Problems on jet bundles

eriedl

June 2023

1 Day 4

1. Find the dimension of the Grassmannian $\mathbb{G}(k, n)$ of k-planes in \mathbb{P}^{n}. (Hint: Consider the space of tuples $\left(p_{1}, \ldots, p_{k+1}, \Lambda\right)$ and count its dimension.)
2. Let X be general type. Show that there exists an $\epsilon>0$ such that any sweeping family of curves satisfies $2 g-2 \geq C \cdot K_{X}$. (Hint: for a sweeping family of curves, the normal bundle will be globally generated.)
3. Consider the spaces X_{k} over a variety X.
(a) Show that $\xi_{k}-\xi_{k-1}$ is effective for each k. (Hint: Consider the defining sequence of V_{k-1}, dualize, and take an appropriate twist.)
(b) Show that the curves corresponding to this section are contracted by the map to X.
(c) Given $p \in X_{k-2}$, describe the preimage of p in X_{k-1} as a projective space.
(d) Now describe the preimage F of p in X_{k} as the projectivization of a vector bundle over your answer from the previous part.
(e) Show that the section you of $\xi_{k}-\xi_{k-1}$ is the unique by considering the restriction to F for a general point p of X_{k-2}.
(f) Conclude that there is a unique divisor D_{k} of class $\xi_{k}-\xi_{k-1}$ that is contracted by the map to X. We call this a divisor of stationary jets.
4. In this question, let X be a smooth hypersurface in \mathbb{P}^{n}. We will show that for a sequence of integers a_{1}, \ldots, a_{k} with $a_{k-1} \geq 2 a_{k}$ and $a_{i} \geq 3 a_{i+1}$ for $i<k-1$, and an integer $\ell \geq 2 \sum_{i} a_{i}$, that $\ell H+\sum_{i=1}^{k} a_{i} \xi_{i}$ is nef.
(a) First show $\xi_{1}+2 H$ is nef. (Hint: consider the pushforward to X and use the result from yesterday's problem 5.)
(b) Now let $a_{k}=1, a_{k=1}=2$ and $a_{i}=2 \cdot 3^{k-i-1}$ for $i \leq k-1$. Consider the divisors $L_{k}=\sum_{i=1}^{k} a_{i} \xi_{i}+2 \cdot 3^{k-1} H$ and $A_{k}=L_{k}-\xi_{k}$. Show for $k=1$ that L_{1} and A_{1} are nef.
(c) Show that $A_{k+1}=3 A_{k}+2 \xi_{k}=A_{k}+2 L_{k}$.
(d) We now use induction. Suppose that L_{k} and A_{k} are nef. Show that this implies A_{k+1} is nef.
(e) It remains to show that L_{k+1} is nef. By considering $\pi_{*} L_{k+1}$, show that it is enough to show $V_{k}^{*}\left(A_{k+1}\right)$ is nef.
(f) Using the defining sequence of V_{k}, show that it suffices to show that $\left.\mathcal{O}\left(3 A_{k}+3 \xi_{k}\right)\right)$ and $T_{\pi_{k}}^{*}\left(3 A_{k}+2 \xi_{k}\right)$ are nef.
(g) Show that $\mathcal{O}\left(3 A_{k}+3 \xi_{k}\right)$ is nef by relating it to L_{k}.
(h) Show that $T_{\pi_{k}}^{*}\left(3 A_{k}+2 \xi_{k}\right)$ is nef by taking the dual of the second exterior power of the Euler sequence of V_{k-1}. (Hint: you will need to twist the result you get and use induction, remembering that $V_{k-1}^{*}\left(A_{k+1}\right)=\pi_{*} L_{k}$.)
(i) Conclude that A_{k} and L_{k} are always nef.
(j) Conclude the result with inequlities in the setup using what you have shown already.
5. Suppose that X is rationally connected. Show that ξ_{k} is never big for any k.
