

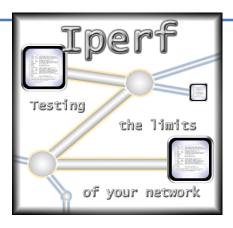
FMNC – Fast Mobile Network Characterization

Lixing Song, Aaron Striegel {lsong2,striegel}@nd.edu
University of Notre Dame

Problem Statement

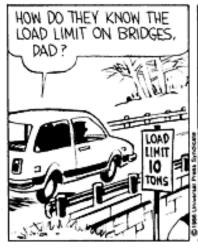
+ Sensors + Bodycams

How can we longitudinally test what the network performance would look like in practice?



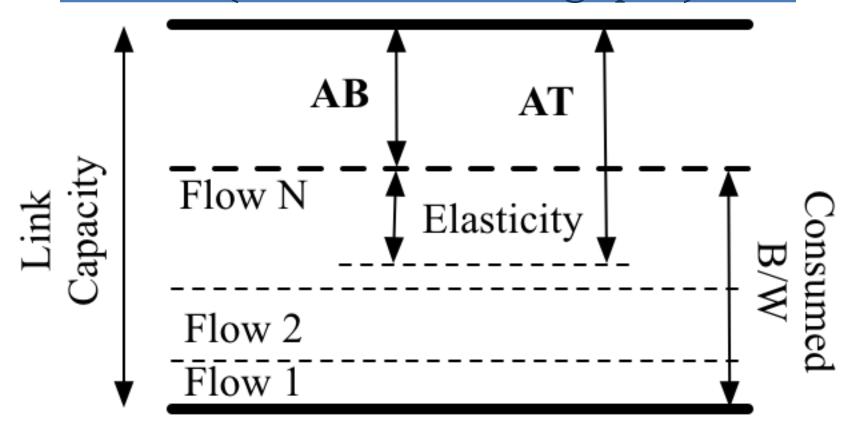
Problem Statement

- Determine WiFi quality
 - At this moment
 - Which way should my traffic go?
 - Which SSID / AP is best?
 - Is this WiFi performance acceptable?
 - Longitudinally
 - Check my WiFi performance
 - Every 15 minutes, 10 minutes, 5 minutes, 1 minute


Available Throughput

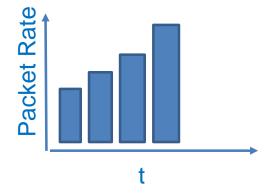
iperf

SpeedTest.net

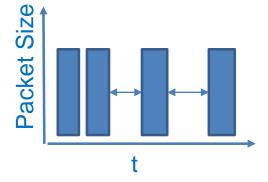


THEY DRIVE BIGGER AND

AB (Available Bandwidth) vs. AT (Available Throughput)

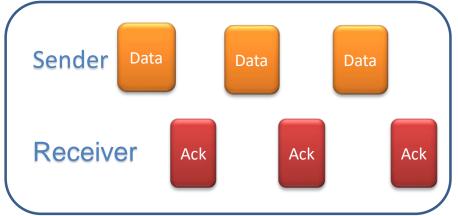

SpeedTest = AT

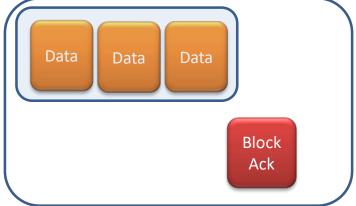
AB is the floor for AT $_{E}^{PF}$


Available Bandwidth (AB)

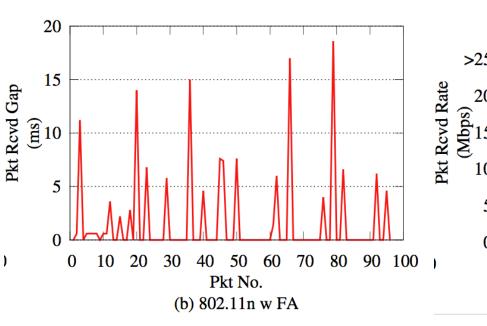
- Measure packet dispersion
 - PathChirp, Spruce, WBest+

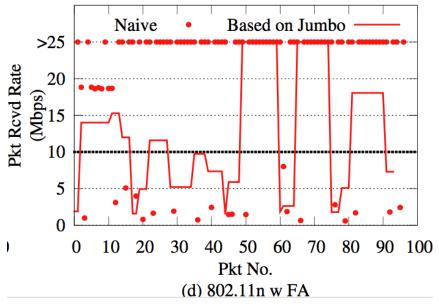
Packet Rate Model:




Packet Gap Model:

Frame Aggregation (802.11e)




Without frame aggregation

With frame aggregation

Can we capture the "bursts" of queuing to infer the presence of aggregation?

Frame Aggregation vs. AB

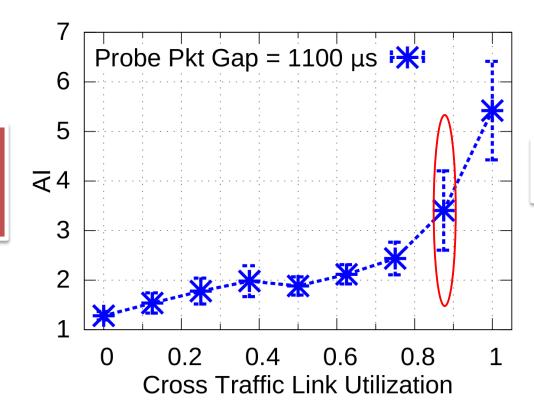
Gaps become **Spiky**.

Rates become bimodal!

Aggregation Index - AI

Capture the degree to which packets are aggregated

$$AI = \lceil \frac{\mathcal{D}_{ag} + f(u_x)}{\mathcal{G}_{snd}} \rceil$$
 subject to $AI \cdot \mathcal{P} \leq \mathcal{P}_{max}, \ \frac{AI \cdot \mathcal{P}}{\mathcal{R}} \leq \mathcal{T}_{max}.$

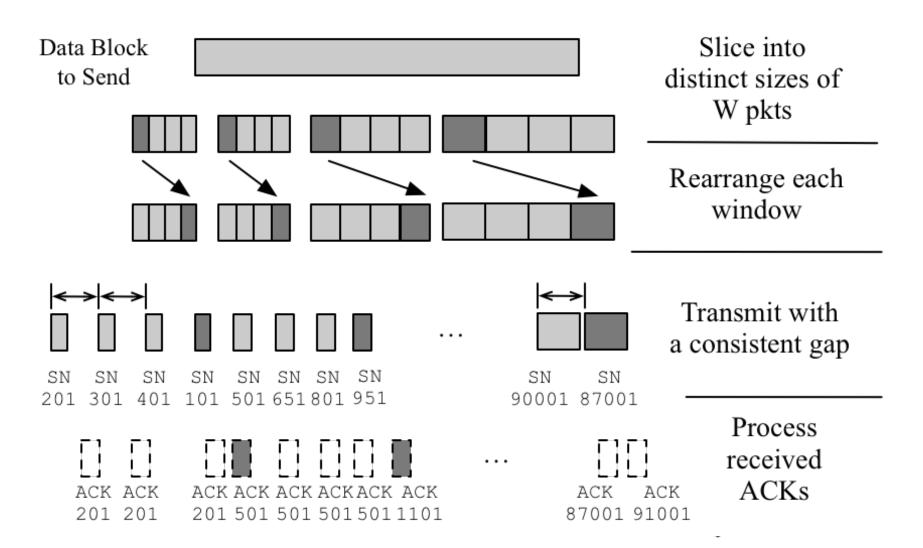

 u_x is the bandwidth utilization; G_{snd} is the sending packet gap;

When we exceed AB with our probing, AI will spike

Experimental Validation

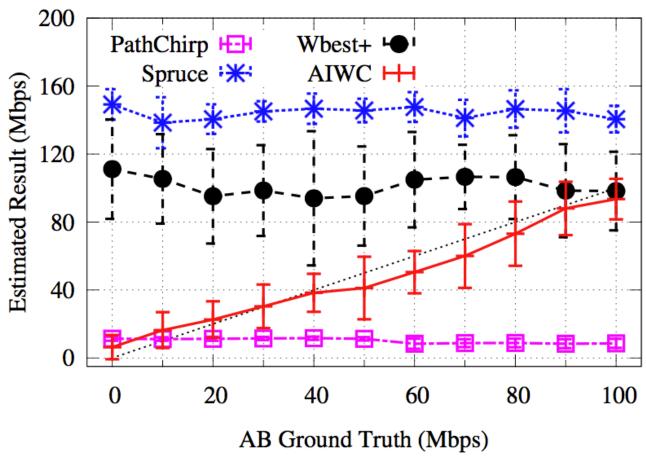
Probe traffic causes **0.1** link utilization.

 G_{snd} fixed

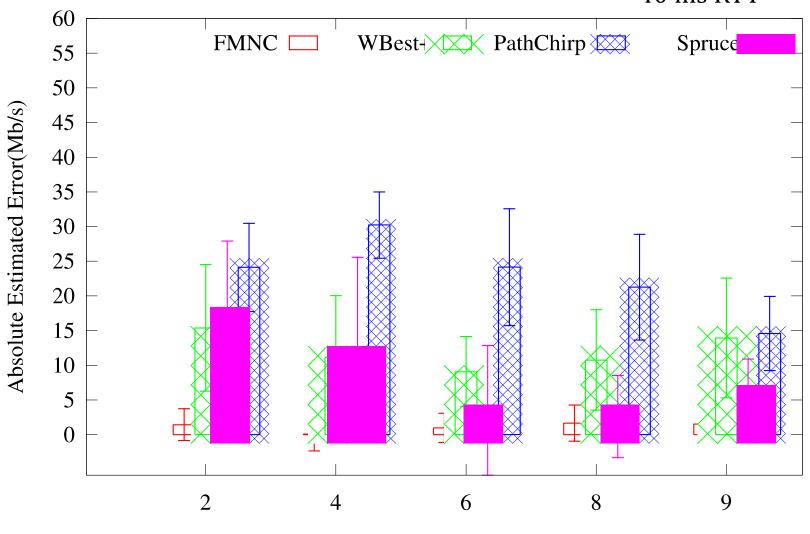


Design Principles - FMNC

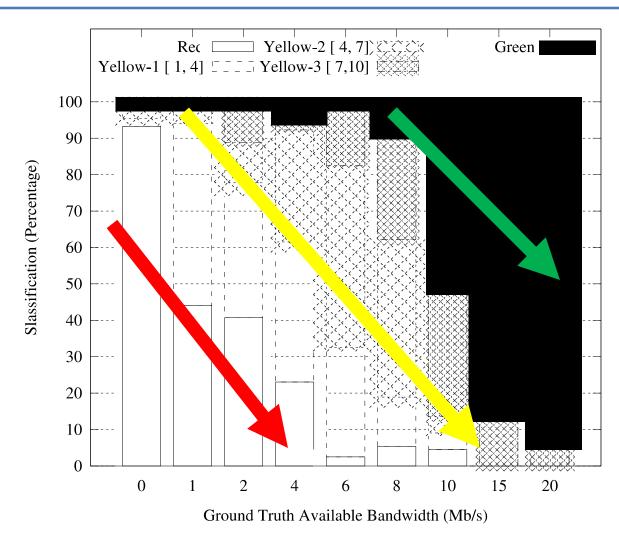
- Zero client modifications
 - Work within existing protocols / stacks
 - TCP/IP, HTTP GET
- Fast → Energy / Impact to other flows
 - Less than 250 ms resolution time
- Accurate in zone that matters
 - 0-11 Mb/s Red, Yellow, Green
 - Can trigger alternate tests
- Lightweight
 - Less than 100 KB of data


Sliced, Structured, Reordered Packets

Experimental Setup


- Client
 - Periodic FMNC web gets (Android phone)
- Server
 - Custom libpcap-based server
- Wireless links
 - -802.11n
- Cross Traffic
 - UDP via clients sharing same wireless

Results - Estimations


Performance

802.11n 2.4 GHz UDP controlled links 40 ms RTT

Ground Truth Avail Bandwidth (Mb/s) WiFi 802.11n link as the bottleneck link

Performance - Classification

Deployment

- ND spring break
 - Incentivized participation
 - NetHealth study (500)
 - Approx. 100 unique devices
 - Client for FMNC
 - AirWatch
 - Android Play Store Beta
 - Throughput test + FMNC

Data Summary

Table 3: Data Summary

Table 3: Data Summary				
Overall	Period	9 days		
	Test Instances	47,380		
	Packet Pairs	6,168,682		
	Unique Users	96		
	Unique SSIDs	154		
	Unique APs	992		
AT	Valid	43,236		
	>10 Mb/s	71.2%		
	Estimated Throughput			
	50th Percentile	$20.38~\mathrm{Mb/s}$		
	75th Percentile	41.17 Mb/s		
	90th Percentile	$57.89~\mathrm{Mb/s}$		
FMNC AB	AB >10	60.7%		
	AB = 0	7.2%		
	PDR >0.9	82.7%		
	Resolution Time			
	50th Percentile	$123.2~\mathrm{ms}$		
	75th Percentile	$172.5~\mathrm{ms}$		
	90th Percentile	$239.8~\mathrm{ms}$		
Cost	FMNC AB	4.1 GB		
	iperf	1,100.9 GB		

Highlights

Average B/W 20.38 Mb/s

Resolution Time 239.8 ms (90th Percentile)

Bandwidth Cost 250x savings vs. iperf

Example Result (Simple HTML Output)

FMNC Test Result for 2016-03-24 18:22:35

User Profile	Client App	iOS
	Client ID	7CA750E1-79F8-4C81-94AC-C2D924DEC466
	SSID	ND-secure
	BSSID	d0:c2:82:f7:6e:1e
	Longitude	-86.2349233204928
	Latitude	41.7041357683612
FMNC Measurement	RTT (ms)	2.41122
	PDR	1
	Available Bandwidth (Mb/s)	> 10 Mb/s
	AB estimation Time (ms)	117.065
	Elasticity Index	0.027503
	Uplink Pearson Correlation	0.491399
Achievable Throughput	Download Size (MB)	7.2
	Download Time (ms)	1198
	Average Throughput (Mb/s)	48.0801

Questions?

striegel@nd.edu

Supported in part by NSF CNS-1718405

