\right)
\end{aligned}
$$

(In fact $T_{\overline{\mathbb{Q}}} \cong \mathbb{G}_{m, \overline{\mathbb{Q}}}$.)
(2) Show that X is a T-torsor over \mathbb{Q}.
(In fact, it is a non-trivial torsor since $X(\mathbb{Q})=\emptyset$.)
Exercise 7. Let C be a smooth projective genus one curve over k (and note that $C(k)$ may be empty). Show that C is a torsor under the elliptic curve $\operatorname{Pic}_{C}^{0}$.

The collection of all G-torsors up to isomorphism is parametrized by the cohomology set $H^{1}(k, G(\bar{k}))$. When G is commutative, this cohomology set is an abelian group.

For an abelian variety A, the Weil-Châtelet group

$$
\mathrm{WC}(A):=\{\text { torsors under } A\} / \text { isomorphism }
$$

is an abelian group.
Exercise 8. The group operation on the Weil-Châtelet group of an abelian variety A can be described as follows. Let T_{1} and T_{2} be A-torsors, and $T_{1} \times{ }^{A} T_{2}$ the quotient of $T_{1} \times T_{2}$ by the A-action where, for $a \in A, a \cdot\left(t_{1}, t_{2}\right):=\left(a+t_{1},[-1] a+t_{2}\right)$ (we write the action additively since A is abelian!). Here, $[-1]: A \rightarrow A$ is the standard involution on A (i.e. it is the inverse morphism for the group structure on A).
(1) Show that the diagonal action of A on $T_{1} \times T_{2}$ descends to an action on $T_{1} \times{ }^{A} T_{2}$.
(2) Let $\left[T_{1}\right]+\left[T_{2}\right]:=\left[T_{1} \times{ }^{A} T_{2}\right]$. Show that this operation gives a group law on $\mathrm{WC}(A)$, where the inverse of a torsor T is T with the action $a \cdot t:=[-1] a+t$.
For an A-torsor X, we will write $[X]$ for its class in $\operatorname{WC}(A)$. We list here some of the nice properties of $\mathrm{WC}\left(\operatorname{Pic}_{C}^{0}\right)$ for C a smooth projective curve:
(1) $\left[\mathrm{Pic}_{C}^{0}\right]=0$.
(2) $[T]=0$ if and only if $T(k) \neq \emptyset$ if and only if $T \cong \operatorname{Pic}_{C}^{0}$.
(3) For all $d \in \mathbb{Z},\left[\operatorname{Pic}_{C}^{d}\right]=d\left[\operatorname{Pic}_{C}^{1}\right]$.

Exercise 9. Use the structure of Pic_{C} and the description of the group operation in Exercise 8 to prove the third property of the Weil-Châtelet group of Pic_{C}^{0} : that for all $d \in \mathbb{Z}$, $\left[\operatorname{Pic}_{C}^{d}\right]=d\left[\operatorname{Pic}_{C}^{1}\right]$.
Exercise 10. Let C be a smooth projective curve over k of genus $g \geq 2$, and let $m=2 g-2$. Show that for all $t \in \mathbb{Z},\left[\mathrm{Pic}_{C}^{t m}\right]=\left[\mathrm{Pic}_{C}^{0}\right]=0$.

This shows that the subgroup $\left\langle\operatorname{Pic}_{C}^{1}\right\rangle \leqslant \mathrm{WC}\left(\operatorname{Pic}_{C}^{0}\right)$ is a finite cyclic group, and the order of this subgroup is called the period of C.

References

[Har92] Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1992. A first course. MR1182558 $\uparrow 1$
[Poo17] Bjorn Poonen, Rational points on varieties, Graduate Studies in Mathematics, vol. 186, American Mathematical Society, Providence, RI, 2017. MR3729254 $\uparrow 6$

