Lecture 2: Sums of squares

In lecture we discussed different ways of “counting” Pythagorean triples. In this problem
set we start developing a different but related question. This is a long set of problems — if
you get tired, you should skip to the end and watch the youtube video linked there!

The starting point is the following question:
Question 0.1. Which integers d can be written as the sum of two squares?

For each of the following integers, check if it can be written as the sum of two squares,
and if it can, record how to do it. (You don’t need to complete the entire table if it gets
boring.)

number | Sum of 2 squares? | number | Sum of 2 squares? | number | Sum of 2 squares?
6 19 32
7 20 33
8 21 34
9 22 35
10 23 36
11 24 37
12 25 38
13 26 39
14 27 40
15 28 41
16 29 42
17 30 43
18 31 44

It’s hard to see a pattern! Try to formulate a conjecture just for the prime numbers:

number | Sum of 2 squares? | number | Sum of 2 squares?
3 29
5 31
7 37
11 41
13 43
17 47
19 53
23 59

Can you see a pattern for the primes?



1 Gaussian integers

Our analysis of this problem will rely on complex numbers. (If you need a refresher on
multiplication and division for complex numbers, now is a good time to have someone
explain it to you!)

Definition 1.1. The Gaussian integers Z[i] are the complex numbers a + bi where both
a, b are integers.

Graphically, Z[i] looks like the integer points in the complex plane C. Note that the
product of two Gaussian integers will still be a Gaussian integer. (Thus Gaussian integers
form a mathematical object called a ring.)

The key fact about multiplication in Z is the existence of prime factorizations. Let’s
formulate a version of this statement which allows both positive and negative numbers.
An integer p (positive or negative) is said to be prime if its only divisors are 1, —1,p, —p.
Here is one statement of the fundamental theorem of arithmetic:

Theorem 1.2. Let n be a number that is not 0, £1. Then we can write
n = cp'py* ... pe

where ¢ = £1, the a; are positive integers, and each p; is a positive prime number. This
decomposition is “essentially unique”: the only ambiguity is the order of the prime
factors.

It turns out that Z[i] also admits a similar theory! Suppose that z,z € Z[i]. We will say
that = divides z, and write x|z, if there is some other element y € Z[i] satisfying zy = z.
Our first goal is to understand the divisibility relation in Z[3].

1) Does 1 —i divide —5 + 3i?
2) Does 2 — 2i divide —7 + 44?
3) Does 4 + 5i divide 14 + 347
The key tool for understanding divisibility in Z[i] is the norm:
N(a + bi) = a* + V*
In other words, N(z) is the distance from z to the origin in the complex plane.

4) Prove the following properties of the norm:



a) For every z,y € Z[i] we have N(xy) = N(z)N(y).
b) If x|z then N(z)|N(z).

Using the norm, answer the following questions:

5) There is a set of special Gaussian integers in Z[i] that are called units: 1, —1,14, —1.

a) Prove that the units divide every Gaussian integer.
b) Show that the units are the only Gaussian integers which divide every
Gaussian integer.
An equivalent way of identifying the units is the set of all divisors of 1.
6) Find all the factors of 2 in Z[i].
7) Find all the factors of 3 — 7 in Z[i].

8) Find all the factors of 5 in Z][i].

Every Gaussian integer x € Z[i] that is not 0 or a unit will have at least eight factors:
+1,+i, +a, +iz. We call these “trivial factors” (since they don’t contain any interesting
information about x).

Definition 1.3. A Gaussian integer z is prime if the only divisors of  are the trivial
factors.

It turns out that there is a very tight relationship between the primes in Z[i] and the
primes in Z. The following exercises are intended to tease out this relationship:

9) Note that an integer p that is prime in Z need not be prime in Z[i]. (What are some
examples?) However, it is also possible that a prime number p remains prime in
Z[i]. Show that 7 and 11 are primes in Z[i].

10) Show that if a Gaussian integer = has N(z) = p for a prime number p then x is
prime. In particular, conclude that if an integer p is prime in Z but not prime in
Z[i] then every non-trivial factor of p is prime. (What are some examples?)

11) Show that a prime p in Z will fail to be prime in Z[i] if and only if we can write
p = a® + b? for some integers a, b.

The following theorem is an analogue of the prime factorization theorem that holds in
Zli]. Let’s call a Gaussian integer a + bi positive if a > 0 and b > 0. Note that every
non-zero Gaussian integer has a unique conjugate that is positive.



Theorem 1.4. Let x be a Gaussian integer that is not 0 or a unit. Then we can write

x=upitpy® ... ppF
where u is a unit, the a; are positive integers, and each p; is a positive prime in Z[i|. This
decomposition is “essentially unique”: the only ambiguity is the order of the prime
factors.

If we take this theorem for granted, we can completely describe the primes in Z[i]:

12) Given a Gaussian integer = = a + bi, we denote its conjugate by T = a — bi. Show
that z is prime if and only if Z is prime.

13) Suppose that x is a prime Gaussian integer. Using unique factorization in Z[i],
show that N(x) = 2T is either a prime number or the square of a prime.

14) Put together all the work we have done so far to describe a complete list of the
primes in Z[i]:

a) The four prime factors of 2: 144, 1 —¢, =1 — i, —1 + 4.

b) For the odd primes p in Z which cannot be written as a sum of two squares we
have four associated primes: +p, +ip.

¢) For the odd primes p in Z which can be written as a sum of two squares
p = a® + b we have eight associated primes: 4a + bi and b =+ ai.

2 Finding solutions

Finally we return to our starting question: which integers d can be written as a sum of
two squares? Our starting point is the following theorem (which is too hard to leave as
an exercise):

Theorem 2.1 (Fermat, Euler). An odd prime p € Z can be written as a sum of two
squares if and only if p =1 (mod4).

So, the primes which are 1 more than a multiple of 4 will factor in Z[i], while the primes
which are 3 more than a multiple of 4 will remain prime in Z[i]. Using this property, we
can answer our original question:

Theorem 2.2. A positive integer d can be written as the sum of two squares if and only
if in the prime factorization of d (inside of 7) every prime that is congruent to 3 mod 4
appears an even number of times.

Here are the steps to prove this theorem:



15) Let’s consider the prime factorization of d inside of Z. It will be helpful to separate
out the primes depending on their congruence class mod 4:

b b
d=21" ... prqit ... q)"

where each p; is 1 more than a multiple of 4 and each ¢; is 3 more than a multiple
of 4. Using our classification of Gaussian primes, explain how to determine the
prime factorization of d inside of Z[].

16) Show that a positive integer d is a sum of two squares in Z if and only if there is a
Gaussian integer x such that n = x - Z. Explain why this is the same as saying that
the prime factors of d in Z[i] can be assigned into “pairs” which have the same
norm: half to divide x and half to divide Z.

17) Combine the previous exercises to prove Theorem

3 Counting points on the circle

We next discuss an “upgrade” of our original question:

Question 3.1. Suppose that d can be written as a sum of two squares. How many
different integer pairs (a, b) satisfy d = a® + b??

This is the same thing as asking: how many integer points lie on the circle of radius v/d?

8 points on the circle of radius /10



For example there are twelve different integer points on the circle of radius 50:
(£5,£5), (£7,£1), (£1,£7).

18) Try generating some data for small values of d. (Unfortunately it will probably be
hard to spot any patterns.)

A great way to think about this question is to use complex numbers. Note that we have:
d=a*+b* & d = (a+ib)(a — ib)
In other words, our original question can be rephrased:

Question 3.2. Suppose that d is a positive integer. How many different ways are there
to factor d in Z[i] as a product of a Gaussian integer x and its conjugate: d = x - T7

We can approach this question using prime factorizations. First let’s factor d inside of Z.
It will be helpful to separate out the primes depending on their congruence class mod 4:

b b
d=21"...pFqit ... q)

where each p; is 1 more than a multiple of 4 and each ¢; is 3 more than a multiple of 4. If
d can be written as a sum of two squares, then each b; is even. So instead let’s write:

2b 2b
d=2%" ... .prqt g

Using our earlier description of primes in Z[i], we can upgrade this to a prime
factorization in Z[i]. (Remember, to make our prime factorization unique we insist that
each Gaussian prime lies in the upper right hand quadrant.) Each ¢; is already a
Gaussian prime. The factor 2 becomes the square of a prime (up to units):
2 = (—i)(1 +14)2. Each factor p; splits into a product of two different Gaussian primes
pi = (—i)(a + bi)(b + ai). Altogether our prime factorization is

d=u(l+ i)chcl”ﬁi” .. .pi’“ﬁ}ga’“q%bl . qZle
where u is the unit (—i)°*2% and p; and p; are two Gaussian primes whose norms are
the same.

Now let’s think about how to choose an x such that z - T = d. Looking at prime
factorizations, both z and T will consist of exactly half of the Gaussian primes dividing d.
Furthermore, these primes must occur in pairs: the Gaussian primes of norm N must be
split evenly between x and 7.

It is a little easier to count if we insist that = lie in the upper right quadrant.

19) Suppose z lies in the upper right hand quadrant. Explain why:



a) Exactly half of the primes (1 + 4)2° must divide x.
b) Exactly half of the primes qizbi must divide z.

c¢) Out of the prime factors p;" - pi*, we have a; + 1 different ways of choosing
which primes are assigned to x and which are assigned to 7.

20) Show that the number of ways that d can be written as a sum of two squares is
ATTE (g +1).

Remark 3.3. You might guess that our analysis will have an interesting interaction with
Gauss’ circle problem. And you would be right! Please watch the 3BluelBrown youtube
video on this topic titled “Pi hiding in prime regularities”:
https://youtu.be/NaL_Cb42WyY


https://youtu.be/NaL_Cb42WyY
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