Lecture 5: Plane curves

Suppose that $C \subset \mathbb{R}^{2}$ is a curve defined by a polynomial equation $P(x, y)=0$. In lecture we mentioned that one can "compactify" C by taking its closure in $\mathbb{P}_{\mathbb{R}}^{2}$. In this set of exercises we will discuss this operation in more detail. First a reminder:

Definition 0.1. A polynomial is said to be homogeneous if every term has the same degree.

For example, the polynomial $x^{2}+2 x y-y^{2}$ is homogeneous of degree 2 while $x^{2}-3 y$ is not homogeneous.

1 Projective space

This section recalls some basic facts about projective space (also covered in Prof. Migliore's lectures). We will think of $\mathbb{P}_{\mathbb{R}}^{2}$ as the set of equivalence classes of triples $(x: y: z)$ of real numbers such that x, y, z are not all zero, where two triples $\left(x_{1}: y_{1}: z_{1}\right)$ and $\left(x_{2}: y_{2}: z_{2}\right)$ are said to be equivalent if there is a non-zero $\lambda \in \mathbb{R}$ such that

$$
x_{1}=\lambda x_{2} \quad y_{1}=\lambda y_{2} \quad z_{1}=\lambda z_{2}
$$

or expressed more compactly, $\left(x_{1}: y_{1}: z_{1}\right)=\lambda\left(x_{2}: y_{2}: z_{2}\right)$. We will somewhat lazily think of a non-zero triple $(x: y: z)$ as an element of \mathbb{P}^{2}, with the caveat that there are other triples that also define the same element.

We can identify a copy of \mathbb{R}^{2} inside of \mathbb{P}^{2} in the following way. Consider the function

$$
\begin{aligned}
\phi: \mathbb{R}^{2} & \rightarrow \mathbb{P}^{2} \\
\phi(x, y) & =(x: y: 1)
\end{aligned}
$$

This function is injective: if $\phi(x, y)=\phi\left(x^{\prime}, y^{\prime}\right)$ then $(x: y: 1)$ and $\left(x^{\prime}: y^{\prime}: 1\right)$ are equivalent tuples. But by looking at the z-coordinate we see the rescaling factor for these equivalent tuples must be 1 , so that $x=x^{\prime}$ and $y=y^{\prime}$.
The image of this function is the set $U \subset \mathbb{P}^{2}$ consisting of all points $(x: y: z)$ such that $z \neq 0$. Indeed, if $(x: y: z)$ is a point with $z \neq 0$, then it is equivalent to the point $\left(\frac{x}{z}: \frac{y}{z}: 1\right)$ which is clearly in the image of ϕ. In other words, on U we have an inverse function

$$
\begin{aligned}
\phi^{-1}: U & \rightarrow \mathbb{R}^{2} \\
\phi^{-1}(x: y: z) & =\left(\frac{x}{z}, \frac{y}{z}\right)
\end{aligned}
$$

We will think of U as a "copy" of \mathbb{R}^{2} inside of \mathbb{P}^{2}. We will call the complement $\mathbb{P}^{2} \backslash U$ the "set of points at infinity" and denote it by \mathbb{P}_{∞}^{1}. To be clear: the set of points at infinity is the set of points of the form $(x: y: 0)$ inside of \mathbb{P}^{2} (which really is a copy of \mathbb{P}^{1}). Geometrically the point ($x: y: 0$) represents the "slope direction" $\frac{y}{x}$.

Note that a polynomial $P(x, y, z)$ usually does not define a function $\mathbb{P}^{2} \rightarrow \mathbb{R}$ in any meaningful way. Of course if we choose a particular triple $(x: y: z)$ then $P(x, y, z)$ is a well-defined real number. However, if we choose a rescaling ($\lambda x: \lambda y: \lambda z$) representing the same point of \mathbb{P}^{2}, usually the value of $P(\lambda x, \lambda y, \lambda z)$ is different. Since the value of $P(x, y, z)$ depends on the choice of representative, we can't use P to define a function $\mathbb{P}^{2} \rightarrow \mathbb{R}$.
However, we can do something a little weaker if $P(x, y, z)$ is a homogeneous polynomial. In this case, the rescaling operation is easier to understand: if P has degree d then

$$
P(\lambda x, \lambda y, \lambda z)=\lambda^{d} P(x, y, z) .
$$

We still can't necessarily get a value of P at a point $(x: y: z) \in \mathbb{P}^{2}$. However, we can tell if $P(x, y, z)=0$ because this property does not change when we rescale the point!

Definition 1.1. Given a homogeneous polynomial $\widetilde{P}(x, y, z)$ of degree $d \geq 1$, the curve $\widetilde{\widetilde{C}} \subset \mathbb{P}^{2}$ defined by the equation $\widetilde{P}(x, y, z)=0$ is the set of all points $(x: y: z)$ such that $\widetilde{P}(x, y, z)=0$. (For emphasis: to check if a point of \mathbb{P}^{2} is in \widetilde{C} it does not matter which representative tuple we pick!)

2 Affine to projective

Now suppose we have a plane curve C defined by an equation $P(x, y)=0$ in \mathbb{R}^{2}. We will associate to it a curve $\widetilde{C} \subset \mathbb{P}^{2}$ in the following way.

Definition 2.1. Suppose that $P(x, y)$ is a degree d polynomial with $d \geq 1$. We define the homogenization $\widetilde{P}(x, y, z)$ to be the homogeneous polynomial of degree d obtained by adding as many factors of z as necessary to the terms of P to obtain a homogeneous polynomial of degree d.

For example,

$$
\begin{array}{rll}
P(x, y)=x y^{2}-3 x^{2}+2 y & \Longrightarrow & \widetilde{P}(x, y, z)=x y^{2}-3 x^{2} z+2 y z^{2} \\
P(x, y)=x^{4}-x y+3 & \Longrightarrow & \widetilde{P}(x, y, z)=x^{4}-x y z^{2}+3 z^{4}
\end{array}
$$

Note that it is possible that $\widetilde{P}(x, y, z)=P(x, y)$ if $P(x, y)$ is already homogeneous.
Definition 2.2. Suppose that $C \subset \mathbb{R}^{2}$ is a curve defined by $P(x, y)=0$ where $P(x, y)$ is a degree d polynomial with $d \geq 1$. We define $\widetilde{C} \subset \mathbb{P}^{2}$ by the equation $\widetilde{P}(x, y, z)=0$.

Using the inclusion $\phi: \mathbb{R}^{2} \rightarrow \mathbb{P}^{2}$ we can think of C as a subset of \mathbb{P}^{2}. Loosely speaking, \widetilde{C} is the "closure" of C inside of \mathbb{P}^{2}. The following theorem gives us some indication of why this is a valid perspective.

Theorem 2.3. For any curve $C \subset \mathbb{R}^{2}$ defined by a polynomial $P(x, y)=0$ we have

$$
\widetilde{C} \cap U=\phi(C)
$$

Proof. A point in U can be rescaled to have the form $(x: y: 1)$. Note that
$\widetilde{P}(x, y, 1)=P(x, y)$. Thus the set of points of the form $(x: y: 1)$ such that $\widetilde{P}(x, y, 1)=0$ is the same as the set of points (x, y) such that $P(x, y)=0$.

Caution 2.4. Strictly speaking it is not true that \widetilde{C} is the closure of C in \mathbb{P}^{2}. When we are working over \mathbb{C} this is literally true! But when we are working over \mathbb{R} it is not; see Exercise (4). We will ignore this minor issue.

The following exercises give you practice with this "closure" operation. Feel free to use Desmos to get a visual intuition!

1) Consider the curve $C \subset \mathbb{R}^{2}$ defined by the equation $x^{2}-y=0$. What does the curve \widetilde{C} look like? What are its points at infinity?
2) Consider the curve $C \subset \mathbb{R}^{2}$ defined by the equation $6 x^{2}-y^{2}-5 y=0$. What does the curve \widetilde{C} look like? What are its points at infinity?
3) Consider the curve $C \subset \mathbb{R}^{2}$ defined by the equation $2 x^{2}+y^{2}-6=0$. What does the curve \widetilde{C} look like? What are its points at infinity?
4) Consider the curve $C \subset \mathbb{R}^{2}$ defined by the equation $x^{2}+1=0$. What does the curve \widetilde{C} look like? What are its points at infinity?
5) Consider the curve $C \subset \mathbb{R}^{2}$ defined by the equation $x^{3}-3 y^{3}+3 x-5 y=0$. What does the curve \widetilde{C} look like? What are its points at infinity?
6) Consider the curve $C \subset \mathbb{R}^{2}$ defined by the equation
$x^{3}-3 x^{2} y+3 x y^{2}-y^{3}-6 x^{2}+5 y^{2}-3 x+y+5=0$. What does the curve \widetilde{C} look like? What are its points at infinity?
7) Consider the curve $C \subset \mathbb{R}^{2}$ defined by the equation $x^{3}-4 x^{2} y+5 x y^{2}-2 y^{3}-5 x y+3 x-2=0$. What does the curve \widetilde{C} look like? What are its points at infinity?
8) Make sense of the following claims. Suppose $P(x, y)$ has degree $d \geq 1$.

- Let $P_{d}(x, y)$ denote all the terms of $P(x, y)$ with degree d. Then the points at infinity of \widetilde{C} is the subset of \mathbb{P}_{∞}^{1} defined by the homogeneous polynomial $P_{d}(x, y)=0$.
- The points at infinity of \widetilde{C} are the "limits" of the tangent directions to the points of C.

9) If $\widetilde{C} \widetilde{C} \subset \mathbb{P}^{2}$ is defined by a homogeneous polynomial $\widetilde{P}(x, y, z)=0$, is it true that $\widetilde{\widetilde{C}} \widetilde{\widetilde{P}} \cap U$ is the same as the subset defined by the "dehomogenized" polynomial $\widetilde{P}(x, y, 1)=0$? Prove or give a counterexample!

3 Smooth points

Let $C \subset \mathbb{R}^{2}$ be a curve defined by a polynomial $P(x, y)=0$. Recall that p is said to be a singular point of C if both $\frac{\partial P}{\partial x}$ and $\frac{\partial P}{\partial y}$ vanish at p. Otherwise p is said to be a smooth point of C. (Technically, it is best to look for singular points in \mathbb{C}^{2} and not just \mathbb{R}^{2} - this will give us the best sense of the behavior of our curve.)

Caution 3.1. A singular point p of C must satisfy three conditions, not two: $P(p)=0$, $\frac{\partial P}{\partial x}(p)=0, \frac{\partial P}{\partial y}(p)=0$
10) Show that $(0,0)$ is a singular point of C if and only every term of P has degree ≥ 2. Show that this matches your intuition by using Desmos to graph the following curves: $y^{2}-x^{3}-x^{2}=0,\left(x^{2}+y^{2}\right)^{2}+3 x^{2} y-y^{3}=0$.
11) Show that the following curves are smooth:
a) $x^{2}+y^{2}-3=0$.
b) $x^{2}-3 y^{2}+5 x-6 y=0$.
c) $y^{2}-x^{3}-3 x-1=0$.
12) Find all the singular points of the following curves:
a) $y^{3}-y^{2}+x^{3}-x^{2}+3 x y^{2}+3 x^{2} y+2 x y=0$.
b) $x^{4}+y^{4}-x^{2} y^{2}=0$.
c) $x^{3}+y^{3}-3 x^{2}-3 y^{2}+3 x y+1=0$.
13) Suppose that C has the Weierstrass form $y^{2}=x^{3}+a x+b$. Show that C is singular if and only if $4 a^{3}+27 b^{2}=0$. (Here I am implicitly looking for singular points over \mathbb{C}.)
14) Suppose that C is defined by a degree 2 equation $a x^{2}+b x y+c y^{2}+d x+e y+f=0$. What is the condition on the coefficients that determines whether C is smooth or has a singular point? (This is a little complicated - the analogous question in \mathbb{P}^{2} is better behaved.)

Now suppose we have $\widetilde{C} \subset \mathbb{P}^{2}$ defined by a polynomial equation $\widetilde{P}(x, y, z)=0$. Letting $U=\{(x: y: z) \mid z \neq 0\}$ as before, recall that $\widetilde{C} \cap U$ is the same as the locus $C \subset \mathbb{R}^{2}$ defined by the equation $\widetilde{P}(x, y, 1)=0$. Thus it is very natural to say that a point in $\widetilde{C} \cap U$ is singular or smooth if the corresponding point of C is singular/smooth.

However, from the viewpoint of projective space, the points at infinity are as good as any other point. So we can also define a notion of singular/smooth for these points as well! One way is simply to swap the roles of the variables and "dehomogenize" with respect to x or y :

- Letting $V=\{(x: y: z) \mid y \neq 0\}$, we check for singularities of $\widetilde{C} \cap V$ using the equation $\widetilde{P}(x, 1, z)=0$.
- Letting $W=\{(x: y: z) \mid x \neq 0\}$, we check for singularities of $\widetilde{C} \cap W$ using the equation $\widetilde{P}(1, y, z)=0$.

This looks a little complicated. For example, it is not at all obvious that if a point $p \in U \cap V \cap W$ is singular when considered in $\widetilde{C} \cap U$, it is also singular when considered in $\widetilde{C} \cap V$ or $\widetilde{C} \cap W$. (To be clear: it is true, just not obvious.)

An easier option is given by:
Definition 3.2 (Projective criterion). Suppose $\widetilde{C} \subset \mathbb{P}^{2}$ is defined by a homogeneous equation $\widetilde{P}(x, y, z)=0$. We say that $p \in \widetilde{C}$ is a singular point if

$$
\frac{\partial \widetilde{P}}{\partial x}(p)=0 \quad \frac{\partial \widetilde{P}}{\partial y}(p)=0 \quad \frac{\partial \widetilde{P}}{\partial z}(p)=0
$$

Otherwise we say that p is a smooth point.
15) Find all the singular points of the following curves:
a) $x z^{2}-y^{3}+x y^{2}=0$
b) $x^{2} y^{2}+36 x z^{3}+24 y z^{3}+108 z^{4}=0$.
16) What condition on k determines whether the curve

$$
(x+y+z)^{3}-k x y z=0
$$

has singular points?
17) Suppose that $C \subset \mathbb{R}^{2}$ is defined by the equation $y^{2}=x^{3}+a x+b$. Show that all points at infinity of the corresponding curve \widetilde{C} are smooth.
18) Suppose that C is defined by a degree 2 equation $a x^{2}+b x y+c y^{2}+d x z+e y z+f z^{2}=0$. What is the condition on the coefficients that determines whether C is smooth or has a singular point? (Hint: recall that every two lines in \mathbb{P}^{2} intersect!)
19) Suppose that $\widetilde{P}(x, y, z)$ is homogeneous of degree d. Prove Euler's formula:

$$
d \cdot \widetilde{P}=x \frac{\partial \widetilde{P}}{\partial x}+y \frac{\partial \widetilde{P}}{\partial y}+z \frac{\partial \widetilde{P}}{\partial z} .
$$

Using this formula, prove that our two definitions of singular/smooth - one via "dehomogenizing", one via the projective criterion - are equivalent. In particular, verify that if $p \in C$ is singular then it is singular in every "dehomogenization" such that the corresponding copy of \mathbb{R}^{2} contains p.

