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Introduction

What do theoretical mathematicians study?

Abstract mathematical structures:

Algebra: discrete structures
Analysis: continuity and change
Geometry: shapes and measurement
Number Theory: integers and primes

Particularly noteworthy: surprising connections between different areas

Goal: study a “surprising connection” between number theory and geometry.
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Introduction

Notation:
Z denotes the set of integers: Z = {. . . ,−2,−1, 0, 1, 2, 3, . . .}.
Q denotes the set of rational numbers.
R denotes the set of real numbers.
C denotes the set of complex numbers.
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Introduction

Let’s fix:
a set R of coefficients: either Z, Q, R, C.
a finite set of variables V : usually {x , y , z} or {x1, . . . , xn}.

Definition
A polynomial over R in the variables V is a finite sum whose terms are
products of variables in V and coefficients in R.

Examples of polynomials over Z:

x3 − 27x + 5 3xy + 4y 3 − 2x4 3xyz − z2
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The degree of a polynomial is found in the following way. For each term we
take the sum of exponents of the variables. The degree is the largest value of
this sum as we vary over all the terms.

x3 − 27x + 5 3xy + 4y 3 −2x4 3xyz − z2

degree 3 degree 4 degree 3
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Suppose P is a polynomial over Z in n variables. We will be interested in
solving the polynomial equation P(x1, . . . , xn) = 0. The way we think about
the solutions will depend on what type of values we allow for our variables xi :

Integer or rational solutions: the solutions will depend on the prime
factors of the coefficients (number theory).
Questions: are there any solutions at all? Infinitely many?
Real or complex solutions: we can graph the solutions to obtain a shape
in Rn or Cn (geometry).
Questions: what does this shape look like? How is it “curved”?
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Guiding Principle
Let P be a polynomial over Z. The properties of the integer/rational solutions
depend on the “curvature” of the real/complex solutions.

This is a fundamental example of a surprising connection between different
areas of math! It is currently an active area of research.
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Definition
A Diophantine equation is an equation of the form P(x1, . . . , xn) = 0 where P
is a polynomial over Z.

A Diophantine problem asks to find the integer solutions to a Diophantine
equation.

Diophantine problems are some of the oldest in mathematics. We start by
giving a brief overview of some fun examples.
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Pythagorean triples

A Pythagorean triple is a triple of integers (a, b, c) which are not all zero and
satisfy

a2 + b2 = c2.

Some examples of Pythagorean triples are:
(3, 4, 5): 32 + 42 = 52.
(6, 8, 10): 62 + 82 = 102.
(5, 12, 13): 52 + 122 = 132.
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Pythagorean triples

This is the most famous Diophantine problem due to its long history and
geometric significance.

Oldest known example: 1800 BC Babylonian tablet (Plimpton 322)
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Pythagorean triples

The Pythagorean school was interested in these triples due to their
connections with right triangles.
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Three-dimensional analogue

What is a “three-dimensional analogue” of a Pythagorean triple?

Each Pythagorean triple gives a rectangle whose sides and diagonal all have
integer length. Similarly, we can ask if there is a three-dimensional box such
that every side and diagonal – including face diagonals and the main diagonal
– has integer length.
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The following problem asks for an analogue in three dimensions:

Problem
Is there a three-dimensional box satisfying the following properties?

Each side length a, b, c is an integer.
Each face diagonal d , e, f is an integer.
The main diagonal g is an integer.

Such a box is called a “perfect Euler brick.”
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Three-dimensional analogue

One can view this as a type of Diophantine problem:

Problem
Are there non-zero integers a, b, c, d , e, f , p satisfying the following equations?

a2 + b2 = d2 a2 + c2 = e2 b2 + c2 = f 2

a2 + b2 + c2 = g2

Finding an integer solution is equivalent to finding a perfect Euler brick.
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This problem has not yet been solved! Computer searches have shown that if
there is a perfect Euler brick, the lengths of the edges must be at least ≈ 1011.

There are heuristics which suggest that there should be no solution. (One
such heuristic is our Guiding Principle – curvature controls integer solutions.)
However no one has yet developed the techniques to solve this problem.
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Cubic equations

Does the equation
x3 + y 3 + z3 = 29

have any integer solutions? Yes; the smallest is (3, 1, 1).

Does the equation
x3 + y 3 + z3 = 30

have any integer solutions? Yes; the smallest is
(−283059965,−2218888517, 2220422932).
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Cubic equations

More generally, we can look for integer solutions to the equation

x3 + y 3 + z3 = c

for various positive integers c. In other words: which integers c are a sum of
three cubes?

We can generate some data for small values of c using a computer.
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Cubic equations

Is there an integer solution to

x3 + y 3 + z3 = c?

c sol? c sol? c sol? c sol?
1 yes 10 yes 19 yes 28 yes
2 yes 11 yes 20 yes 29 yes
3 yes 12 yes 21 yes 30 yes
4 no 13 no 22 no 31 no
5 no 14 no 23 no 32 no
6 yes 15 yes 24 yes 33 yes
7 yes 16 yes 25 yes 34 yes
8 yes 17 yes 26 yes 35 yes
9 yes 18 yes 27 yes 36 yes
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Cubic equations

Conjecture
A positive integer c can be written as the sum of three cubes if and only if c
is not 4 or 5 more than a multiple of 9.

This is currently unsolved! (You might enjoy proving the forward implication.)

Interesting history: prompted by a series of Youtube videos on the
Numberphile channel, mathematicians have verified this conjecture for
c ≤ 100. The hardest one was c = 42 which was only solved in 2019 by
Andrew Booker and Andrew Sutherland using distributed computation:

42 = (−80538738812075974)3 + 804357581458175153 + 126021232973356313

18



Introduction

History

Pythagorean
triples

Perspective

More examples

Other famous examples:

Theorem (Fermat’s Last Conjecture / Wiles’ Theorem)

If p is an integer satisfying p ≥ 3, there are no non-zero integer solutions to
the equation

xp + yp = zp.

Theorem (Catalan’s Conjecture / Mihăilescu’s Theorem)

If p, q are integers satisfying p, q ≥ 2, the only integer solution to the equation

xp − yq = 1

is 32 − 23 = 1.
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Pythagorean triples

Recall that a Pythagorean triple is a triple of integers (a, b, c) which are not
all zero and satisfy

a2 + b2 = c2.

For the remainder of the lecture, we study this special example at length.

Theorem
There are infinitely many Pythagorean triples and we have a formula for
generating all of them.
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Modifying solutions

We can construct new Pythagorean triples by modifying old ones:

If (a, b, c) is a Pythagorean triple, so is (b, a, c).
If (a, b, c) is a Pythagorean triple, so is (±a,±b,±c).
If (a, b, c) is a Pythagorean triple and d is any integer, then (da, db, dc)
is also a Pythagorean triple:

(da)2 + (db)2 = d2(a2 + b2) = d2c2 = (dc)2.

Conversely, if (a, b, c) is a Pythagorean triple and d is an integer dividing
a, b, c, then ( a

d , b
d , c

d ) is also a Pythagorean triple.
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Modifying solutions

Definition
A Pythagorean triple (a, b, c) is primitive if there is no prime p that
simultaneously divides a, b, and c.

For example, (3, 4, 5) and (5, 12, 13) are primitive while (6, 8, 10) is not (since
every entry is divisible by 2).

Since we can obtain all Pythagorean triples by rescaling the primitive ones, we
will focus on finding all primitive Pythagorean triples.
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Recasting the problem

It will be helpful to recast the problem in the following way.

Integer solutions to
a2 + b2 = c2 ↔ Rational solutions to

x2 + y 2 = 1

Let’s explain the connection between the two sides.
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Recasting the problem

First, given any Pythagorean triple (a, b, c) the fractions ( a
c , b

c ) solve
x2 + y 2 = 1: (a

c

)2
+
(b
c

)2
= a2 + b2

c2 = 1.

Note that rescaling (a, b, c) does not affect the resulting (x , y).

Second, suppose we have a rational solution (x , y) to x2 + y 2 = 1. We can
put the two fractions over a common denominator: (x , y) = ( p

q , r
q ). If we

choose the smallest possible q, we get a primitive Pythagorean triple by
clearing denominators:(

p
q

)2

+
(
r
q

)2

= 1 =⇒ p2 + r 2 = q2
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Recasting the problem

More precisely, this argument shows:

Lemma
Consider the map

Primitive Pythagorean triples→ Rational solutions to
x2 + y 2 = 1

(a, b, c) 7→ ( a
c , b

c )

This map is surjective and every fiber has exactly two elements: (a, b, c) and
(−a,−b,−c).
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Geometry of the circle

The key advantage of our new perspective is provided by our Guiding
Principle: we should think about this problem in terms of geometry! The
equation x2 + y 2 = 1 defines a circle in the plane:

Circle of radius 1
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Geometry of the circle

We are looking for points (x , y) on the circle whose coordinates are rational.
Here is a picture of the 24 rational solutions with the “simplest” coordinates:

24 rational points
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Geometry of the circle

Here is a picture of the 100 rational solutions with the “simplest” coordinates:

100 rational points
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Finding rational points

How can we systematically find the rational solutions to x2 + y 2 = 1?

We will use a geometric technique known as “projecting away from a point.”
We will fix the point p = (−1, 0) and consider the lines going through p.

ppppppp

p

Projection from p
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Finding rational points

Suppose we draw a line of slope t through the point p. This line will meet the
circle in exactly one more point which we call qt . The equation of the line is
y = t(x + 1).

q_tq_tq_tq_tq_tq_tq_t

q_t

ppppppp

p

slope=tslope=tslope=tslope=tslope=tslope=tslope=t

slope=t

Line of slope t
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Finding rational points

Our strategy for finding rational solutions is:

Key Observation
The point qt has rational coordinates if and only if the slope t is a rational
number.

q_tq_tq_tq_tq_tq_tq_t

q_t

ppppppp

p

slope=tslope=tslope=tslope=tslope=tslope=tslope=t

slope=t

Line of slope t
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Finding rational points

If we fix the value of t, we can find the coordinates of the point qt by solving
the two equations:

y = t(x + 1)
x2 + y 2 = 1

We can substitute the first equation into the second:

x2 + t2(x + 1)2 = 1

Since t is fixed we should view this as a quadratic equation in x whose
solutions are the x -coordinates of the points where the curves meet.
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Finding rational points

Instead of using the quadratic formula, let’s remember the following fact:

Theorem
The solutions to the equation ax2 + bx + c = 0 can be found by factoring: if
the solutions1are r1, r2 then

ax2 + bx + c = a(x − r1)(x − r2).

We will solve our quadratic in x by factoring instead.

1Here we are allowing the solutions r1, r2 to be complex numbers counted with multiplicity.
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Finding rational points

We can rewrite our quadratic as:

(1 + t2)x2 + 2t2x + (t2 − 1) = 0.

But we already know one solution: x = −1 will always work! This comes from
the fact that the point (−1, 0) also lies on both curves.

We can find the other solution by factoring:

(1 + t2)x2 + 2t2x + (t2 − 1) = (1 + t2) (x − (−1)) (x−??)

By comparing the coefficient of x on both sides, we see that the other solution
is

x = 1− 2t2

1 + t2 = 1− t2

1 + t2 .
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Finding rational points

Finally, by plugging our solution x back into one of our original equations

y = t(x + 1)
x2 + y 2 = 1

we can also find the y -coordinate of qt . The final solution is

qt =
(
1− t2

1 + t2 ,
2t

1 + t2

)
.

(Double check that if you square these numbers and add you get 1.)
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Finding rational points

((1-t^2)/(1+t^2),2t/(1+t^2))((1-t^2)/(1+t^2),2t/(1+t^2))((1-t^2)/(1+t^2),2t/(1+t^2))((1-t^2)/(1+t^2),2t/(1+t^2))((1-t^2)/(1+t^2),2t/(1+t^2))((1-t^2)/(1+t^2),2t/(1+t^2))((1-t^2)/(1+t^2),2t/(1+t^2))

((1-t^2)/(1+t^2),2t/(1+t^2))

ppppppp

p

slope=tslope=tslope=tslope=tslope=tslope=tslope=t

slope=t

Line of slope t
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Finding rational points

Let’s remember our goal: we want to find the points (x , y) on the circle with
rational coordinate. We can now explain:

Key Observation
The point qt has rational coordinates if and only if the slope t is a rational
number.

Proof.
Suppose qt = (x , y) has rational coordinates. The slope of the line between
(−1, 0) and qt is equal to y

x+1 which is also rational. Conversely, if t is a
rational number then so are 1−t2

1+t2 and 2t
1+t2 which are the coordinates of qt .
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Finding rational points

Finally, we have found our solution! We can generate all possible rational
solutions (x , y) to x2 + y 2 = 1 by plugging in various rational numbers t into
the formula (

1− t2

1 + t2 ,
2t

1 + t2

)
.

Our key observation shows that we get all rational solutions in this way!
(Aside from the starting point (−1, 0).)

Examples:
t = 1 yields (0, 1), and 02 + 12 = 1.
t = 1

3 yields ( 4
5 , 3

5 ), and 4
5
2 + 3

5
2 = 1.

t = 27 yields (− 364
365 , 27

365 ), and (− 364
365

2) + 27
365

2 = 1.
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Finding rational points

ppppppp

p

Finding rational points
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Finding rational points

If we want to go all the way back to primitive Pythagorean triples, we simply
clear denominators. Writing t = n

m in lowest terms, the rational point

(x , y) =
(
1− t2

1 + t2 ,
2t

1 + t2

)
=
(
m2 − n2

m2 + n2 ,
2mn

m2 + n2

)
.

yields the primitive triple

(a, b, c) =

{ (
m2 − n2, 2mn,m2 + n2

)
if one of m, n is odd(

m2−n2
2 ,mn, m2+n2

2

)
if both m, n are odd

Here we have implicitly used:

Exercise
If m, n are relatively prime integers then gcd(m2 − n2, 2mn) ∈ {1, 2}.
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Perspective

Until now we have been focusing on a single equation x2 + y 2 = 1 and finding
its rational solutions.

However, the geometric method we developed – projection away from a point
– can be used in other situations! Suppose P(x , y) is a degree 2 polynomial
and consider the curve C defined by P(x , y) = 0.

Ellipse Hyperbola
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Finding rational points on conics

Finding rational solutions to P(x , y) = 0:
1 Fix a single rational point p on the curve C .
2 Consider the line ` through p with slope t. This will meet the curve C in
at most one other point qt .

3 Key question: is it true that qt has rational coordinates if and only if the
slope t is rational?

4 Explicitly find the coordinates of qt by factoring a quadratic equation.
The only missing piece is the “Key question.”
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Finding rational points on conics

We need a result about quadratic equations:

Theorem
Suppose ax2 + bx + c = 0 is a quadratic equation with rational coefficients. If
this equation has one rational solution, then every solution is rational.

Proof.
We prove this statement using our factoring method:

ax2 + bx + c = a(x − r1)(x − r2).

where r1, r2 are the solutions to the equation. Without loss of generality
suppose that r1 is rational. By comparing the coefficients of x on both sides,
we see that

b = a(−r1 − r2) =⇒ r2 = −r1 −
b
a .

Since a, b, r1 are all rational, r2 is as well.
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Finding rational points on conics

Key Observation
Let P(x , y) be a degree 2 polynomial over Q and let C denote the conic
P(x , y) = 0. Suppose p ∈ C has rational coordinates. Consider the line ` of
slope t through p and suppose that `∩ C contains a point qt different from p.
Then qt has rational coordinates if and only if t is rational.

Proof.
If p and qt both have rational coordinates, then the slope of the line `
connecting them is rational. Conversely, if t is rational then we can find the
coordinates of qt by solving the simultaneous equations

y = tx + b P(x , y) = 0

Substituting the first equation into the second, we get a quadratic equation in
x . This equation has one rational root corresponding to the x -coordinate of p.
Thus the second root – the x -coordinate of qt – is also rational. Using the
linear equation we see that y -coordinate of qt is again rational.
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Finding rational points on conics

Theorem
Let P(x , y) be a degree 2 polynomial with rational coefficients. Suppose the
equation P(x , y) = 0 defines a smooth2curve C. If C admits one rational
solution p, then it has infinitely many rational solutions.

We find these infinitely many rational solutions by projecting away from p.

“Proof.”
Let C be the curve P(x , y) = 0. Consider the line ` through p with rational
slope t. Then there is one other point qt in ` ∩ C besides p. By our Key
Observation this point also has rational coordinates. As we vary the slope t
we get infinitely many different points.

2To be defined later...
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Finding rational points on conics

Aside
We really need the “smooth” assumption. This assumption is what guarantees
“` ∩ C contains one other point besides p.” If a curve fails to be smooth, this
statement does not need to be true.

For example, consider the degree 2 equation

x2 + y 2 = 0.

This has exactly one solution (x , y) = (0, 0). We will see later that it fails to
be smooth at (0, 0).
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Exercises

Exercises:
1 Linear Diophantine equations: today we discussed finding rational
solutions to degree 2 polynomials in two variables. But the simplest
example is degree 1 polynomials in two variables. How can we solve such
equations?

2 Quadratic Diophantine equations: we discussed a method for finding
rational solutions to degree 2 polynomials in two variables. We have seen
this in one example: x2 + y 2 = 1. In this problem session you will give
more examples and test the boundaries of our method.

Images made using Desmos and taken from Wikipedia, Fermat’s Library,
Adobe Stock Images.
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