Problems on jet bundles

eriedl

June 2023

1 Day 5

- 1. Let Φ_0 and Φ be k-planes in \mathbb{P}^n . Show that there exists a sequence of k-planes $\Phi_0, \Phi_1, \ldots, \Phi_\ell = \Phi$ such that $\Phi_i \cap \Phi_{i+1}$ is a k-1-plane.
- 2. Using the Grassmannian technique, give an alternate proof of the fact that a very general hypersurface of degree $d \ge 2n$ is algebraically hyperbolic. (Hint: Use the problem from yesterday about sweeping families of curves on general type varieties.)
- 3. Given a variety Y, we say two closed points p and q are rationally Chow-0 equivalent if for some N > 0, $Np \sim Nq$ in CH_0 . A theorem of Roitman shows that if $X \subset \mathbb{P}^n$ is a very general hypersurface of degree $d \geq n+1$, then a general point of X is rationally Chow-0 equivalent to at most countably many other points of X.
 - (a) Show that a general point of a very general hypersurface X of degree $d \ge n+2$ will be rationally Chow-0 equivalent to no other points of X.
 - (b) Show that a very general hypersurface X of degree $d \ge 2n$ will have no points Chow-0 equivalent to any others. (first proved by Chen, Lewis, Sheng)
 - (c) For X in \mathbb{P}^n of degree d, bound the dimension of the space of points in X that are rationally Chow-0 equivalent to some other point.
 - (d) Find a large space of points equivalent to some other point by considering the space of lines meeting X set-theoretically in 2 points.
- 4. The following problem lays the foundation for a generalization of the Grassmannian technique first proved by Coskun and Riedl.
 - (a) Let B ⊂ G(k − 1, n). We defined the covering family of B as the set C ⊂ G(k, n) of k planes containing some element of B. We say B is ℓ-clustered if a general member of C contains a k − ℓ dimensional family of B. Show that if B has dimension k(n − k + 1) − ϵ, then C has dimension (k + 1)(n − k) − ϵ + ℓ.

- (b) Let Z be some subvariety of \mathbb{P}^n . Show that the family B of k-1 planes meeting Z is 1-clustered provided is not all of $\mathbb{G}(k-1,n)$.
- (c) We now try to show that all 1-clustered families B of codimension at least 2 have this form. We start with the case n = k + 1. Consider what C must be in $(\mathbb{P}^{k+1})^*$. Show that the space of k-planes containing an element $b \in B$ must be a line in $(\mathbb{P}^{k+1})^*$.
- (d) Show by considering the elements $B' \subset B$ contained in a single $c \in C$ that C must be swept out by a k-1-dimensional family of lines, all passing through the single point corresponding to c. Conclude that C has dimension precisely k.
- (e) Since this works for any general $c \in C$, show that C must be a hyperplane in $(\mathbb{P}^{k+1})^*$.
- (f) Now suppose n is arbitrary. Take some k + 1-plane Λ containing a general element of C. Show by the above that it follows that the sets of planes of B and C that lie in Λ must all contain the same point p.
- (g) Show by varying Λ through a particular $c \in C$ that all k-1 planes through p lie in B, and all k-planes through p lie in C.
- (h) Conclude that there is some set of points $Z \subset \mathbb{P}^n$ such that B and C are the set of planes meeting Z.
- (i) It follows (with a lot of work) that you can show that the codimension increases by 2 each time unless the special locus $S_{n,d}$ is the locus swept out by a particular configuration of lines.