
Lecture 4: Gauss-Bonnet

This set of exercises will give you more practice with the Gauss-Bonnet formula.

Let’s start by remembering how to define the curvature for a smooth oriented parametric
surface S ⊂ R3. (Here oriented means we have a compatible choice of direction for the
normal vectors at every point.) Suppose our parametrization is given by a function f :

f(u, v) = (f1, f2, f3).

As in lecture, we denote by fu, fv, fuu, fuv, fvv the vectors obtained by taking the
single/double derivatives of the components of f . Finally, we also consider the normal
unit vector

n̂ =
fu × fv
‖fu × fv‖

.

(To be precise we should ensure that the direction of n̂ agrees with our orientation.)
Then the Gaussian curvature of S at a point p is given by the formula

K =
〈fuu, n̂〉〈fvv, n̂〉 − 〈fuv, n̂〉2

〈fu, fu〉〈fv, fv〉 − 〈fu, fv〉2

Now suppose that S ⊂ R3 is a smooth compact oriented surface.

Theorem 0.1 (Gauss-Bonnet). Let S be a smooth compact orientable surface with no
boundary. Then ∫

S
K dA = 2πχ(S)

where dA is the area element on S.

Let’s try some examples!
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The torus is a standard example in introductory discussions of the curvature of surfaces.
However, calculation of some measures of its curvature are hard to find in the literature.
This paper offers full calculation of the torus’s shape operator, Riemann tensor, and
related tensorial objects. In addition, we examine the torus’s geodesics by comparing a
solution of the geodesic equation with results obtained from the Clairaut parameter-
ization. Families of geodesics are classified. Open questions are considered. The
connection form and parallel transport on the torus are investigated in an appendix.

1. The Line Element and Metric
Our model of a torus has major radius c and minor radius a. We only consider the ring torus, for
which c>a.

We use a u,v coördinate system for which planes of constant u pass through the torus’s axis.

We parameterize the surface x by . x(u, v) =

 

 

 
 

 

x = (c + a cos v) cos u
y = (c + a cos v) sin u
z = a sin v
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Cross section: major radius c, minor radius a

First consider the torus parametrized by

f(u, v) = ((c+ a cos(v)) cos(u), (c+ a cos(v)) sin(u), a sin(v))

for the range 0 ≤ u ≤ 2π and 0 ≤ v ≤ 2π. (Here u represents an angle in the x, y-plane
and v represents the angle in the “small circle” formed by taking a cross-section of the
torus.)



1) Verify carefully that the curvature satisfies

K(u, v) =
cos(v)

a(c+ a cos(v))

2) Verify that the Gauss-Bonnet formula holds for the parametrized torus above.

Unfortunately it becomes much more difficult to parametrize surfaces of genus ≥ 2.
Instead we will go in a slightly different direction.

1 Gauss-Bonnet for surfaces with boundary

An important feature of the original Gauss-Bonnet formula is that it is stated for surfaces
“without boundary”: every point has an open neighborhood that is homeomorphic to an
open disk in R2. In a surface “with boundary”, every point has an open neighborhood
that is homeomorphic to an open ball in the closed upper half-plane in R2.

Surfaces without boundary / with boundary

There is also a version of the Gauss-Bonnet formula that holds for surfaces with
boundary. In this situation we will need to include a correction term to account for the
removed region. This correction term comes from a quantity known as “geodesic
curvature.” Let’s suppose the boundary curve is parametrized by a function g:

g(t) = (g1, g2, g3).

We need to insist that the orientation of the parametrization is compatible with our
surface orientation. This is determined by the right hand rule: suppose we choose a point



p in the boundary. Orient the thumb of the right hand along the chosen orientation for
points near p. Then the fingers of the right hand will “curl around” the boundary in the
direction of the orientation.

Given a parametrized curve g as above, the geodesic curvature is defined as

kg =
1

‖g′(t)‖2
g′′(t) · (n̂× t̂)

where n̂ is the unit normal vector to the surface and t̂ is the unit tangent vector to the
curve.

Remark 1.1. A curve in S is said to be a geodesic if kg = 0. Such curves are the
“shortest paths” between two points in the surface S!

Example 1.2. Consider the circle (cos(t), sin(t), 0) in the x, y-plane. We can think of
this as the boundary of a flat region in the x, y-plane. We will orient this surface in the
upward direction, so the unit normal is the constant vector (0, 0, 1). (Note that our choice
of orientation of the surface is compatible with our choice of orientation of the boundary
via the right hand rule.) Therefore n̂× t̂ is the vector
(0, 0, 1)× (− sin(t), cos(t), 0) = (− cos(t),− sin(t), 0). Then the geodesic curvature is

kg =
1

sin(t)2 + cos(t)2
(− cos(t),− sin(t), 0) · (− cos(t),− sin(t), 0)

The various terms cancel out to give kg = 1.

Example 1.3. Consider the circle (cos(t), sin(t), 0) in the x, y-plane. This time we think
of the circle as the boundary of the “spherical cap” lying over the circle. We will orient
this surface in the upward direction; this means that the unit surface normal along the
circle is given by (cos(t), sin(t), 0). (Note that our choice of orientation of the surface is
compatible with our choice of orientation of the boundary via the right hand rule.)
Therefore n̂× t̂ is the vector (cos(t), sin(t), 0)× (− sin(t), cos(t), 0) = (0, 0, 1). Then the
geodesic curvature is

kg =
1

sin(t)2 + cos(t)2
(− sin(t),− cos(t), 0) · (0, 0, 1)

In this case we have kg = 0.

We can now state a version of Gauss-Bonnet for surfaces with piecewise smooth
boundary:



Theorem 1.4 (Gauss-Bonnet). Let S be a smooth compact orientable surface with a
piecewise smooth boundary which has corners at {vi}ri=1. Then∫

S
K dA+

∫
∂S
kg ds+

r∑
i=1

θvi = 2πχ(S)

where dA is the area element on S, ds is the line element along the boundary ∂S, and θvi
denotes the exterior angle at vi.

Remember, to compute the interior angle α between two smooth curves meeting at a
point p, one computes their tangent vectors t1, t2 at p and computes the angle between
them:

cos(α) =
t1 · t2
‖t1‖ · ‖t2‖

.

Then the exterior angle θ is π − α.

First let’s do some computations when the boundary is smooth.

3) Verify the Gauss-Bonnet formula for the flat disk whose boundary is a circle of
radius 1.

4) Verify the Gauss-Bonnet formula for the hemisphere whose boundary is a circle of
radius 1.

5) Verify the Gauss-Bonnet formula for a cylinder of height 1 and radius 1.

6) Suppose that y = h(x) for a ≤ x ≤ b is a smooth curve which does not meet the
x-axis. Consider the surface S obtained by revolving around the x-axis:

f(u, v) = (u, h(u) cos(v), h(u) sin(v))

for 0 ≤ v ≤ 2π and a ≤ u ≤ b. Verify the Gauss-Bonnet formula for this surface
with boundary.

7) Verify the Gauss-Bonnet formula for a “polar cap” of the unit sphere where we look
at the portion of the unit sphere whose z-coordinates are above a certain value. (In
spherical coordinates, we are putting an upper bound on the angle θ.)

Finally let’s do some computations when the boundary is only piecewise smooth.

8) Suppose that S is a “wedge” in the unit sphere cut out by two great circles meeting
at a point with angle α. Verify the Gauss-Bonnet formula for S.



9) Suppose that S is a triangle in the unit sphere whose edges are all great circles
(i.e. geodesics) and whose interior angles are α, β, γ. Using Gauss-Bonnet, verify
that

area(S) = α+ β + γ − π.

10) Consider the surface S defined by a square region in a helicoid:

f(u, v) = (u cos(v), u sin(v), v)

for 0 ≤ u ≤ 1 and 0 ≤ v ≤ π. Verify the Gauss-Bonnet formula for S.
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