Problems on jet bundles

eriedl

June 2023

1 Day 1

Basic practice

1. Let D be a big divisor and E be an effective divisor. Show that $D+E$ is big.
2. Recal that a divisor D is nef if its restriction to every curve C in X has non-negative degree. Find an example of a divisor that is nef but not ample. (Hint: there's one on $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
3. Find an example of a divisor that is big but not nef. (Hint: there's one on the blowup of \mathbb{P}^{2}.
4. Suppose X is a complete intersection of hypersurfaces in \mathbb{P}^{n} of type $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$. Find the canonical sheaf K_{X}. (Hint: use the adjunction formula.)
5. Let L and L^{\prime} be line bundles on a smooth curve C, and suppose there exists a nonzero map $L \rightarrow L^{\prime}$. Show that $\operatorname{deg} L \geq \operatorname{deg} L^{\prime}$, with equality if and only if L is isomorphic to L^{\prime}.
6. Let $C \subset X$ be a smooth curve in X. Show that the degree of the normal bundle $N_{C / X}$ is $2 g-2-K_{X} \cdot C$.
7. Let $h: C \rightarrow X$ be a birational map from a smooth curve to X. Define $N_{h / X}$ as the quotient of $h^{*} T_{X}$ by T_{C}. Show that deg $N_{h / X}$ is $2 g-2-K_{X} \cdot C$.
8. For all positive integers d, define the syzygy bundle M_{d} on \mathbb{P}^{n} via the following sequence:

$$
0 \rightarrow M_{d} \rightarrow H^{0}\left(\mathcal{O}_{\mathbb{P}^{n}}(d)\right) \otimes \mathcal{O} \rightarrow \mathcal{O}(d) \rightarrow 0
$$

Show that $H^{0}\left(M_{d}\right)=0=H^{1}\left(M_{d}\right)$.
9. Let $f: C \rightarrow \mathbb{P}^{n}$ be a smooth, degree e curve mapping birationally. Show that every quotient of $f^{*} M_{1}$ has degree at least $-e$. Show further that every quotient of a direct sum of s copies of $f^{*} M_{1}$ has degree at least $-s e$.

Algebraic hyperbolicity of hypersurfaces The following series of problems takes you a proof of the algebraic hyperbolicity of general hypersurfaces in \mathbb{P}^{n} of degree $d \geq 2 n-1$. This problem has a long history, with the original idea dates back to work from Clemens and Ein, which was elaborated on by Voisin, Xu, Pacienza, Clemens-Ran, and Riedl-Coskun. This version most closely resembles the more streamlined presentation from Wern Yeong's thesis.

1. (Setup) Suppose that a general hypersurface X in \mathbb{P}^{n} contains a curve of degree e and geometric genus g. Let $\mathcal{X} \subset \mathbb{P}^{n} \times H^{0}\left(\mathcal{O}_{\mathbb{P}^{n}}(d)\right)$ be the space of pairs (f, p) such that p in a point in the hypersurface $V(f)$. Consider the space M^{\prime} of maps from smooth genus g curves to \mathcal{X} such that the image is a degree e curve in the fiber of $\mathcal{X} \rightarrow H^{0}\left(\mathcal{O}_{\mathbb{P}^{n}}(d)\right)$. By hypothesis, M^{\prime} dominates $H^{0}\left(\mathcal{O}_{\mathbb{P}^{n}}(d)\right)$.
(a) Show that there exists a subvariety B of M^{\prime} such that M parameterizes only finitely curves for a general hypersurface.
(b) Show that we can select B to be a $P G L$-invariant family.
(c) Show that by possibly restricting to an open set, we can assume the map $B \rightarrow H^{0}\left(\mathcal{O}_{\mathbb{P}^{n}}(d)\right)$ is etale.
(d) Base-change \mathcal{X} to B, so that we have a family of curves $\mathcal{Y} \rightarrow B$ and a map $h: \mathcal{Y} \rightarrow \mathcal{X}_{B}$. From now one, we write \mathcal{X} for \mathcal{X}_{B}.
2. Let Y_{b} be a general fiber of $\mathcal{Y} \rightarrow B$ and X_{b} the fiber of \mathcal{X} over b, with $\operatorname{map} h_{b}: Y_{b} \rightarrow X_{b}$. Show that $\left.N_{h / \mathcal{X}}\right|_{Y_{b}}=N_{h_{b} / X_{b}}$. (Hint: write down a commutative diagram with the relevant pieces and use the eight lemma.)
3. Recall we have the relative tangent sheaves $T_{\mathcal{X} / \mathbb{P}^{n}}$ and $T_{\mathcal{Y} / \mathbb{P}^{n}}$, given by the kernels of $T_{\mathcal{X} \rightarrow \mathbb{P}^{n}}$ and $T_{\mathcal{Y}} \rightarrow \mathbb{P}^{n}$. Show that $N_{h / \mathcal{X}}$ is the quotient of $h^{*} T_{\mathcal{X} / \mathbb{P}^{n}}$ by $T_{\mathcal{Y} / \mathbb{P}^{n}}$. (Hint: this is another diagram chase.)
4. Show that $T_{\mathcal{X} / \mathbb{P}^{n}}$ is isomorphic to the pullback of M_{d} from \mathbb{P}^{n}. (Hint: this is another diagram chase, using the fact that $\left.T_{B}\right|_{X_{b}}=H^{0}\left(\mathcal{O}_{\mathbb{P}^{n}}(d)\right) \otimes \mathcal{O}$.)
5. Show that given any degree $d-1$ polynomial P, we have a natural map $M_{1} \rightarrow M_{d}$ given by multiplication by P.
6. Show that there is a surjection from a direct sum of many copies of M_{1} to M_{d}.
7. Show that this implies that there is a surjective map from a direct sum of copies of $h_{b}^{*} M_{1}$ to $N_{h_{b} / X_{b}}$.
8. Show that in fact there is a generically surjective map from a direct sum of at most $n-2$ copies of $h_{b}^{*} M_{1}$ onto $N_{h_{b} / X_{b}}$, and that the degree of $N_{h_{b} / X_{b}}$ is at least $-(n-2) e$.
9. Conclude that X must be algebraically hyperbolic for $d \geq 2 n$.
10. Show that for $d \leq 2 n-3, X$ must contain a line, leaving open only the cases $d=2 n-1,2 n-2$.
