Lecture 5: Plane curves

Suppose that C' C R? is a curve defined by a polynomial equation P(z,y) = 0. In lecture
we mentioned that one can “compactify” C by taking its closure in PZ. In this set of
exercises we will discuss this operation in more detail. First a reminder:

Definition 0.1. A polynomial is said to be homogeneous if every term has the same
degree.

For example, the polynomial 22 + 2zy — 32 is homogeneous of degree 2 while z2 — 3y is
not homogeneous.

1 Projective space

This section recalls some basic facts about projective space (also covered in

Prof. Migliore’s lectures). We will think of IP’% as the set of equivalence classes of triples
(z :y: z) of real numbers such that x,y, z are not all zero, where two triples (1 : y1 : 21)
and (x2 : Y2 : 22) are said to be equivalent if there is a non-zero A € R such that

T1 = AT Y1 = Ayo 21 = A2

or expressed more compactly, (1 :y1 : 21) = AM(x2 : y2 : 22). We will somewhat lazily
think of a non-zero triple (z : y : 2) as an element of P2, with the caveat that there are
other triples that also define the same element.

We can identify a copy of R? inside of P? in the following way. Consider the function

6 :R? — P?
p(z,y) = (z:y:1)

This function is injective: if ¢(z,y) = ¢(2',y’) then (z:y: 1) and (2': ¢ : 1) are
equivalent tuples. But by looking at the z-coordinate we see the rescaling factor for these
equivalent tuples must be 1, so that z = 2’ and y = ¢/.

The image of this function is the set U C P? consisting of all points (z : y : z) such that

z # 0. Indeed, if (x : y : 2) is a point with z # 0, then it is equivalent to the point
(£:%:1) which is clearly in the image of ¢. In other words, on U we have an inverse
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We will think of U as a “copy” of R? inside of P2. We will call the complement P?\U the
“set of points at infinity” and denote it by PL . To be clear: the set of points at infinity is
the set of points of the form (z : y : 0) inside of P? (which really is a copy of P!).
Geometrically the point (z :y : 0) represents the “slope direction” Z.

Note that a polynomial P(z,y, z) usually does not define a function P2 — R in any
meaningful way. Of course if we choose a particular triple (z : y : z) then P(z,y,2) is a
well-defined real number. However, if we choose a rescaling (Ax : Ay : Az) representing the
same point of P?, usually the value of P(Az, \y, \2) is different. Since the value of
P(z,y, z) depends on the choice of representative, we can’t use P to define a function

P? R,

However, we can do something a little weaker if P(z,y, z) is a homogeneous polynomial.
In this case, the rescaling operation is easier to understand: if P has degree d then

Pz, Ay, \z) = MP(x,y, 2).

We still can’t necessarily get a value of P at a point (z :y : z) € P2. However, we can tell
if P(z,y,z) = 0 because this property does not change when we rescale the point!

Definition 1.1. Given a homogeneous polynomial P(z,y,z) of degree d > 1, the curve
C C P? defined by the equation P(x y,z) = 0 is the set of all points (z :y : 2) such that
P(l’, y,z) = 0. (For emphasis: to check if a point of P? is in C' it does not matter which
representative tuple we pick!)

2 Affine to projective

Now suppose we have a plane curve C' defined by an equation P(x,y) = 0 in R?. We will
associate to it a curve C C P? in the following way.

Definition 2.1. Suppose that P(z,y) is a degree d polynomial with d > 1. We define the
homogenization ]5(%7 Y, z) to be the homogeneous polynomial of degree d obtained by
adding as many factors of z as necessary to the terms of P to obtain a homogeneous
polynomial of degree d.

For example,
P(z,y) = xy” — 3% + 2y = P(z,y,2) = zy* — 322 + 22>
P(z,y) =a* —zy+3 = P(x,y,2) = a* — zyz? + 32*
Note that it is possible that P(z,y, z) = P(x,y) if P(z,y) is already homogeneous.

Definition 2.2. Suppose that C C R? is a curve defined by P(x,y) = 0 where P(z,y) is
a degree d polynomial with d > 1. We define C C P2 by the equation P(:B y,z) = 0.



Using the inclusion ¢ : R? — P2 we can think of C as a subset of P?. Loosely speaking, C
is the “closure” of C inside of P2. The following theorem gives us some indication of why
this is a valid perspective.

Theorem 2.3. For any curve C C R? defined by a polynomial P(z,y) = 0 we have
CNU = ¢(0).

Proof. A point in U can be rescaled to have the form (z : y: 1). Note that
P(x,y,1) = P(z,y). Thus the set of points of the form (x : y : 1) such that P(z,y,1) =0
is the same as the set of points (x,y) such that P(z,y) = 0. O

Caution 2.4. Strictly speaking it is not true that C is the closure of C' in P2. When we
are working over C this is literally true! But when we are working over R it is not; see
Exercise (4). We will ignore this minor issue.

The following exercises give you practice with this “closure” operation. Feel free to use
Desmos to get a visual intuition!

1) Consider the curve C' C R? defined by the equation 2 — y = 0. What does the
curve C' look like? What are its points at infinity?

2) Consider the curve C' C R? defined by the equation 6z2 — y> — 5y = 0. What does
the curve C' look like? What are its points at infinity?

3) Consider the curve C' C R? defined by the equation 2x2 + 4> — 6 = 0. What does
the curve C' look like? What are its points at infinity?

4) Consider the curve C' C R? defined by the equation 22 + 1 = 0. What does the
curve C' look like? What are its points at infinity?

5) Consider the curve C C R? defined by the equation x> — 3y3 4+ 3z — 5y = 0. What
does the curve C' look like? What are its points at infinity?

6) Consider the curve C' C R? defined by the equation _
23 — 322y + 32y? — y3 — 622 + 5y? — 3z +y + 5 = 0. What does the curve C look
like? What are its points at infinity?

7) Consider the curve C' C R? defined by the equation N
23 — 4a?y + 5xy? — 2y — 5xy + 3z — 2 = 0. What does the curve C look like? What
are its points at infinity?

8) Make sense of the following claims. Suppose P(z,y) has degree d > 1.



e Let Py(z,y) denote all the terms of P(z,y) with degree d. Then the points at

infinity of C is the subset of PL defined by the homogeneous polynomial
Py(x,y) =0.

e The points at infinity of C are the “limits” of the tangent directions to the
points of C'.

9) If C C P? is defined by a homogeneous polynomial ﬁ(m, y,z) = 0, is it true that
C NU is the same as the subset defined by the “dehomogenized” polynomial

P(x,y,1) =07 Prove or give a counterexample!

3 Smooth points

Let C' C R? be a curve defined by a polynomial P(z,y) = 0. Recall that p is said to be a
singular point of C' if both %—5 and %—1; vanish at p. Otherwise p is said to be a smooth

point of C. (Technically, it is best to look for singular points in C? and not just R? — this
will give us the best sense of the behavior of our curve.)

Caution 3.1. A singular point p of C' must satisfy three conditions, not two: P(p) =0,
OP (Y — 0. 9P (1)) — ()
oz (P) =0, 5, (p)

10) Show that (0,0) is a singular point of C' if and only every term of P has degree > 2.
Show that this matches your intuition by using Desmos to graph the following
curves: y? — 23 — 22 =0, (22 +9*)? + 322y — 3> = 0.

11) Show that the following curves are smooth:
a) 22 +y>—3=0.
b) x? — 3y? + 5x — 6y = 0.
c) Y —2* -3z —-1=0.

12) Find all the singular points of the following curves:
a) yv® —y? + a3 — 2? + 3zy? + 32’y + 22y = 0.
b) z* +yt —22y% = 0.
c) 28 +y? — 322 —3y2 + 32y +1=0.

13) Suppose that C has the Weierstrass form y? = 2% + ax 4+ b. Show that C is singular
if and only if 4a® + 27b% = 0. (Here I am implicitly looking for singular points over

C.)



14) Suppose that C is defined by a degree 2 equation az? + bxy + cy? +dx +ey + f = 0.
What is the condition on the coefficients that determines whether C' is smooth or
has a singular point? (This is a little complicated — the analogous question in P? is
better behaved.)

Now suppose we have C C P? defined by a polynomial equation ﬁ(m, y,z) = 0. Letting
U={(z:y:2)|z# 0} as before, recall that C' N U is the same as the locus C' C R2
defined by the equation ﬁ(x, y,1) = 0. Thus it is very natural to say that a point in
CNU is singular or smooth if the corresponding point of C' is singular/smooth.

However, from the viewpoint of projective space, the points at infinity are as good as any
other point. So we can also define a notion of singular/smooth for these points as well!
One way is simply to swap the roles of the variables and “dehomogenize” with respect to
x or y:

e Letting V = {(x : y : 2)|y # 0}, we check for singularities of C' NV using the
equation P(z,1,z) = 0.

e Letting W = {(z : y : )|z # 0}, we check for singularities of C N'W using the
equation P(1,y,z) = 0.

This looks a little complicated. For example, it is not at all obvious that if a point
p e UNV NW is singular when considered in C'N U, it is also singular when considered
in CNVor CNW. (To be clear: it is true, just not obvious.)

An easier option is given by:

Definition 3.2 (Projective criterion). Suppose C C P? is defined by a homogeneous
equation P(x,y,z) = 0. We say that p € C is a singular point if

opP opP opP
%(p) 0 ?y(p) =0 s

(p)=0

Otherwise we say that p is a smooth point.

15) Find all the singular points of the following curves:

a) 22 — 3 +2y? =0
b) x2y? 4 36x23 + 24y23 + 10824 = 0.

16) What condition on k determines whether the curve
(x+y+2)° —karyz =0

has singular points?



17)

18)

19)

Suppose that C C R? is defined by the equation y? = 23 4+ ax + b. Show that all
points at infinity of the corresponding curve C' are smooth.

Suppose that C' is defined by a degree 2 equation

ax?® + bry + cy? + dez + eyz + f22 = 0. What is the condition on the coefficients
that determines whether C' is smooth or has a singular point? (Hint: recall that
every two lines in P? intersect!)

Suppose that ﬁ(x, Yy, z) is homogeneous of degree d. Prove Euler’s formula:

d-ﬁ:x@er@Jrza—ﬁ
Ox oy 0z’
Using this formula, prove that our two definitions of singular/smooth — one via
“dehomogenizing”, one via the projective criterion — are equivalent. In particular,
verify that if p € C is singular then it is singular in every “dehomogenization” such
that the corresponding copy of R? contains p.
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