Problems on jet bundles

eriedl

June 2023

1 Day 2

- 1. Let $\mathbb{F}_e = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(e)).$
 - (a) Show that the Picard group of \mathbb{F}_e is rank 2, generated by F, a fiber of the map to \mathbb{P}^1 and E, and ξ , the tautological class.
 - (b) Show that ξ is effective but that $\mathcal{O}(m\xi)$ has a unique section for every m > 0.
 - (c) Show that $\mathcal{O}(\xi + eF)$ is nef, and that a general element is disjoint from the divisor equivalent to ξ .
 - (d) Show that $F \cdot F = 0$, $F \cdot \xi = 1$, $\xi^2 = -e$.
 - (e) Compute the nef and effective cones of \mathbb{F}_e .
 - (f) Let $S = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(-1))$. Then we see that S is isomorphic to \mathbb{F}_3 . Find ξ_S in terms of the basic of the Picard group of \mathbb{F}_3 .
- 2. Let X be a degree d surface in \mathbb{P}^3 . The Chow ring of \mathbb{P}^n is $A_k(\mathbb{P}^n) = H^k$, where H is the hyperplane class.
 - (a) Compute $c(T_X)$ using

$$0 \to T_X \to T_{\mathbb{P}^3} \to \mathcal{O}(d) \to 0.$$

- (b) Find the Chow ring of $\mathbb{P}T_X$. Compute ξ^3 .
- (c) Observe that for large d this means that $H^1(\mathcal{O}(m\xi))$ is much larger than $H^0(\mathcal{O}(m\xi))$. Show furthermore that ξ cannot be ample.
- (d) Compute $H\xi_1^2$ as a polynomial in d.
- 3. Consider the tangent bundle on \mathbb{P}^2 .
 - (a) Let $f = [f_0, f_1, f_2] : \mathbb{P}^1 \to \mathbb{P}^2$ be a degree *e* rational curve on \mathbb{P}^2 , where the f_i are degree *e* polynomials with no common roots. (optional) Relate $f^*T_{\mathbb{P}^2}$ to the syzygies of the f_i .
 - (b) Show that ξ in $\mathbb{P}T_{\mathbb{P}^2}$ is not effective by considering the restriction to a general line in \mathbb{P}^2 .

- (c) Show that $\xi + H$ is not nef by considering the restriction to a general line in \mathbb{P}^2 .
- (d) Show that $m\xi + (2m-1)H$ is not nef for any m > 0 by restricting to a general line.
- (e) You will show in the day 3 exercises that $\xi + 2H$ is nef. Conclude that $\xi + 2H$ is on the boundary of the nef cone and find the other extremal ray.

Algebraic hyperbolicity of hypersurfaces (continued) By studying projective bundles over curves, we can prove algebraic hyperbolicity for d = 2n - 1as well.

- 1. Consider the bundle M_1 on \mathbb{P}^n . Show that $M_1 = \Omega_{\mathbb{P}^n}(1)$. (Hint: compare the sequence defining M_1 to the Euler sequence.)
- 2. Let $f: C \to \mathbb{P}^n$ be a birational map from a smooth curve to a curve in \mathbb{P}^n of degree e. Suppose f^*M_1 has a line bundle quotient L of degree -k. Show that this gives us a quotient Q' of \mathcal{O}_C^{n+1} of rank 2 and degree e - k, compatible with the universal quotient $\mathcal{O}_C^{n+1} \to \mathcal{O}_C(1)$.
- 3. Taking duals, show that this gives us a rank 2 subsheaf Q'^* of \mathcal{O}_C^{n+1} with degree -e+k, commuting with the universal subbundle $\mathcal{O}_C(-1) \to \mathcal{O}_C^{n+1}$. Thus, this gives us an inclusion $S = \mathbb{P}(Q'^*) \to C \times \mathbb{P}^n$.
- 4. Projecting S onto \mathbb{P}^n , this gives us a surface scroll in \mathbb{P}^n containing C.
- 5. Show that the pullback of the $\mathcal{O}(1)$ on \mathbb{P}^n to S has degree e k.
- 6. Now suppose f(C) lies on a degree d hypersurface X that doesn't contain any lines. Show by considering $S \cap X$ that $e \leq d(e - k)$.
- 7. Conclude that if f(C) lies on a degree d hypersurface containing no lines, then any rank 1 quotiet of f^*M_1 has degree at least $-e(1-\frac{1}{d})$.
- 8. Now recall the setting from Day 1. We have a surjection from a sum of s copies of f^*M_1 onto N_{h_b/X_b} . Show that if $s \le n-3$, that $2g-2 \ge \deg C$.
- 9. If s = n 2, then show that $N_{h_b/X_b}/(\text{Im}f^*M_1^{s-1})$ is rank 1, and admits a generically surjective map from f^*M_1 .
- 10. Using the discussion of scrolls, show that the degree of $N_{h_b/X_b}/(\text{Im}f^*M_1^{s-1})$ is at least $-e(1-\frac{1}{d})$.
- 11. Show that the degree of N_{h_b/X_b} is at least $-(n-2)e + \frac{e}{d}$.
- 12. Conclude that a general X of degree d = 2n 1 in \mathbb{P}^n is algebraically hyperbolic.

In fact, as Yeong shows in her thesis, using techniques of Voisin and Pacienza combined with this scroll technique, one can show algebraic hyperbolicity for d = 2n - 2 and $n \ge 5$. Since quartic surfaces are not algebraically hyperbolic, this leaves n = 4 as the only open case. Ask Wern Yeong for more details!