
Lecture 5: Plane curves

Suppose that C ⊂ R2 is a curve defined by a polynomial equation P (x, y) = 0. In lecture
we mentioned that one can “compactify” C by taking its closure in P2

R. In this set of
exercises we will discuss this operation in more detail. First a reminder:

Definition 0.1. A polynomial is said to be homogeneous if every term has the same
degree.

For example, the polynomial x2 + 2xy − y2 is homogeneous of degree 2 while x2 − 3y is
not homogeneous.

1 Projective space

This section recalls some basic facts about projective space (also covered in
Prof. Migliore’s lectures). We will think of P2

R as the set of equivalence classes of triples
(x : y : z) of real numbers such that x, y, z are not all zero, where two triples (x1 : y1 : z1)
and (x2 : y2 : z2) are said to be equivalent if there is a non-zero λ ∈ R such that

x1 = λx2 y1 = λy2 z1 = λz2

or expressed more compactly, (x1 : y1 : z1) = λ(x2 : y2 : z2). We will somewhat lazily
think of a non-zero triple (x : y : z) as an element of P2, with the caveat that there are
other triples that also define the same element.

We can identify a copy of R2 inside of P2 in the following way. Consider the function

φ : R2 → P2

φ(x, y) = (x : y : 1)

This function is injective: if φ(x, y) = φ(x′, y′) then (x : y : 1) and (x′ : y′ : 1) are
equivalent tuples. But by looking at the z-coordinate we see the rescaling factor for these
equivalent tuples must be 1, so that x = x′ and y = y′.
The image of this function is the set U ⊂ P2 consisting of all points (x : y : z) such that
z 6= 0. Indeed, if (x : y : z) is a point with z 6= 0, then it is equivalent to the point
(xz : y

z : 1) which is clearly in the image of φ. In other words, on U we have an inverse
function

φ−1 : U → R2

φ−1(x : y : z) =
(x
z
,
y

z

)



We will think of U as a “copy” of R2 inside of P2. We will call the complement P2\U the
“set of points at infinity” and denote it by P1

∞. To be clear: the set of points at infinity is
the set of points of the form (x : y : 0) inside of P2 (which really is a copy of P1).
Geometrically the point (x : y : 0) represents the “slope direction” y

x .

Note that a polynomial P (x, y, z) usually does not define a function P2 → R in any
meaningful way. Of course if we choose a particular triple (x : y : z) then P (x, y, z) is a
well-defined real number. However, if we choose a rescaling (λx : λy : λz) representing the
same point of P2, usually the value of P (λx, λy, λz) is different. Since the value of
P (x, y, z) depends on the choice of representative, we can’t use P to define a function
P2 → R.
However, we can do something a little weaker if P (x, y, z) is a homogeneous polynomial.
In this case, the rescaling operation is easier to understand: if P has degree d then

P (λx, λy, λz) = λdP (x, y, z).

We still can’t necessarily get a value of P at a point (x : y : z) ∈ P2. However, we can tell
if P (x, y, z) = 0 because this property does not change when we rescale the point!

Definition 1.1. Given a homogeneous polynomial P̃ (x, y, z) of degree d ≥ 1, the curve
C̃ ⊂ P2 defined by the equation P̃ (x, y, z) = 0 is the set of all points (x : y : z) such that
P̃ (x, y, z) = 0. (For emphasis: to check if a point of P2 is in C̃ it does not matter which
representative tuple we pick!)

2 Affine to projective

Now suppose we have a plane curve C defined by an equation P (x, y) = 0 in R2. We will
associate to it a curve C̃ ⊂ P2 in the following way.

Definition 2.1. Suppose that P (x, y) is a degree d polynomial with d ≥ 1. We define the
homogenization P̃ (x, y, z) to be the homogeneous polynomial of degree d obtained by
adding as many factors of z as necessary to the terms of P to obtain a homogeneous
polynomial of degree d.

For example,

P (x, y) = xy2 − 3x2 + 2y =⇒ P̃ (x, y, z) = xy2 − 3x2z + 2yz2

P (x, y) = x4 − xy + 3 =⇒ P̃ (x, y, z) = x4 − xyz2 + 3z4

Note that it is possible that P̃ (x, y, z) = P (x, y) if P (x, y) is already homogeneous.

Definition 2.2. Suppose that C ⊂ R2 is a curve defined by P (x, y) = 0 where P (x, y) is
a degree d polynomial with d ≥ 1. We define C̃ ⊂ P2 by the equation P̃ (x, y, z) = 0.



Using the inclusion φ : R2 → P2 we can think of C as a subset of P2. Loosely speaking, C̃
is the “closure” of C inside of P2. The following theorem gives us some indication of why
this is a valid perspective.

Theorem 2.3. For any curve C ⊂ R2 defined by a polynomial P (x, y) = 0 we have

C̃ ∩ U = φ(C).

Proof. A point in U can be rescaled to have the form (x : y : 1). Note that
P̃ (x, y, 1) = P (x, y). Thus the set of points of the form (x : y : 1) such that P̃ (x, y, 1) = 0
is the same as the set of points (x, y) such that P (x, y) = 0.

Caution 2.4. Strictly speaking it is not true that C̃ is the closure of C in P2. When we
are working over C this is literally true! But when we are working over R it is not; see
Exercise (4). We will ignore this minor issue.

The following exercises give you practice with this “closure” operation. Feel free to use
Desmos to get a visual intuition!

1) Consider the curve C ⊂ R2 defined by the equation x2 − y = 0. What does the
curve C̃ look like? What are its points at infinity?

2) Consider the curve C ⊂ R2 defined by the equation 6x2 − y2 − 5y = 0. What does
the curve C̃ look like? What are its points at infinity?

3) Consider the curve C ⊂ R2 defined by the equation 2x2 + y2 − 6 = 0. What does
the curve C̃ look like? What are its points at infinity?

4) Consider the curve C ⊂ R2 defined by the equation x2 + 1 = 0. What does the
curve C̃ look like? What are its points at infinity?

5) Consider the curve C ⊂ R2 defined by the equation x3 − 3y3 + 3x− 5y = 0. What
does the curve C̃ look like? What are its points at infinity?

6) Consider the curve C ⊂ R2 defined by the equation
x3 − 3x2y + 3xy2 − y3 − 6x2 + 5y2 − 3x+ y + 5 = 0. What does the curve C̃ look
like? What are its points at infinity?

7) Consider the curve C ⊂ R2 defined by the equation
x3 − 4x2y+ 5xy2 − 2y3 − 5xy+ 3x− 2 = 0. What does the curve C̃ look like? What
are its points at infinity?

8) Make sense of the following claims. Suppose P (x, y) has degree d ≥ 1.



• Let Pd(x, y) denote all the terms of P (x, y) with degree d. Then the points at
infinity of C̃ is the subset of P1

∞ defined by the homogeneous polynomial
Pd(x, y) = 0.

• The points at infinity of C̃ are the “limits” of the tangent directions to the
points of C.

9) If C̃ ⊂ P2 is defined by a homogeneous polynomial P̃ (x, y, z) = 0, is it true that
C̃ ∩ U is the same as the subset defined by the “dehomogenized” polynomial
P̃ (x, y, 1) = 0? Prove or give a counterexample!

3 Smooth points

Let C ⊂ R2 be a curve defined by a polynomial P (x, y) = 0. Recall that p is said to be a
singular point of C if both ∂P

∂x and ∂P
∂y vanish at p. Otherwise p is said to be a smooth

point of C. (Technically, it is best to look for singular points in C2 and not just R2 – this
will give us the best sense of the behavior of our curve.)

Caution 3.1. A singular point p of C must satisfy three conditions, not two: P (p) = 0,
∂P
∂x (p) = 0, ∂P

∂y (p) = 0

10) Show that (0, 0) is a singular point of C if and only every term of P has degree ≥ 2.
Show that this matches your intuition by using Desmos to graph the following
curves: y2 − x3 − x2 = 0, (x2 + y2)2 + 3x2y − y3 = 0.

11) Show that the following curves are smooth:

a) x2 + y2 − 3 = 0.

b) x2 − 3y2 + 5x− 6y = 0.

c) y2 − x3 − 3x− 1 = 0.

12) Find all the singular points of the following curves:

a) y3 − y2 + x3 − x2 + 3xy2 + 3x2y + 2xy = 0.

b) x4 + y4 − x2y2 = 0.

c) x3 + y3 − 3x2 − 3y2 + 3xy + 1 = 0.

13) Suppose that C has the Weierstrass form y2 = x3 + ax+ b. Show that C is singular
if and only if 4a3 + 27b2 = 0. (Here I am implicitly looking for singular points over
C.)



14) Suppose that C is defined by a degree 2 equation ax2 + bxy+ cy2 + dx+ ey+ f = 0.
What is the condition on the coefficients that determines whether C is smooth or
has a singular point? (This is a little complicated – the analogous question in P2 is
better behaved.)

Now suppose we have C̃ ⊂ P2 defined by a polynomial equation P̃ (x, y, z) = 0. Letting
U = {(x : y : z)|z 6= 0} as before, recall that C̃ ∩ U is the same as the locus C ⊂ R2

defined by the equation P̃ (x, y, 1) = 0. Thus it is very natural to say that a point in
C̃ ∩ U is singular or smooth if the corresponding point of C is singular/smooth.

However, from the viewpoint of projective space, the points at infinity are as good as any
other point. So we can also define a notion of singular/smooth for these points as well!
One way is simply to swap the roles of the variables and “dehomogenize” with respect to
x or y:

• Letting V = {(x : y : z)|y 6= 0}, we check for singularities of C̃ ∩ V using the
equation P̃ (x, 1, z) = 0.

• Letting W = {(x : y : z)|x 6= 0}, we check for singularities of C̃ ∩W using the
equation P̃ (1, y, z) = 0.

This looks a little complicated. For example, it is not at all obvious that if a point
p ∈ U ∩ V ∩W is singular when considered in C̃ ∩ U , it is also singular when considered
in C̃ ∩ V or C̃ ∩W . (To be clear: it is true, just not obvious.)

An easier option is given by:

Definition 3.2 (Projective criterion). Suppose C̃ ⊂ P2 is defined by a homogeneous
equation P̃ (x, y, z) = 0. We say that p ∈ C̃ is a singular point if

∂P̃

∂x
(p) = 0

∂P̃

∂y
(p) = 0

∂P̃

∂z
(p) = 0

Otherwise we say that p is a smooth point.

15) Find all the singular points of the following curves:

a) xz2 − y3 + xy2 = 0

b) x2y2 + 36xz3 + 24yz3 + 108z4 = 0.

16) What condition on k determines whether the curve

(x+ y + z)3 − kxyz = 0

has singular points?



17) Suppose that C ⊂ R2 is defined by the equation y2 = x3 + ax+ b. Show that all
points at infinity of the corresponding curve C̃ are smooth.

18) Suppose that C is defined by a degree 2 equation
ax2 + bxy + cy2 + dxz + eyz + fz2 = 0. What is the condition on the coefficients
that determines whether C is smooth or has a singular point? (Hint: recall that
every two lines in P2 intersect!)

19) Suppose that P̃ (x, y, z) is homogeneous of degree d. Prove Euler’s formula:

d · P̃ = x
∂P̃

∂x
+ y

∂P̃

∂y
+ z

∂P̃

∂z
.

Using this formula, prove that our two definitions of singular/smooth – one via
“dehomogenizing”, one via the projective criterion – are equivalent. In particular,
verify that if p ∈ C̃ is singular then it is singular in every “dehomogenization” such
that the corresponding copy of R2 contains p.
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