RATIONALITY AND HYPERBOLICITY SUMMER SCHOOL: RATIONALITY OF THREEFOLDS OVER NON-CLOSED FIELDS EXERCISES

SARAH FREI

(There are fewer exercises today, so use the opportunity to revisit exercises from previous days that you didn't get to!)

Lecture 5: The refined intermediate Jacobian obstruction

Exercise 1. Let X be a smooth threefold complete intersection of two quadrics.
(1) Show that all lines in X are algebraically equivalent.
(2) Show that any two lines in X are not rationally equivalent.

Exercise 2. Let X be a smooth threefold complete intersection of two quadrics. Show that $\mathrm{NS}^{2} X_{\bar{k}} \cong\left(\mathrm{NS}^{2} X_{\bar{k}}\right)^{G_{k}} \cong \mathbb{Z}$, thus showing that the codimension 2 Chow scheme $\mathbf{C H}_{X}^{2}$ has a \mathbb{Z} grading.

In the next exercise, we'll introduce the Albanese torsor (see [Poo17, Example 5.12.11]) and the Albanese variety for a variety with (possibly) no k-points.

Exercise 3. Let X be a geometrically integral variety over k, and \mathcal{C}_{X} the category of triples (A, T, f) where A is an abelian variety, T is an A-torsor, and $f: X \rightarrow T$ is a morphism. A morphism (A, T, f) to $\left(A^{\prime}, T^{\prime}, f^{\prime}\right)$ is a homomorphism $\alpha: A \rightarrow A^{\prime}$ and a morphism $\tau: T \rightarrow T^{\prime}$ such that the following diagrams commute:

It is a theorem that this category has an initial object $\left(\mathrm{Alb}_{X}, \mathrm{Alb}_{X}^{1}, \iota\right) ; \mathrm{Alb}_{X}$ is the Albanese variety of X, and $\operatorname{Alb}_{X}^{1}$ is the Albanese torsor of X.
(1) Let X be a smooth projective (geometrically integral) genus 1 curve. Show that $\mathrm{Alb}_{X} \cong \operatorname{Pic}_{X}^{0}$, and $\mathrm{Alb}_{X}^{1} \cong X$.
(2) Show that, if X has a k-point $x \in X(k)$, this definition of the Albanese variety agrees with the one discussed in Lecture 3.
(3) Let C be a smooth projective (geometrically integral) curve. Show that $\mathrm{Alb}_{\text {Picic }_{C}^{d}} \cong$ Pic_{C}^{0}.
Exercise 4. Let $Y \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{2}$ be a double cover branched along a (2, 2)-divisor.
(1) Show that Y has the structure of a conic bundle over \mathbb{P}^{2} as the structure of a quadric surface bundle over \mathbb{P}^{1}.
(2) Show that the discriminant curve of the conic bundle $Y \rightarrow \mathbb{P}^{2}$ has degree 4 .
(The conic bundle examples in [FJS ${ }^{+}$] with interesting IJT behavior are constructed as these double covers, and the quadric surface fibration is a key ingredient in our understanding of the behavior of the codimension 2 Chow torsors.)

References

[FJS ${ }^{+}$] Sarah Frei, Lena Ji, Soumya Sankar, Bianca Viray, and Isabel Vogt, Curve classes on conic bundle threefolds and applications to rationality, arXiv preprint arXiv:2207.07093. \uparrow (document)
[Poo17] Bjorn Poonen, Rational points on varieties, Graduate Studies in Mathematics, vol. 186, American Mathematical Society, Providence, RI, 2017. MR3729254 \uparrow (document)

