# Problems on jet bundles 

eriedl

June 2023

## 1 Day 2

1. Let $\mathbb{F}_{e}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(e)\right)$.
(a) Show that the Picard group of $\mathbb{F}_{e}$ is rank 2 , generated by $F$, a fiber of the map to $\mathbb{P}^{1}$ and $E$, and $\xi$, the tautological class.
(b) Show that $\xi$ is effective but that $\mathcal{O}(m \xi)$ has a unique section for every $m>0$.
(c) Show that $\mathcal{O}(\xi+e F)$ is nef, and that a general element is disjoint from the divisor equivalent to $\xi$.
(d) Show that $F \cdot F=0, F \cdot \xi=1, \xi^{2}=-e$.
(e) Compute the nef and effective cones of $\mathbb{F}_{e}$.
(f) Let $S=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}}(2) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)\right)$. Then we see that $S$ is isomorphic to $\mathbb{F}_{3}$. Find $\xi_{S}$ in terms of the basic of the Picard group of $\mathbb{F}_{3}$.
2. Let $X$ be a degree $d$ surface in $\mathbb{P}^{3}$. The Chow ring of $\mathbb{P}^{n}$ is $A_{k}\left(\mathbb{P}^{n}\right)=H^{k}$, where $H$ is the hyperplane class.
(a) Compute $c\left(T_{X}\right)$ using

$$
0 \rightarrow T_{X} \rightarrow T_{\mathbb{P}^{3}} \rightarrow \mathcal{O}(d) \rightarrow 0
$$

(b) Find the Chow ring of $\mathbb{P} T_{X}$. Compute $\xi^{3}$.
(c) Observe that for large $d$ this means that $H^{1}(\mathcal{O}(m \xi))$ is much larger than $H^{0}(\mathcal{O}(m \xi))$. Show furthermore that $\xi$ cannot be ample.
(d) Compute $H \xi_{1}^{2}$ as a polynomial in $d$.
3. Consider the tangent bundle on $\mathbb{P}^{2}$.
(a) Let $f=\left[f_{0}, f_{1}, f_{2}\right]: \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ be a degree $e$ rational curve on $\mathbb{P}^{2}$, where the $f_{i}$ are degree $e$ polynomials with no common roots. (optional) Relate $f^{*} T_{\mathbb{P}^{2}}$ to the syzygies of the $f_{i}$.
(b) Show that $\xi$ in $\mathbb{P} T_{\mathbb{P}^{2}}$ is not effective by considering the restriction to a general line in $\mathbb{P}^{2}$.
(c) Show that $\xi+H$ is not nef by considering the restriction to a general line in $\mathbb{P}^{2}$.
(d) Show that $m \xi+(2 m-1) H$ is not nef for any $m>0$ by restricting to a general line.
(e) You will show in the day 3 exercises that $\xi+2 H$ is nef. Conclude that $\xi+2 H$ is on the boundary of the nef cone and find the other extremal ray.

Algebraic hyperbolicity of hypersurfaces (continued) By studying projective bundles over curves, we can prove algebraic hyperbolicity for $d=2 n-1$ as well.

1. Consider the bundle $M_{1}$ on $\mathbb{P}^{n}$. Show that $M_{1}=\Omega_{\mathbb{P}^{n}}(1)$. (Hint: compare the sequence defining $M_{1}$ to the Euler sequence.)
2. Let $f: C \rightarrow \mathbb{P}^{n}$ be a birational map from a smooth curve to a curve in $\mathbb{P}^{n}$ of degree $e$. Suppose $f^{*} M_{1}$ has a line bundle quotient $L$ of degree $-k$. Show that this gives us a quotient $Q^{\prime}$ of $\mathcal{O}_{C}^{n+1}$ of rank 2 and degree $e-k$, compatible with the universal quotient $\mathcal{O}_{C}^{n+1} \rightarrow \mathcal{O}_{C}(1)$.
3. Taking duals, show that this gives us a rank 2 subsheaf $Q^{* *}$ of $\mathcal{O}_{C}^{n+1}$ with degree $-e+k$, commuting with the universal subbundle $\mathcal{O}_{C}(-1) \rightarrow \mathcal{O}_{C}^{n+1}$. Thus, this gives us an inclusion $S=\mathbb{P}\left(Q^{* *}\right) \rightarrow C \times \mathbb{P}^{n}$.
4. Projecting $S$ onto $\mathbb{P}^{n}$, this gives us a surface scroll in $\mathbb{P}^{n}$ containing $C$.
5. Show that the pullback of the $\mathcal{O}(1)$ on $\mathbb{P}^{n}$ to $S$ has degree $e-k$.
6. Now suppose $f(C)$ lies on a degree $d$ hypersurface $X$ that doesn't contain any lines. Show by considering $S \cap X$ that $e \leq d(e-k)$.
7. Conclude that if $f(C)$ lies on a degree $d$ hypersurface containing no lines, then any rank 1 quotiet of $f^{*} M_{1}$ has degree at least $-e\left(1-\frac{1}{d}\right)$.
8. Now recall the setting from Day 1. We have a surjection from a sum of $s$ copies of $f^{*} M_{1}$ onto $N_{h_{b} / X_{b}}$. Show that if $s \leq n-3$, that $2 g-2 \geq \operatorname{deg} C$.
9. If $s=n-2$, then show that $N_{h_{b} / X_{b}} /\left(\operatorname{Im} f^{*} M_{1}^{s-1}\right)$ is rank 1 , and admits a generically surjective map from $f^{*} M_{1}$.
10. Using the discussion of scrolls, show that the degree of $N_{h_{b} / X_{b}} /\left(\operatorname{Im} f^{*} M_{1}^{s-1}\right)$ is at least $-e\left(1-\frac{1}{d}\right)$.
11. Show that the degree of $N_{h_{b} / X_{b}}$ is at least $-(n-2) e+\frac{e}{d}$.
12. Conclude that a general $X$ of degree $d=2 n-1$ in $\mathbb{P}^{n}$ is algebraically hyperbolic.
In fact, as Yeong shows in her thesis, using techniques of Voisin and Pacienza combined with this scroll technique, one can show algebraic hyperbolicity for $d=2 n-2$ and $n \geq 5$. Since quartic surfaces are not algebraically hyperbolic, this leaves $n=4$ as the only open case. Ask Wern Yeong for more details!
