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Abstract

To date, most insights into the processes shaping vertebrate gut microbiomes have

emerged from studies with cross‐sectional designs. While this approach has been

valuable, emerging time series analyses on vertebrate gut microbiomes show that gut

microbial composition can change rapidly from 1 day to the next, with consequences for

host physical functioning, health, and fitness. Hence, the next frontier of microbiome

research will require longitudinal perspectives. Here we argue that primatologists, with

their traditional focus on tracking the lives of individual animals and familiarity with

longitudinal fecal sampling, are well positioned to conduct research at the forefront of

gut microbiome dynamics. We begin by reviewing some of the most important

ecological processes governing microbiome change over time, and briefly summarizing

statistical challenges and approaches to microbiome time series analysis. We then

introduce five questions of general interest to microbiome science where we think field‐
based primate studies are especially well positioned to fill major gaps: (a) Do early life

events shape gut microbiome composition in adulthood? (b) Do shifting social

landscapes cause gut microbial change? (c) Are gut microbiome phenotypes heritable

across variable environments? (d) Does the gut microbiome show signs of host aging?

And (e) do gut microbiome composition and dynamics predict host health and fitness?

For all of these questions, we highlight areas where primatologists are uniquely

positioned to make substantial contributions. We review preliminary evidence, discuss

possible study designs, and suggest future directions.

Research Highlights

• To date nearly all insights into the processes shaping vertebrate gut microbiomes

have emerged from studies that have cross‐sectional designs, but emerging time

series analyses show that gut microbiomes can change rapidly from 1 day to

the next.

• Field‐based primate studies, owing to their focus on the lives of individual animals,

and the relative ease of collecting longitudinal fecal samples from known animals,

are better positioned to collect these data than studies of humans or other species.

• We propose five questions of general interest to microbiome science where field‐
based primate studies are especially well positioned to fill major gaps. We review

preliminary evidence, discuss possible study designs, and suggest future directions.
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1 | INTRODUCTION

Microbiomes are multilayered, interconnected networks of microbes

and their genes, which interact in time and space to produce a well‐
functioning host (Figure 1). Over the last decade, with the advent of

culture‐free techniques, researchers have uncovered astonishing

diversity in animal microbiomes, especially in the mammalian gut

(Bálint et al., 2016. The gut microbiome’s composition and diversity is

shaped by many factors, including the host’s evolutionary history,

lifestyle, diet, and social interactions (e.g., David et al., 2013;

Moeller, Caro‐Quintero, et al., 2016; Moeller, Foerster, et al.,

2016). Some of these compositional differences may have functional

consequences for the services gut microbiomes provide to their

hosts, including the host’s ability to digest complex carbohydrates,

detoxify plant secondary compounds, and resist infectious diseases

(Kohl & Dearing, 2016; McKenney, Koelle, Dunn, & Yoder, 2018).

To date, many of these insights have emerged from cross‐
sectional studies, which provide only a snapshot perspective on the

gut microbiome at a single time point in a host’s life. However, a

handful of influential time series analyses (see Box 1 for our glossary)

on vertebrate gut microbiomes suggest considerable dynamism:

Microbial presence and abundance can change considerably from 1
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F IGURE 1 A multilayer representation of hosts and their collective gut microbial communities. (a) In this conceptual figure, the microbiome
at time t is represented as a multilayer network where layers are squares, solid black lines are intra‐layer edges, and dashed blue lines are
interlayer edges. The first layer is a social network: Circles represent individual hosts and edges represent social interactions between hosts

living in the same and different social groups, depicted by different colors. The second layer is a gut microbial network: Circles represent
individual microbial taxa, depicted by different colors, and edges represent positive and negative relationships between taxa. The third layer is a
gene network: Circles represent gut microbial genes, and edges represent genes that are found in the same gene network, represented by
different colors. Different metabolic pathways can be responsible for the same function; the dashed red and blue circles depict functionally

redundant metabolic pathways (e.g., the degradation of cellulose or pectin). Multiple metabolic pathways can be present in the same microbe,
and multiple microbes can have the same metabolic pathways, but for illustrative purposes, this is not depicted. The interlayer edges represent
different types of associations; edges connect hosts and microbes when that microbe is found in a given host; edges connect microbes and genes

when that metabolic pathway is present in a given microbe. (b) Longitudinal time series allow for analyzing how different properties of each
layer change over time. Each bar represents a given layer at time ∈ { … }t T1, 2 , . For instance, in the top plot, cohesiveness among social groups
changes over time due to the fission and fusion of social groups. In the second plot, gut microbial taxa change in abundance over time due to

similar or different responses to biotic and abiotic factors. Each colored line corresponds to a microbial taxa and the thick black dashed line
represents the aggregated fluctuations at the whole microbiome community level. In the last plot, individual metabolic pathways fluctuate over
time (depicted by thin colored lines), but due to functional redundancy, the host’s functional capacity is stable over time (red and blue thick

dashed lines). See Pilosof et al. (2017) for a review of multilayer networks in ecology
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day to the next, with potential consequences for host physical

functioning (e.g., Caporaso et al., 2011; David et al., 2014). Hence, the

next frontier of gut microbiome research must consider time:

Compared with cross‐sectional studies, time series analyses of

mammalian gut microbiomes from several subjects will yield deeper

insights into the drivers of gut microbiome change and the

consequences for host health and fitness. Time series analyses will

be essential to forecast or predict microbiome change, connect

microbiome dynamics to host health and fitness, learn the causal role

that host environments and behaviors play in microbiome change,

and understand the role of vertical transmission and historical

contingency in microbiome assembly. However, time series data on

gut microbiomes, especially data sets that span multiple individual

hosts, remain rare. Nearly all such data are collected on humans,

which can be challenging and expensive study subjects: Dense time

series and covariates that explain gut microbiome dynamics, such as

diet and social interactions, are difficult to collect. As a result, most

such data sets have either few subjects (e.g., Caporaso et al., 2011;

David et al., 2014), or if they have more subjects, they have relatively

few time points per subject, limiting their statistical power (e.g.,

Claesson et al., 2011; Faith et al., 2013; Flores et al., 2014). These

discrepancies can lead to seemingly contradictory results; for

BOX 1 Glossary

Alternative stable states. Different possible stable states of composition or function that a community can move to, either following a

perturbation or because of different initial conditions (Beisner, Haydon, & Cuddington, 2003).

Complex adaptive systems. A system in which many independent agents interact, leading to emergent outcomes that are often difficult

or impossible to predict simply by observing individual interactions (Lansing, 2003).

Dispersal. The movement of species across space (Vellend, 2016).

Drift. Random changes in population sizes via stochastic birth and death events (Vellend, 2016).

Dynamical system. The mathematical notion of a dynamical system consists of two parts: the phase space and the dynamics. The phase

space of a dynamical system is the collection of all possible states of the system in question. Each state represents a complete snapshot of

the system at some moment in time. The dynamics are governed by rules (state variables) that transform the state of the system at time t

into a new state at time t + 1. For instance, a principal coordinates analysis plot depicting microbiome similarity can be viewed as the

phase space (Didier et al., 2018).

Feedback loops. The effect that change in one part of an ecosystem has on another, and how this effect then influences the source of the

change by inducing more or less of it. Positive feedback is a circular path of effects that are self‐reinforcing. When part of the system

increases, another part of the system also changes in a way that makes the first part increase even more. Positive feedbacks are a source

of instability and a strong driver of change as they can force the system outside of its normal operating boundaries (Kéfi, Holmgren, &

Scheffer, 2016).

Heritability. A statistic used in the fields of breeding and genetics that estimates the proportion of variation in a phenotypic trait in a

population, which is due to genetic variation between individuals in that population (Wray & Visscher, 2008).

Keystone species. A species on which other species in an ecosystem largely depend, such that if it was removed the ecosystem would

change drastically (Paine, 1969).

Keystone‐pathogen. A microbial species that supports and stabilizes disease by instigating inflammation (Hajishengallis et al., 2012).

Priority effects. The initial order and timing at which species disperse and colonize an empty community, which, in turn, alters how drift,

selection, and diversification influence community assembly and succession (Fukami, 2015).

Prospective longitudinal study design. A study design that follows a set of subjects, which differ with respect to factors under study, over

time to determine how these factors predict a specific outcome (Diggle, Liang, & Zeger, 2013).

Selection. In an ecological context, selection occurs when individuals of different species vary in their fitness and niche requirements,

producing variation in reproduction and extinction rates between individuals and species (Vellend, 2016).

Speciation. The process by which new species arise in the course of evolution (Vellend, 2016).

Stability. There are many definitions of stability, some measuring the temporal variability of, for example, abundance or biomass over

time, or some that measure responses to perturbations (see Box 2).

Steady state. If the state variables that are used to describe the state in a dynamical system are unchanged over time, the system is said

to be in a steady state (Didier et al., 2018).

Time series data. A time series is a sequence of data points collected over time (Chatfield, 2013). In the microbiome, time series often

represent microbial taxonomic or genic composition from the same host over multiple time points.

Time series analysis. Time series analysis encompasses a wide range of statistical methods for analyzing time series, including tests of

temporal autocorrelation, Fourier and wavelet transforms to analyze frequencies, time series decomposition to extract seasonal, trend

and noise components, and state‐space models to retrospectively study the behavior of a system underlying the time series, or to make

forecasts beyond the last observation (Chatfield, 2013; West & Harrison, 1989).
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example, Caporaso et al. (2011) sampled two human adults daily for

15 months and found that each individual’s gut microbiome exhibited

high variability over time. In contrast, Faith et al. (2013) sampled 37

human adults 2–13 times (up to 296 weeks apart) and concluded that

individuals’ gut microbiomes were remarkably stable. However, these

studies differed in the time scales over which they measured gut

microbial dynamics (daily changes vs. weekly or monthly changes). As

such, it is unclear which drivers explain gut microbiome dynamics at

different time scales, and which of these dynamics are most relevant

to host physiology, health, and fitness.

Primatologists can help overcome these barriers. One hallmark of

field‐based primatology is a focus on the behavior, ecology,

physiology, and life histories of known individual animals. Indeed,

primate field studies often collect long‐term, individual‐based data on

the phenotypes of many subjects, sometimes from the animal’s birth

to death (Bronikowski et al., 2016; Clutton‐Brock & Sheldon, 2010a,

2010b; Kappeler & Watts, 2012; Strier et al., 2010). Primate studies

have long led the the way in using longitudinal fecal sampling to

characterize their subjects’ genes (e.g., Morin, Wallis, Moore,

Chakraborty, & Woodruff, 1993; Snyder‐Mackler et al., 2016),

hormones (e.g., Gesquiere, Altmann, Archie, & Alberts, 2018;

Whitten, Brockman, & Stavisky, 1998), and parasites (e.g., Freeland,

1979; Müller‐Klein et al., 2018; Stuart & Strier, 1995). Hence, such

projects are well positioned to pair their wealth of long‐term life

history data with time series of individual subject’s gut microbiomes.

With this combination of data types, primatologists may be able to fill

key gaps in microbiome dynamics that may be impossible to fill in

humans or other animals, including our understanding of the

processes governing microbiome assembly and succession, micro-

biome temporal dynamics and stability, and how these changes

influence microbiome function and host health and fitness.

Our objective in this review is to summarize major unanswered

questions about the mammalian gut microbiome that require time

series data and where individual‐based primate studies are well

positioned to provide answers. We begin by introducing some of the

major ecological processes governing gut microbiome assembly,

dynamics, and stability. We then briefly summarize statistical

challenges and approaches to microbiome time series analysis. We

next highlight five diverse questions in microbiome science where

primatology is poised to make contributions. Our goal is not to

provide a comprehensive review of these questions, but rather to

introduce key barriers to progress and explain how primate studies

might overcome these barriers. The first four questions are united in

that each addresses the factors and processes that drive gut

microbial change over time: (a) Do early life events shape gut

microbiome composition in adulthood? (b) Do shifting social land-

scapes cause gut microbial change? (c) Are microbiome phenotypes

heritable across variable environments? And (d) does the gut

microbiome show signs of host aging? Finally, the fifth question

addresses how longitudinal microbiome data sets can be used to

understand the functional consequences of gut microbiome change

by asking, (e) do gut microbiome composition and dynamics predict

host health and fitness? Tackling these questions will greatly improve

our understanding of both the processes shaping the gut microbiome

over time and the consequences of these changes for primate hosts.

Such research is also likely to reveal unanticipated discoveries,

raising completely new questions for primatologists, microbiologists,

ecologists, and evolutionary biologists. While our review largely

focuses on 16S rRNA amplicon sequencing data, the research

questions we review remain equally relevant for data generated

with other “‐omics” approaches such as transcriptomics, proteomics,

and metabolomics.

2 | WHAT ECOLOGICAL PROCESSES
CONTRIBUTE TO GUT MICROBIOME
ASSEMBLY, TEMPORAL DYNAMICS, AND
STABILITY?

To date, a handful of papers have explored the temporal dynamics of

primate gut microbiomes, revealing considerable dynamism. For

instance over developmental scales, different lemur species exhibit

different patterns of infant gut microbial succession, and these

successional differences are linked to differences in lemur gut

morphology and dietary regimes (McKenney, Rodrigo, & Yoder,

2015). Over seasonal time scales, the gut microbiomes of wild gorillas

(Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes troglodytes)

fluctuate with rainfall, mirroring the apes’ switch from fiber‐rich
leaves and bark to succulent fruits (Hicks et al., 2018). Over even

shorter time scales, Ren, Grieneisen, Alberts, Archie, and Wu (2016)

found considerable differences in baboon (Papio cynocephalus) gut

microbiome composition from 1 day to the next: Gut microbiomes

sampled from the same baboon a few days apart were just as

different as microbiomes sampled from that animal 10 years apart.

While these studies suggest that the gut microbiomes of non‐human

primates change in different ways over different time periods and

across life, few studies have used existing ecological frameworks to

understand the processes that drive these changes.

Community ecology offers many theories and processes to

understand gut microbiome dynamics (e.g., Costello, Stagaman,

Dethlefsen, Bohannan, & Relman, 2012; Koskella, Hall, & Metcalf,

2017; McKenney et al., 2018; Sprockett, Fukami, & Relman, 2018;

Walter & Ley, 2011). Ecological communities are examples of complex

adaptive systems where large‐scale patterns such as diversity‐
stability, diversity‐productivity, and species‐energy relationships

emerge from interactions among species (Preston, 1948; Levin,

1998). They are also examples of dynamical systems that result from

species interactions unfolding over time to produce complex

dynamics such as periodicities, chaos, or alternative stable states

(May, 1975, 1977). The basic principles guiding community dynamics

can be summarized in four overarching processes that parallel well‐
known processes in evolution: dispersal, selection, drift, and speciation

(Vellend, 2016; Vellend & Agrawal, 2010). In ecological terms,

speciation generates new species, while dispersal, drift, and selection

shape the relative abundances of those species and their loss from

communities over time (Vellend, 2016; Vellend & Agrawal, 2010).
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The development of ecological theory has significantly increased

our understanding of (a) how these processes affect community

composition and dynamics, (b) when certain processes dominate, and

(c) how they can combine to produce complex interacting effects. For

instance, the theory of island biogeography focuses on the balance

between dispersal and drift (MacArthur & Wilson, 1967). This theory

explains how species richness increases with island size and the

distance from the mainland: The size of an island influences the

colonization and extinction rates, and thus indirectly biodiversity.

Island biogeography combined with the neutral theory of molecular

evolution was later used to develop the unified neutral theory of

biodiversity, which also aims to explain the diversity and relative

abundance of species in ecological communities. Neutral theory

makes the simple assumption that ecologically similar species in a

community are demographically equivalent, such that individuals

interact with and experience each other as though they were exactly

the same regardless of traits and adaptations (Hubbell, 2001). Owing

to its simplicity, neutral theory has had a tremendous impact on our

understanding of the role of dispersal, drift, and speciation versus

niche‐based differences for determining biodiversity. Finally, building

on these theories, metacommunity theory has become a new

cornerstone of ecology, aiming to explain how species interactions

at different temporal and spatial scales work together with dispersal

to shape local and regional community composition and dynamics

(Leibold et al., 2004). Metacommunity theory can be divided into four

paradigms that can be positioned along a continuum ranging from

niche‐based to neutral processes: patch‐dynamic, species sorting,

mass‐effect, and neutral, each capturing different processes affecting

metacommunity dynamics. At one extreme, variation in the meta-

community is determined by the responses of different species to

environmental gradients; and at the other extreme, individuals are

assumed to be identical in their fitness, and variation in community

composition is mainly driven by drift (Leibold et al., 2004).

Below, we review cases from the microbiome literature where

these processes either independently or in combination have been

adopted to explain microbiome change over time.

Dispersal is the movement of individuals across space. The effect

of dispersal on community dynamics depends on the number and

composition of dispersing individuals relative to the size and

composition of the recipient community. In animal microbiomes,

microbial dispersal may increase gut microbial similarity between

hosts that share habitat or have high rates of physical contact with

each other. For instance, in controlled experiments, Burns et al.

(2017) found that microbial dispersal between zebrafish homoge-

nized the intestinal microbiome of co‐housed host pairs, eliminating

microbiome differences linked to host strains. In humans, people are

constantly over‐writing each other’s microbial fingerprints in the

built environment. For example, families that moved to a new house

replaced the past owner’s microbial fingerprint with their own within

24 hr (Lax et al., 2014). The effects of dispersal on gut microbiome

community dynamics also depend on the spatial scale considered. A

study of mammal species across the Americas found that gut

microbiome similarity decayed with increasing geographic distance

between species, suggesting that dispersal limitation of microbial

taxa can lead to diversification of microbial lineages between host

populations (Moeller et al., 2017). Similar effects may explain why

sympatric gorillas (Gorilla gorilla gorilla) and chimpanzees (P. troglo-

dytes troglodytes) exhibit similar gut microbiomes (Moeller et al.,

2013). On smaller spatial scales, direct contact between hosts

facilitates microbial dispersal and homogenization of microbiomes

both within and between host species (Amato et al., 2017;

Grieneisen, Livermore, Alberts, Tung, & Archie, 2017; Lax et al.,

2014; Moeller, Foerster, et al., 2016; Moeller et al., 2017; Song et al.,

2013; Tung et al., 2015).

Ecological selection shapes community composition when differ-

ent species vary in their fitness and niche requirements, producing

species‐level variation in reproduction and extinction rates. In animal

microbiomes, selective processes may partly explain differences in

gut microbiome composition linked to host age, diet, and habitat

because all of these factors could contribute to differential survival

and reproduction of gut microbial species or strains, either inside or

outside of hosts. For instance, outside of a host, differences in the

climate, soils, and vegetation affect which microbes survive in the

environment, and in turn, which microbes have the opportunity to

colonize a primate’s intestinal tract (this process is also known as

species sorting; Székely & Langenheder, 2014). Within the host,

across developmental time scales, microbial selection is thought to

increase from early life to adulthood, partly due to physiochemical

maturation of the gut, but also because hosts become more effective

at curating their microbiomes (figure 2; Burns et al., 2015; Dini‐
Andreote & Raaijmakers, 2018). Dietary regimes and gut morphology

also represent strong selective forces (David et al., 2013; Groussin

et al., 2017; Ley et al., 2008; McKenney et al., 2015). This is because

dietary changes affect gut contents, leading to differential growth

and survival among gut microbial species, and thus different gut

microbiome compositions (David et al., 2013). Selection, in combina-

tion with dispersal, may explain why gut microbial composition

differs between captive and wild primates (Clayton et al., 2016).

Specifically, changes in diet (e.g., the loss of dietary fiber) and in the

environment (e.g., from a forest to a cage) affect both the selective

regimes affecting on the gut microbiome, as well as which microbes

hosts are exposed to (Clayton et al., 2016).

Drift arises from random changes in species relative abundances

due to stochastic birth and death events (Hubbell, 2001). In a

hypothetical scenario where all individuals live in a closed community

(i.e., no immigration and dispersal), and all individuals are demo-

graphically identical, drift is the only process affecting community

dynamics (Vellend & Agrawal, 2010). Drift is stronger in small

populations, thus it represents an important process affecting local

species extinctions. For example, rare gut microbes that are

perturbed by antibiotics or illness should be more prone to extinction

than more abundant microbes (Dethlefsen & Relman, 2011;

Fukuyama et al., 2017). The effects of drift on animal microbiomes

are not well understood, partly because it is difficult to tease apart

drift from selection and dispersal. However, Burns et al. (2015) found

in an experimental zebrafish system that drift and dispersal
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dominated in newly hatched larvae, but were less important as the

hosts developed and matured, perhaps because of increasing host

control over the microbiome and hence stronger selective forces

(Figure 2).

Speciation is the process by which new species arise in the course

of evolution. Speciation can, therefore, shape the regional distribu-

tion of species, and in turn, local community composition and

dynamics (Vellend, 2016). Because microbes have short generation

times, speciation has the potential to shape animal microbiomes over

animal lifespans, especially in long‐lived primates (Figure 2). Indeed,

Koeppel et al. (2013) found that in lab conditions, microbial

speciation can occur over the course of a few days. Speciation may

partly explain why allopatric populations of chimpanzees (P.

troglodytes troglodytes) and gorillas (G. gorilla gorilla) harbor divergent

gut microbiomes compared with sympatric host populations (Moeller

et al., 2013). Specifically, while some of this divergence is likely due

to selective processes created by site‐specific diets and low rates of

microbial dispersal between allopatric host populations, microbes can

rapidly diversify and adapt when faced with strong selective

pressures (Koeppel et al., 2013). Furthermore, when there is strong

partner fidelity, microbes and their hosts may speciate in parallel. For

example, the bacterial families Bacteroidaceae and Bifidobacteriaceae

have diversified in concert with hominid hosts, including humans

(Moeller, Caro‐Quintero, et al., 2016).

These four processes–dispersal, selection, drift, and speciation–

interact to produce complex community patterning across space and

time. While it is not possible to review all of the relevant interactions

and processes relevant to gut microbiome dynamics, below we

summarize a few phenomena that have been especially influential in

understanding microbiome dynamics, including priority effects, alter-

native stable states, feedback loops, and keystone species.

In priority effects, the order and timing of species arrivals

determine the composition and dynamics of current ecological

communities (Fukami, 2015). A newborn infant, for instance,

represents a blank canvas ready to be colonized by microbes via

dispersal. However, which microbes arrive first determines the

identity and the order that later microbial immigrants are able to

colonize (Didier, Katharine, Leo, & Karoline, 2018; Fukami, 2015).

This is because first‐arriving microbes fill particular niches by quickly

reaching carrying capacity, while simultaneously modifying the gut in

their favor, thereby altering the ability of subsequent microbial

immigrants to colonize (Sprockett et al., 2018). Such priority effects

can also have long‐term consequences for overall microbiome

stability (see Box 2 for definitions of ecological stability), and may

adversely affect host health and fitness later in life (see Sections 4.1

and 4.5). Subtle differences in the arrival order of species may shift

communities into alternative stable states (Didier et al., 2018; Fukami,

2015). A switch in diet, for instance, can alter the nutritional niche of

the gut, thus favoring the growth of pathogens at the expense of

commensal microbes (Chen et al., 2017). However, the gut micro-

biome can also display resilience (see Box 2) and recover its initial

state following a perturbation (see Box 2; Faust, Lahti, Gonze, de Vos,

Predicted changes in the relative contribution of ecological processes (%)

Dispersal - the movement of organisms across space

Drift - random changes in population sizes owing to stochastic birth and death 

Selection - biotic/abiotic interactions resulting in fitness differences among species 

Speciation - new species arise in the course of evolution 

Priority effects

Host development

F IGURE 2 Conceptual figure depicting the relative contribution of the four ecological processes that govern community dynamics across

primate development. In infants, drift and dispersal determine early colonizing microbes, which create priority effects that are thought to have a
large influence on subsequent microbial colonization. As the host develops and matures, selection is expected to increase as the
physicochemical conditions of the gut stabilize, and as hosts become more effective at curating their microbiomes. As microbial species persist

across host development, the chances for speciation increase; hence speciation may play a stronger role in adult microbiomes as compared with
infants and young juveniles. Figure adapted from Dini‐Andreote and Raaijmakers (2018)
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& Raes, 2015). For example, David et al. (2014) found that when one

healthy adult human traveled abroad for several weeks and under-

went a major dietary change, the ratio between the two dominant

groups of bacteria in the gut increased nearly twofold, but reverted

to its initial ratio after returning home. We currently know very little

about what makes a microbiome more resilient. What is clear is that

resilience is an emergent property that applies in different ways in

different subjects and in the various functional layers that make up

the microbiome (figure 1; Bäckhed et al., 2015; Gerber, 2014;

Hollister, Gao, & Versalovic, 2014).

At their core, alternative stable states result from positive species

interactions and feedback loops (Kéfi, Holmgren, & Scheffer, 2016).

For instance, strong cooperation between microbes may destabilize

the gut microbiome because positive interactions induce species

coupling and positive feedback: if one microbe decreases in

abundance, it will drag other species down with it and cause

community collapse (Coyte, Schluter, & Foster, 2015). In contrast,

species that respond differently to biotic and abiotic conditions

fluctuate asynchronously over time (figure 3; Loreau, 2010). These

asynchronous fluctuations are expected to increase microbiome

stability as one species’ sharp decline is compensated by another’s

increase. This is one reason, for example, why community stability

tends to increase with species diversity (figure 3; Loreau, 2010). The

above findings further point to the possibility of commensal keystone

species, which have a disproportionate negative effect on the

microbiome upon their removal (Berry & Widder, 2014; Fisher &

Mehta, 2014). However, once the microbiome has been destabilized,

alternative stable states associated with dysfunction may be reached

by keystone‐pathogens–microbes supporting and stabilizing disease by

instigating inflammation (Hajishengallis, Darveau, & Curtis, 2012).

Together, the basic ecological forces–dispersal, selection, drift,

and speciation–and the processes that emerge from them (e.g.,

alternative stable states, keystone species, etc.) have been important

in shaping scientific thinking about the forces underlying microbiome

dynamics. However, it is important to note that these ecological

frameworks were developed for free‐living, macrocommunities.

Microbial communities, including the gut microbiome, differ from

these communities in several important ways: (a) gut microbiome

diversity is astonishing, and functional redundancy is probably much

more common in microbiomes than in free‐living communities;

BOX 2 Ecological stability

Stability is often proposed as a measure of microbiome health and hence host health (see also Sections 4.4 and 4.5). However, ecological

stability is a multifaceted concept that encompasses both variability over time and response to perturbations; it can, therefore, be

measured in multiple ways (see Figure below; Donohue et al., 2016). Facets of ecological stability that are particularly relevant to gut

microbiomes include resilience, resistance, persistence, and temporal stability. While resistance is the degree to which a gut microbiome

is able to withstand change following a perturbation (e.g., antibiotics or illness), resilience is the rate at which it returns to the initial

steady state, or moves to a new alternative stable state (Pimm, 1984). Microbiomes with faster return times are said to be more resilient

than those recovering more slowly. Persistence is the length of time the microbiome maintains the same microbial composition (Pimm,

1991); it can also be defined as a “core” of microbial species persisting beyond some arbitrarily defined threshold of time (Björk, O’Hara,

Ribes, Coma, & Montoya, 2018). The most applicable measure of ecological stability that can be directly computed on time series is

temporal stability (Si), which is defined as the ratio of the mean abundance ( iμ ) of the ith microbial species to its standard deviation ( iσ )

calculated across the time series (Tilman, 1999). See Didier et al. (2018), Donohue et al. (2016) for more facets of ecological stability.
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The multifaceted nature of ecological stability. In scenario (A), a gut microbiome shows a high resistance but low resilience following a

perturbation. It also has a high persistence, and low variance (i.e., high temporal stability). In scenario (B), another gut microbiome shows the

opposite patterns. The horizontal dashed lines depict the steady state, which can be computed as the long‐term average abundance before any

perturbation. The Y‐axes show the aggregated abundance of the gut microbiomes, and the X‐axes depict time. Figure adapted from Donohue

et al. (2016).
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(b) microbes can disperse both horizontally and vertically, with

implications for the evolutionary outcome of host–microbe interac-

tions; (c) unlike free‐living communities, microbiome dynamics are, to

some extent governed by the host, introducing a completely new

selective force; and (d) microbes regularly exchange genes via lateral

gene transfer; hence microbes can take on functions from their

neighbors. These important differences between free‐living macro-

communities and host‐associated microbial communities mean that

there is an urgent need to develop ecological theory that is specific to

the microbiome. Importantly, microbes’ short generation times and

small genomes blur the line between ecological and evolutionary

processes and time scales.

3 | TIME SERIES ANALYSIS APPROACHES
FOR MICROBIOME DATA

Time series analysis encompasses a wide range of statistical methods

and models that are often not trivial to apply without some expert

knowledge (see e.g., Chatfield, 2013; Faust et al., 2015). Many of the

simplest methods require that the time steps between samples are

equidistant, which can be challenging to achieve when fecal samples

are collected opportunistically. Moreover, microbiome data exhibits

several undesirable characteristics that must be considered in the

analysis. Most of these characteristics are related to how the data are

generated (see e.g., Silverman, Shenhav, Halperin, Mukherjee, & David,

2018). First, high‐throughput DNA sequencing produces proportions of

counts per operational taxonomic unit (OTU, a placeholder for taxon)

per sample that is constrained by an arbitrary sum imposed by the

sequencing platform (this characteristic is referred to as composition-

ality; Gloor, Macklaim, Pawlowsky‐Glahn, & Egozcue, 2017). This

property limits inference to relative abundances, and introduces

uncertainty in the estimates of those relative measurements (Gloor

et al., 2017). Second, high‐throughput DNA sequencing often produces

extremely sparse counts; that is, much of the data consists of zero

values that can arise due to multiple processes. For example, an OTU

can have zero abundance because it is completely absent from a

sample, or because its abundance falls below the detection limit of the

sequencing platform (Silverman, Roche, Mukherjee, & David, 2018).

Third, because microbial diversity is exceptionally high in many

biological environments, the generated count table is high‐dimensional,

with hundreds to thousands of OTUs that can make inference

computationally hard or even impossible without additional filtering

steps. While it is challenging to account for all these data character-

istics in the analysis, failure to do so can lead to spurious correlations

between microbes and misleading results (Gloor et al., 2017;

Tsilimigras & Fodor, 2016). To tackle the compositional property, data

transformations or compositionally robust methods should be used

(see e.g., Gloor et al., 2017; Lovell, Pawlowsky‐Glahn, Egozcue,

Marguerat, & Bähler, 2015; Weiss et al., 2016).

Owing to the nontrivial nature of time series analysis, and the

many undesirable characteristics of microbiome data, there has been

a growing interest in developing easy‐to‐use longitudinal time series

methods, such as MetaLonDa (Metagenomics Longitudinal Differ-

ential Abundance) to identify significant time intervals of differen-

tially abundant microbial taxa (Metwally et al., 2018), and TIME

(Temporal Insights into Microbial Ecology), a web based framework

that offers popular time series analyses, including Dickey–Fuller tests

to calculate time series stationarity, Granger causality to find causal

relationships between taxa, and dynamic time warping to measure

the displacement between two time series (Baksi, Kuntal, & Mande,

2018). While these methods are valuable to the field, they are limited

in their applicability and scope, and many of the questions we

introduce in this review will require greater flexibility. In Box 3, we

give a brief introduction to state‐space models (SSMs), which play a

central role in time series analysis. They are typically used to

retrospectively study the behavior of a system underlying a series of

observations, or to make forecasts beyond the last observation (West

& Harrison, 1989). Because SSMs model observation error separately

from the underlying “state” of the system, they can successfully

describe a system’s dynamics and its response to different inputs. An

important feature of SSMs is that they do not require time series to

be stationary (i.e., statistical properties such as mean, variance, and

autocorrelation does not need to be constant over time), and they

are therefore not sensitive to nonlinear relationships (West &

Harrison, 1989). Similar to generalized linear mixed models, SSMs

can also handle non‐normal data, and account for fixed and random

effects. This flexibility means that SSMs are likely to become a

cornerstone of longitudinal time series analysis for microbiome data.

4 | KEY AREAS OF MICROBIOME SCIENCE
WHERE PRIMATE STUDIES CAN
CONTRIBUTE

Building on the ecological processes described above, here we briefly

review five diverse but fundamental questions in microbiome science

that require time series data from multiple hosts, and where

individual‐based primate studies are especially well positioned to

provide answers. The first four questions address drivers of

microbiome change over time. The fifth question addresses the

consequences of microbiome change for hosts. Our goal is not to

provide a thorough review of each topic; rather we introduce a

handful of recent studies in each area, discuss key barriers or gaps to

answering these questions, and focus how primate studies can help

overcome these barriers and contribute to answering the question.

4.1 | Do early life events shape gut microbiome
composition in adulthood?

Events early in life can have profound consequences for an animal’s life

history, health, and fitness (Berens, Jensen, & Nelson, 2017; Chaby,

2016; Lindström, 1999). An emerging body of work suggests that early

life effects may also shape or be mediated by animal microbiomes

(Berger, Lemaître, Allainé, Gaillard, & Cohas, 2018; Clarke, 2014;

Laforest‐Lapointe & Arrieta, 2017; Martínez et al., 2018). The

suitability of primate systems for understanding these processes stems
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from primatology’s traditional focus on individual‐based research, and

its long history of studying early life effects–especially maternal effects

(e.g., Altmann & Alberts, 2005; Bailey, Lubach, & Coe, 2004; Bernstein,

Setchell, Verrier, & Knapp, 2012). Such research has found that diverse

maternal effects, ranging from a mother’s rank and cortisol levels to the

quality of offspring care and social connectedness, can affect diverse

offspring phenotypes, including temperament (Suarez‐Jimenez et al.,

2013), lifespan (Silk et al., 2009), adult cortisol (Onyango, Gesquiere,

Wango, Alberts, & Altmann, 2008), mating success (Surbeck, Mundry, &

Hohmann, 2010), immune function, and motor skill acquisition

(Berghänel, Heistermann, Schülke, & Ostner, 2016).

Whether these early life effects also shape primate gut

microbiomes is unknown, but this possibility is supported by two

main lines of evidence. First, as discussed in Section 2, events early in

the formation of the gut microbiome may have consequences for

subsequent community assembly, dynamics, and stability (Fukami,

2015; Sprockett et al., 2018). In support, there is considerable

evidence for priority effects in human microbial development. For

example, birth method can determine the initial state of the human

gut microbiome and its subsequent assembly (Bäckhed et al., 2015;

Dominguez‐Bello et al., 2010; Goedert, Hua, Yu, & Shi, 2014; Yassour

et al., 2016). Indeed, Chu et al. (2017) found that infants delivered by

cesarean section shared more microbes with their mothers’ skin at

the time of birth than infants delivered vaginally. Cesarean infants

have also been found to lack the bacterial genera Bacteroides and

Bifidobacterium, which are largely responsible for the breakdown of

oligosaccharides in breast milk, and these effects can persist for at

least 6–18 months after delivery (Bäckhed et al., 2015; Korpela et al.,

2018; Yassour et al., 2016). Beyond delivery mode, malnutrition can

also affect gut microbial development. Acute malnutrition in early life

has been found to keep the gut microbiome in a state of persistent

immaturity (M. I. Smith et al., 2013; Subramanian et al., 2014). To test

BOX 3 State‐space models for microbiomes: future directions

State‐space models (SSMs) differ from, for example, linear mixed models in that they assume there is an unobservable Markov chain

called the “state process”, and that the observed time series is an imprecise measurement of that process (see Equations (1) and (2)). A

growing number of SSMs are being developed for microbiome applications, including models that address the technical challenges of

microbiome data (e.g., Gibson & Gerber, 2018; Ridenhour et al., 2017; Silverman, Durand, et al., 2018), or infer microbe‐microbe

interactions (see e.g., Chen et al., 2017; Fisher & Mehta, 2014; Trosvik & de Muinck, 2015). Here we (a) showcase a simple SSM, and (b)

briefly discuss advancements that are needed to answer some of the questions posed in this review. For simplicity, we do not explicitly

show how to account for the several undesirable microbiome data characteristics that were mentioned in Section 3 (here we refer

interested readers to e.g., Gibson & Gerber, 2018; Ridenhour et al., 2017; Silverman, Durand, et al., 2018; Warton et al., 2015).

Let Yt d, denote a time series with the number of counts observed for operational taxonomic unit d∈{ … }D1, , in time point ∈ { … }t T1, , . In

the simplest case, samples Yt are assumed to be independent and identically normally distributed as ( ∣ )~ ( )Y V,t Nθ θ , where V reflects the

measurement error. However, as the microbiome state θ can change both gradually, for instance with season, or more abruptly, for

instance during illness, a time‐varying state can easily be incorporated, such that

~ + ~ ( ) ( )Y F V, 0, Observation equation ,t t t t t tNθ ν ν (1)

where Ft is a vector of time‐varying covariates, with the state vector … …, ,t T1θ θ θ representing the underlying microbiome dynamics in the

time series, and tν describing random fluctuations arising from measurement error. The underlying time evolution is further modeled as a

simple random walk such that the microbiome state in time t depends on the previous state in time −t 1,

= + ~ ( ) ( )−G W, 0, State equation ,t t t t t t1 Nθ θ ω ω (2)

where Gt represents the state matrix describing the dynamics of the microbiome state in the previous time −t 1θ , and tω corresponds to

unpredictable changes in the dynamics between time −t 1 and t . Which lag to use can be determined from the partial autocorrelation

function (see Chatfield, 2013 for more information).

Depending on the exact specification of the system matrices (Ft and Gt) and the covariance matrices (Vt and Wt), different types of models

can be specified, such as, for example, static and dynamic mixed effects models, and models with seasonal or polynomial trends (West &

Harrison, 1989). For simplicity, Equations (1) and (2) only model one time series from one host; however, to answer many of the questions

we pose in this review, these equations have to be expanded to model concurrent microbiome time series from multiple hosts (see e.g.,

Silverman, Durand, et al., 2018). While time‐varying covariates such as, for example, diet and rainfall, can already be modeled in Equation

(1), new challenges include how to accommodate for more complex covariates in the state‐space framework, such as hosts’ social

interactions and genetic relatedness. Such covariates can, similar to species phylogenies, be modeled in static linear mixed models (see

e.g., Björk et al., 2018; Ives & Helmus, 2011). However, to answer questions regarding how, for example, changes in microbiomes over

time can be attributed to a shifting social landscape (Section 4.2), or whether microbiome phenotypes are repeatable over time (Section

4.3), time series models, such as SSMs are necessary.
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whether improved nutrition can rescue an “immature” gut, Sub-

ramanian et al. (2014) administered nutritional interventions and

found that infants’ guts returned to their initial “immature” state

after the intervention. These studies expose the major gaps in the

literature–little is known about how long early life effects on the gut

microbiome persist, or whether humans are representative of other

host‐associated microbial systems, such as non‐human primates.

The second line of evidence is that the early life effects we already

know about in primates could be relevant to gut microbiome assembly

and development, including the quality of maternal care, dominance

rank, social environment, and harsh conditions such as drought. For

instance, in The Gambia, people born during the “hungry season”

exhibit much higher mortality in adulthood as compared with those

born during the “harvest season” (Moore et al., 1997, 2004). Because

many non‐human primates also live in seasonal environments, and

because seasonal effects have been demonstrated on primate

microbiomes (Hicks et al., 2018; Sun et al., 2018; Trosvik et al.,

2018), non‐human primates may be useful for understanding early life

effects on gut microbialy mediated forms of nutritional programming,

or the process through which variation in nutrition affects individual

development (Langley‐Evans, 2009). While long‐term effects like these

have not yet been shown in non‐human primates, there is abundant

evidence that factors like stress and rank shape microbiome composi-

tion over short‐time scales. For example, working in captive rhesus

macaques (Macaca mulatta), Bailey, Lubach, and Coe (2004) demon-

strated that maternal stress during pregnancy altered infant gut

microbiomes across the first 24 weeks of life. In wild primates, social

status is sometimes linked to maternal stress (Markham et al., 2014;

Murray et al., 2018); hence, maternal rank may also shape the infant’s

gut microbiome in natural populations. In non‐human primates, new

evidence strongly suggests that diet and social environment are

important influences of gut microbial composition (Amato et al., 2017;

Bennett et al., 2016; Grieneisen et al., 2017; Hale et al., 2018;

Moeller, Foerster, et al., 2016; Perofsky, Lewis, Abondano, DiFiore, &

Meyers, 2017; Tung et al., 2015). However, no studies have yet studied

the effects of social isolation or nutrient limitation on the gut

microbiome’s of wild primates during early life.

Together, these lines of evidence suggest that early life events

could be important in shaping non‐human primate gut microbiomes

through the juvenile period and into adulthood. Primate hosts with

relatively short generation times and lifespans may be particularly

useful because of the relative ease of connecting early life events to

later‐life outcomes in such species. Primate species where it is easy

to collect longitudinal samples shortly after birth will also be

essential to understand heterogeneity in the initial stages of gut

microbial development. Major unanswered questions include: How

do hosts, their environments, and ecological processes interact to

produce early life effects on gut microbiomes? How long do these

effects persist? And, what are the consequences of these effects for

host physical functioning in adulthood? These questions are

important in a wide variety of systems, and primatologists that are

able to collect fecal samples from the same animal in early life and

adulthood are well positioned to provide answers.

4.2 | Does a shifting social landscape cause gut
microbiome change?

To date, cross‐sectional research on humans and non‐human

primates has been at the forefront of understanding how an

individual’s social context may shape its gut microbiome (Amato

et al., 2017; Bennett et al., 2016; Lax et al., 2014; Moeller, Foerster,

et al., 2016; Perofsky et al., 2017; Song et al., 2013; Tung et al., 2015).

For instance, recent cross‐sectional analyses of wild baboons (P.

cynocephalus), chimpanzees (P. troglodytes troglodytes), howler mon-

keys (Alouatta pigra), and lemurs all found that individuals who spend

more time in contact or in close proximity to each other have more

similar gut microbial compositions than individuals who are not in

contact or do not live together (Amato et al., 2017; Moeller, Foerster,

et al., 2016; Perofsky et al., 2017; Tung et al., 2015). Taking a

longitudinal perspective on this phenomenon will help move the field

forward in three important ways. First, longitudinal data coupled with

time series analysis will be essential to tease apart the effects of

social interactions from other aspects of group living, such as shared

environments, similar diets, and host genetic relatedness (see also

Section 4.3). Second, the structure of social networks strongly affects

the rate at which infectious diseases spread through host populations

(Watts & Strogatz, 1998), and microbes likely spread via these same

pathways. Primate studies with densely sampled social networks, in

combination with microbial strain tracking, could be used to learn

how microbial strains, both commensal and pathogenic, propagate

through primate societies. Third, taking a metacommunity perspec-

tive by treating subjects’ gut microbiomes as local communities,

connected by socially‐mediated microbial dispersal, will allow

primate studies to test current predictions of how of ecological

processes contribute toward the stability of each local community,

and how this in turn influences the stability at the metacommunity

level (e.g., at the social group level).

With respect to the first advance, the multiple, concurrent effects

of group living and social interactions that influence gut microbiome

composition are difficult to decouple in cross‐sectional studies. To
date, most such studies attempt isolate the direct effects of microbial

transmission between social partners by statistically accounting for

correlates and confounds, for instance by controlling for dietary

similarity, kinship, and shared environments (Grieneisen et al., 2017;

Tung et al., 2015). As a result, there has been a growing interest in

developing statistical models to account for complex covariates such

as the host species phylogeny (Björk, Hui, O’Hara, & Montoya, 2018)

or experimental design (Grantham, Reich, Borer, & Gross, 2017) in

cross‐sectional microbiome data sets. While similar statistical models

for longitudinal time series data are rare (but see Laitinen & Lahti,

2018; Ridenhour et al., 2017; Silverman, Durand, Bloom, Mukherjee,

& David, 2018), time series analyses on multiple, coresident primates

will be essential to decompose variance into sources that directly

reflect the myriad contributions of group living and social interac-

tions in each moment of time. This is because different hosts living

together in the same group, and even the same host over time, may

be influenced by multiple factors at the same time. For instance,
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while host subject A’s microbiome may, at time t, be largely governed

by social interactions because this individual was highly socially

connected, host subject B’s microbiome may be largely explained by

diet because this individual was socially isolated. Longitudinal data

coupled with new statistical models (e.g., modifications of SSMs, see

Box 3) will be essential to attribute variance to different factors

driving microbiome change and to decouple the direct effects of

social interactions from the many correlates and confounds of social

relationships and group living.

With respect to the second advance, longitudinal analyses offer

more direct approaches for testing the role of microbial dispersal

between social partners by tracking the spread of microbial strains

within socially structured populations over time. Just as disease

ecologists use time series data to trace the appearance of new

infectious diseases within populations (see e.g., Craft, Volz, Packer, &

Meyers, 2010; Eames, 2007), primate studies could combine strain

tracking procedures (Brito & Alm, 2016; Morowitz et al., 2011;

Nayfach, Rodriguez‐Mueller, Garud, & Pollard, 2016; Oh et al., 2014;

Smillie et al., 2018) with information on social networks and events

that rewire these networks (e.g., fission or fusion of social groups,

births and deaths, and sex‐biased dispersal) to identify microbial

strains of interest (e.g., commensal and/or pathogenic) and to test

whether the network position of an infected host predicts the rate at

which those strains colonize other hosts. In non‐human primates that

live in fission–fusion societies (Aureli et al., 2008), the dynamics of

social networks could be leveraged to test predictions about the role

of physical contact and proximity in strain sharing. While strain

tracking is sometimes attempted with 16S rRNA sequencing data

(Knights et al., 2011), these data often lack the phylogenetic

resolution to truly trace microbial transmission at the strain level.

Hence, we advocate the use population genetics approaches to

measure microbial migration or dispersal between hosts. Such

approaches rely on identity by common descent and require more

extensive genetic data, generated by either shotgun metagenomic

sequencing or whole microbial genome sequencing from cultured

microbes (Asnicar et al., 2017; Smillie et al., 2018). These methods

are becoming increasingly common and affordable and have been

used to follow the establishment of microbes in the human gut after

fecal transplant (Smillie et al., 2018) or trace vertical microbial

transmission between mothers and infants (Asnicar et al., 2017;

Smillie et al., 2018).

With respect to the third advance, time series data on multiple

hosts will be essential to apply metacommunity theory to understand

social effects on primate microbiomes at multiple scales. The

microbiomes of individual subjects can be considered local commu-

nities connected by microbial dispersal, which is mediated by host

social interactions. This perspective could be useful, for example, to

learn how stability at the local level scales up to the metacommunity

level (host social groups or populations; Figure 2). Local communities

differ in how they respond to environmental fluctuations, such as rain

and drought. How much local communities vary with respect to one

another determines the level of synchrony at the metacommunity

level. Just as low synchrony among species stabilizes local commu-

nities (Figure 3a,b; Loreau, 2010), asynchrony among local commu-

nities can increase stability at the metacommunity level (Figure 3c;

Wilcox et al., 2017). A recent analysis on the colony forming Egyptian

fruit bat found that while temporal changes in the fur microbiome

were best described at the colony rather than the individual level,

this was not the case for the gut microbiome (Kolodny et al., 2019).

Perhaps the common finding of strong individual signatures in the gut
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F IGURE 3 The relationship between species synchrony and stability at higher levels. (a) Depicts a scenario where gut microbes in a single
host, indicated by the thin black and gray lines, respond similarly to biotic and abiotic fluctuations in the gut, which leads to higher instability at

the microbiome community level (thick black line). (b) Depicts the opposite scenario where gut microbes in a single host respond differently to
biotic and abiotic fluctuations in the gut, which in turn, leads to a higher stability at the microbiome community level. (c) is similar to (b), but the
plot shows microbes and the microbiome community in two different host subjects (depicted using dashed and solid lines). Again, asynchronous

species fluctuations lead to a higher stability at the microbiome level for both hosts, which in turn, lead to a higher stability at the social group
level (i.e., metacommunity level; thick red line). The Y‐axes show abundance and the X‐axes time. Figure adapted from Wilcox et al. (2017)
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microbiome of humans and other animals reflects a low degree of

synchrony, which may be critical for metacommunity stability and

functioning. Overall, how the fluctuations of microbiomes in

individual hosts contribute to stability and functioning of the gut

microbiome at higher levels, including families, social groups, and

populations, is completely unknown.

4.3 | Are gut microbiome phenotypes heritable
across dynamic environments?

In humans, host genetic variation predicts microbiome composition,

and microbe‐by‐host genotype associations predict health outcomes

(Blekhman et al., 2015; Goodrich, Davenport, Clark, & Ley, 2017).

Likewise in non‐human primates, host genetic effects may explain the

existence of host species‐specific gut microbiomes (Amato et al.,

2016; Moeller et al., 2014; Yildirim et al., 2010), and the observation

that gut microbial similarity recapitulates host phylogenetic relation-

ships (Moeller, Caro‐Quintero, et al., 2016; Ochman et al., 2010).

However, host and environmental factors, such as diet, social

behavior, and season, may also play a strong role in creating these

patterns (Bailey et al., 2011; Yatsunenko et al., 2012). Indeed,

sympatric primate species have more similar microbiomes than

allopatric species (McCord et al., 2014; Moeller et al., 2013), and

species‐specific microbiomes are absent in at least one primate

hybrid zone (Grieneisen et al., 2018). Results like these highlight a

key challenge: how do we measure microbiome heritability? That is,

how do we disentangle host genetic effects from environmental

effects on microbiomes in natural primate populations, especially

when environments and microbiomes can both change over time?

To date there is considerable evidence that host genetics can

contribute to several microbiome phenotypes, including gut microbial

community composition, microbial richness, and the relative abun-

dance of certain gut microbes (Blekhman et al., 2015; Busby et al.,

2017; Golder, Thomson, Denman, McSweeney, & Lean, 2018; E. Li

et al., 2012; Spor, Koren, & Ley, 2011; Turnbaugh et al., 2008). These

effects may arise through indirect genetic effects on host behavior

and diet, such as lactose tolerance in adulthood, or more directly by

host genetic effects on, for example, gut motility, cell‐to‐cell signaling,
the permeability of intestinal epithelial cells, stomach acidity, and

insulin secretion (Beasley, Koltz, Lambert, Fierer, & Dunn, 2015;

Blekhman et al., 2015; Davenport et al., 2015; Kreznar et al., 2017;

Rawls, Mahowald, Goodman, Trent, & Gordon, 2007; Spor et al.,

2011; Zhao et al., 2013). However, measuring the heritability of gut

microbiome phenotypes is difficult for at least three reasons. First,

genetic and environmental effects are frequently confounded

(Wagner et al., 2016). Relatives are often close social partners, and

as a result, they may share similar environments and consume similar

diets; hence, in addition to being colonized by the same environ-

mental microbes, relatives may also exert similar selective regimes in

their guts (Song et al., 2013; Tung et al., 2015). Likewise, if heritability

is measured by comparing phenotype similarity in parents and

offspring, this can be confounded if parents directly transmit

microbes to offspring via vertical transmission (Davenport et al.,

2015). Second, the magnitude of environmental effects can swamp

host genetic effects. Indeed, a recent study found that the effects of

host genetic ancestry were undetectable compared with environ-

mental effects (Rothschild et al., 2018). Third, gut microbiome

phenotypes are complex and dynamic, changing with short‐term
fluctuations in diet (David et al., 2014) and long‐term shifts between

seasons (Amato et al., 2016; Hicks et al., 2018), and as the host ages

(Bennett et al., 2016; Ren et al., 2016; Yatsunenko et al., 2012). As a

result, the phenotype in question may change considerably over time

within single individuals.

Given the confounds and complexities in detecting heritable

microbiome phenotypes, we propose three questions that individual‐
based primate studies are well‐suited to answer. The first question is:

which microbiome phenotypes are repeatable within an individual

host over time? Prior studies have shown that individual hosts exhibit

distinctive, persistent gut microbial communities (Caporaso et al.,

2011; Degnan et al., 2012; Turnbaugh et al., 2008). However, many of

these studies had durations less than one year, raising the question:

how long are these signatures maintained? By looking over longer

time periods, even as long as host lifespans, it is possible test which

microbial phenotypes persist through changing social and physical

environments. Some primate projects have years of banked fecal

samples from known subjects, providing individual‐based longitudinal

data that are not available in other study systems (Alberts &

Altmann, 2012; Guevara, Chen‐Kraus, Jacobs, & Baden, 2017;

Kappeler & Watts, 2012; Moeller, Foerster, et al., 2016). Establishing

the repeatability of a trait (i.e., its consistency within an individual

over time) is important because it reflects the upper limit of a trait’s

heritability; that is, if variation in a phenotype has low repeatability, it

will also have low heritability (Boake, 1989; Falconer, 1960; Wolak,

Fairbairn, & Paulsen, 2011). Hence, pinpointing repeatable microbial

phenotypes may suggest which phenotypes might be most heritable.

Second, can we detect heritable gut microbial phenotypes,

controlling for local environmental conditions? Long‐term primate

studies possess several advantages in both defining heritability and in

quantifying environmental traits. To date, most studies attempting to

measure host genetic effects on the microbiome have used either

twin studies (Gomez et al., 2017; Goodrich et al., 2016; Turnbaugh

et al., 2008), comparisons between populations (Morton et al., 2015;

Yatsunenko et al., 2012), or selectively bred livestock lines (Zhao

et al., 2013). Primate studies that have pedigree data permit a more

powerful approach, as phenotypes can be tracked through families

and over multiple generations. In addition, sex‐biased dispersal in

many non‐human primates breaks up tight correlations between

genetic relatedness and shared environments. In primates with

female‐biased dispersal, for instance, maternal half‐siblings in

different social groups can be compared with identify maternal

effects. More generally, longitudinal samples from dispersing

individuals may provide insight into heritability across changing

environments. Finally, longitudinal data on individual hosts with

known birth dates can be used to control for host age. This is

important because health‐related phenotypes in hosts, such as body

weight, blood pressure, and basal metabolic rate, have heritability
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values that decrease with age because environmental variation

swamps genetic effects over time (Ge, Chen, Neale, Sabuncu, &

Smoller, 2017). By dividing primate data sets into age classes, we can

test if microbiome phenotypes likewise demonstrate an age‐related
decline in heritability, and if this decline could have potential health

consequences.

Third and finally, can we determine if heritable microbial species

are shared among closely related primate species? Gut microbiome

similarity between hosts often reflects host phylogenetic relation-

ships (Kropácková et al., 2017; Ley et al., 2008; J. Li et al., 2018;

Ochman et al., 2010); hence, related host species may likewise share

more heritable microbial species than expected by chance, especially

if heritable microbes are beneficial to hosts. Primates provide a

particularly interesting system to test ideas about host–microbe

coevolution and heritability because of the variety of environments

primates thrive in (Smuts, Cheney, Seyfarth, & Wrangham, 1987).

Humans in particular face different selection pressures than their

wild relatives (e.g., live in more artificially constructed environments,

consume different diets, etc.), raising the possibility that, counter to

the dominant paradigm, humans might not share more heritable

microbial species with closely related primates than they do with

their more distant relatives. Understanding which gut microbial

phenotypes are heritable in wild primates, and which heritable

phenotypes are consistent through fluctuating environments and

across primate lineages will shed insight on how host selection

affects the gut microbiome.

4.4 | Does the gut microbiome show signs of host
aging?

Across primates, and indeed across the tree of life, most physical

systems–from immune function, to memory and muscle mass–decline

with age (Altmann, Gesquiere, Galbany, Onyango, & Alberts, 2010;

Bronikowski et al., 2011; Hayward et al., 2015; Nussey, Froy,

Lemaitre, Gaillard, & Austad, 2013). However, whether gut micro-

biomes also senesce is unknown. Healthy microbiomes can change

with age, and longitudinal microbiome data are one of the best ways

to learn (a) if aging gut microbiomes exhibit systematic and

predictable declines in the services microbiomes provide to hosts,

(b) what drives these changes, and (c) whether those declines are

reflected in generalizable markers of ecosystem function, such as gut

microbiome diversity, composition, resilience, or stability (Biagi,

Candela, Fairweather‐Tait, Franceschi, & Brigidi, 2012; Heintz &

Mair, 2014; Saraswati & Sitaraman, 2014). Answering these ques-

tions is important to discover the gut microbiome’s role in age‐
related changes in human and animal health, to develop gut microbial

interventions to improve health in old age, and to learn whether age‐
related changes in the gut microbiome serve as harbingers of

developmental milestones, aging, and mortality (see also Section 4.5).

Currently, the vast majority of research on gut microbial senescence

is on human subjects (Biagi et al., 2010; Costello et al., 2012; Mai &

Morris, 2013; V. J. Martin, Leonard, Fiechtner, & Fasano, 2016;

Gerber, 2014). However, such research is currently hampered by two

barriers that might be overcome by research on non‐human primates.

The first barrier is the challenge of collecting detailed microbiome

time series from a large number of subjects. Time series are essential

to understand aging trajectories in individual hosts, learn why some

microbiomes age faster than others, measure age‐related changes in

gut microbial stability and resilience, and test whether gut microbial

stability or variation in rates of gut microbial aging predict disease

risk or longevity (Costello et al., 2012; Gerber, 2014; Mai & Morris,

2013; V. J. Martin, Leonard, et al., 2016). Nearly all current studies of

human gut microbial aging are cross‐sectional (Biagi et al., 2010,

2016; Bian et al., 2017; Claesson et al., 2011; Odamaki et al., 2016).

Indeed, to our knowledge, the only longitudinal study on gut

microbial aging in humans has just two time points from 26 subjects,

collected 3 months apart (Claesson et al., 2011).

A second barrier is the confounds created by human lifestyles,

diets, and medications, which affect gut microbial composition and

change as human health declines with age (Claesson et al., 2012).

These confounds make it difficult to disentangle intrinsic (e.g.,

immunosenescence, changing gut motility, and mucosal barrier

function) from extrinsic (e.g. host environments and behaviors)

drivers of gut microbial senescence (Saraswati & Sitaraman, 2014).

Moreover, these confounds may explain why patterns of gut

microbial senescence in humans are often population specific (Biagi

et al., 2010, 2013; Bian et al., 2017; Claesson et al., 2011; Mariat

et al., 2009; Odamaki et al., 2016). For example, some studies report

rising Bacteroidetes during senescence (Claesson et al., 2011; Mariat

et al., 2009), while others report the opposite pattern or no trend

(Biagi et al., 2010; Bian et al., 2017). Similarly, while the prevailing

view is that gut microbial diversity declines in old age (Biagi et al.,

2013; Voreades, Kozil, & Weir, 2014), several recent studies find that

diversity either does not change or increases in the elderly compared

with younger adults (Biagi et al., 2016; Bian et al., 2017; Jackson

et al., 2016; Kong et al., 2016; Odamaki et al., 2016). This

heterogeneity in age‐related changes in diversity is especially

important because gut microbial diversity is often proposed to be a

marker of microbiome functional stability and host health (see

Section 4.5; Costello et al., 2012). In support, low gut microbial

diversity is frequently linked to high frailty scores in old age

(Claesson et al., 2011, 2012; Jackson et al., 2016; van Tongeren,

Slaets, Harmsen, & Welling, 2005). However, the causal pathways

connecting host lifestyles, health, frailty, and gut microbial diversity

remain completely unknown.

Wild non‐human primates may be relatively free from age‐related
lifestyle confounds. Specifically, wild primates may not exhibit strong

changes in behavior or environments as they age; unlike some elderly

humans, aging primates do not live in residential care facilities or

hospitals. This relative freedom from age‐related changes in lifestyle,

and primates’ evolutionary and ecological similarity to humans,

makes them a useful model to illuminate intrinsic patterns and

processes of gut microbial senescence. However, the full potential of

this approach has yet to be realized. Most research on age‐related
differences in primate gut microbiomes compares adults to juveniles

(Aivelo, Laakkonen, & Jernvall, 2016; Amato et al., 2014; Springer
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et al., 2017; Su et al., 2016). More rare are studies that model age as

a continuous variable within adults (Degnan et al., 2012; Mitchell

et al., 2017; Ren et al., 2016), and only two studies have directly

compared gut microbial differences in prime age and senescent

adults (Bennett et al., 2016; Trosvik et al., 2018). The picture

emerging from these studies is intriguing: unlike in humans, studies

on non‐human primates have yet to find a relationship between old

age and gut microbial diversity; instead, diversity is similar in

senescent versus prime age adults (Bennett et al., 2016; Mitchell

et al., 2017; Ren et al., 2016; Trosvik et al., 2018). In terms of gut

microbial composition, baboons (P. cynocephalus), vervets (Chlorcebus

aethiops sabaeus), and geladas (Theropithecus gelada) all exhibit few or

no effects of age on the identity and abundance of gut microbial taxa

(Mitchell et al., 2017; Ren et al., 2016; Trosvik et al., 2018). Age‐
related compositional changes are more pronounced in ring‐tailed
lemurs (Lemur catta), but the effects of social group and habitat

quality are much stronger (Bennett et al., 2016). Interestingly, one

study of captive vervet monkeys (C . aethiops sabaeus) found that old

monkeys did not differ in gut microbial composition from younger

adults, despite exhibiting several other physical differences that

should affect the gut microbiome, including systemic inflammation,

poor intestinal barrier function, and reduced intestinal motility

(Mitchell et al., 2017).

Together, these studies provide just a glimpse into primate gut

microbial senescence, but their results strongly implicate extrinsic

factors unique to humans (e.g., health care, medication, assisted

living), and not intrinsic factors fundamental to primate senescence in

human gut microbial aging. Moreover, they suggest that studies

linking gut microbial diversity to frailty in humans might arise from

an indirect path (poor health leads to residential care and

medications, which, in turn, reduce gut microbial diversity) as

opposed to a direct causal path between gut microbiome diversity

and host health. However, much more research is needed to resolve

these causal connections. Researchers studying non‐human primates

are well positioned to disentangle comparative processes underlying

signatures of aging in gut microbiomes. Key questions include: what

features of gut microbial senescence, if any, are universal across

primates? And what are the underlying processes that generate age‐
related changes in diversity, stability, and composition? Under-

standing these processes and resulting patterns is essential to design

effective gut microbiome interventions to promote healthy aging, and

which signatures of gut microbial senescence are effective markers

of host health.

4.5 | Do gut microbiome composition and dynamics
predict host fitness and health?

Individual variation in gut microbiome composition has repeatedly

been linked to host health (Claesson et al., 2012; Greenblum,

Turnbaugh, & Borenstein, 2012; Kostic et al., 2015; Subramanian

et al., 2014), but the features that separate “unhealthy” from

“healthy” microbiomes remain largely unknown. Differentiating

healthy from unhealthy microbiomes may be useful for under-

standing health disparities in humans and animals, but it’s also

relevant to ecology and evolution for at least two reasons. First,

ecologists and evolutionary biologists are often interested in

measuring an animal’s fitness, and animal “health,” including micro-

biome health, may serve as a useful proxy for fitness. In other words,

“healthy” microbiomes may sometimes also be “fit” microbiomes.

Second, community ecologists often use concepts such as stability

and resilience to define community or ecosystem health, in part

because these traits may predict community diversity and produc-

tivity (Lehman & Tilman, 2000; Rapport, Costanza, & McMichael,

1998). Because microbiomes are themselves complex communities,

stability and resilience may provide useful measures of microbiome

health.

In order to test these ideas, many researchers have called for

prospective, longitudinal, population‐based studies (Mai & Morris,

2013; R. Martin, Makino, et al., 2016). Such studies would measure

microbiome composition and dynamics in a cohort of subjects, ideally

at multiple time points, and then follow up with these subjects over

time to test whether microbiome markers predict host health or

fitness outcomes (Figure 4). Studies like these provide an essential

complement to controlled experiments that manipulate microbiome

composition in captive animals. This is because what population‐
based studies lack in experimental control, they make up for in

naturalism. Importantly, microbiomes in captive primates differ

considerably from their wild relatives (Amato, 2013; Clayton et al.,

2016; Hird, 2017). While captive primate microbiomes may be more

similar to human microbiomes, it is also challenging to recreate

natural environmental, disease, dietary, and social effects in captivity

that likely drive microbiome dynamics in the wild.

Non‐human primates are ideal for testing the relevance of

microbiome dynamics to host health due to the availability of robust

longitudinal and demographic data and their evolutionary related-

ness to humans. In addition to tracking individual subjects over time,

many primatologists collect data on animal health and performance,

including the incidence of illness, parasite infection, observational

signs of poor health, fertility, maturational milestones, and lifespan

(Alberts & Altmann, 2012; Lonsdorf, Travis, Pusey, & Goodall, 2006).

Non‐human primates also parallel humans in development and

lifespan; all primates are long‐lived, altricial organisms that have an

extended juvenile period and relatively slow life histories. However,

compared with humans, non‐human primates have much shorter

generation times and lifespans, making it more feasible to track

individuals from birth to death, and even across generations.

Studies that adopt prospective longitudinal study designs to test the

relationship between microbiome composition and host health or

fitness outcomes are rare. The few studies that have been done focus

on health in early life. For example, a small prospective, longitudinal

study conducted by Madan et al. (2012) in human infants found that

premature infants who maintained high gut microbial diversity did

not develop neonatal sepsis during the follow‐up period. Additionally,

Zhou et al. (2015) found that gut microbial composition in premature

infants predicted the onset of necrotizing enterocolitis. To our

knowledge, no studies have yet used a prospective, longitudinal
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design to connect the gut microbiome to fitness components, such as

lifespan or reproductive success in a natural non‐human primate

population. However, experiments in several captive systems suggest

there may be links here. In the short‐lived killifish (Nothobranchius

furzeri), for example, transferring the microbiome from captive 6‐
week‐old fish into captive antibiotic‐treated 9.5‐week‐old fish

increased killifish lifespan significantly (P. Smith et al., 2017).

Similarly, male Drosophila inoculated with a commensal species from

the genus Lactobacillus experienced longer mating periods and higher

offspring production (Morimoto, Simpson, & Ponton, 2017). In

contrast, Drosophila inoculated with a Acetobacter species produced

daughters with significantly smaller body mass, which may reduce

fecundity and other markers of fertility (Morimoto et al., 2017).

Finally, all of the studies reviewed above focus on one‐time

measures of either gut microbial diversity or composition as markers

of healthy microbiomes. No studies in natural systems have yet used

longitudinal microbiome data to test the power of gut microbial

stability or resilience for predicting host health, fertility, or survival

(see Box 2; Sommer, Anderson, Bharti, Raes, & Rosenstiel, 2017).

However, experimental studies exploring how the humanized mouse

gut microbiome recovers from different types of gastrointestinal

infections have found that hosts that fail to return to their original

gut community conformation are less healthy than mice that exhibit

gut microbial resilience (Buffie et al., 2012; Hsiao et al., 2014; Schwab

et al., 2014).

Non‐human primates are ideal for connecting the microbiome to

host health and fitness, not only because of their evolutionary and

physical similarity to humans, but also the broader evolutionary

consequences of the microbiome and its role in conservation.

Prospective, population‐based longitudinal data from non‐human

primate systems will be essential to answering questions such as:

how does the gut microbiome change with long‐term health? Are gut

microbial diversity, stability, or resilience useful markers of host

health or fitness? If so, why? If not, “multi‐omics” approaches may

uncover functional pathways or metabolic products that are useful,

specific markers of host health. If the gut microbiome can be

leveraged as a noninvasive biomarker of host health, such a marker

would be especially powerful as it would encompass the quality of

the host’s diet and environment both before sample collection and

into the future. As such, understanding the role of the gut

microbiome in health and fitness could help monitor host diet,

habitat, and health noninvasively (Trevelline, Fontaine, Hartup, &

Kohl, 2019; West et al., 2019).

5 | CONCLUSIONS AND FUTURE
DIRECTIONS

During the last two decades, major advances have been made in

understanding the factors shaping the primate gut microbiome (e.g.,

Amato et al., 2015, 2016; Moeller, Foerster, et al., 2016; Moeller et al.,

2013; Tung et al., 2015). However, for primates, and indeed for most

other animals, research on the microbiome is largely cross‐sectional or
limited to only a few time points. As such, we have not yet captured the

highly dynamic nature of vertebrate gut microbiomes. Measuring this

dynamism and uncovering its underlying ecological processes, will

require dense time series data from multiple hosts. In most vertebrates,

the expense and time involved in capturing these time series data is

prohibitive. In this review, we have made the argument that field‐based
primate studies, owing to their focus on the lives of individual animals

Host Age or Time

Host 1

Host 2

Host 3

Host 4

Host 5

F IGURE 4 Prospective, longitudinal sampling of gut microbial dynamics. Each row represents an individual host, and each circle represents a
gut microbiome sample. The color gradient represents changes in microbial composition and/or dynamics that are proposed to be predictive of
host death, represented by the skull. Darker colors represent microbiome features that predict death; samples are darkest (least healthy) before

the host dies, and the host with the longest lifespan experiences a long period of microbiome health, represented by the series of samples with
light colors. Short‐lived hosts have samples with consistently dark colors
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and the relative ease of collecting longitudinal fecal samples from

known animals, are better positioned to collect these data than studies

of humans or many other species. However, analyzing the resulting

data will be challenging. Capturing time‐evolving (i.e., dynamic) features

of microbiomes across multiple subjects is both more statistically

challenging and computationally intensive than analyzing cross‐
sectional data. However, new methods are being developed every

day, and SSMs may provide a particularly valuable approach (see

Section 3 and Box 3).

In the future, we believe that research on microbiome

dynamics will benefit from being guided by basic principles of

community dynamics, summarized in the four ecological processes

of dispersal, selection, drift, and speciation (Vellend, 2016; Vellend

& Agrawal, 2010). Interpreting multidimensonal time series data is

difficult without appropriate principles and theory. Thus, viewing

the microbiome through the lens of these overarching processes

will facilitate and guide researchers from diverse scientific

disciplines in studying primate gut microbiomes. As Koskella

et al. (2017) concisely stated: “It is important that we avoid

‘reinventing the wheel’ by ignoring existing theory, but also do not

blindly apply theory without understanding the important nuances

of host‐associated [microbiomes]” (Koskella et al., 2017, p. 1613).

While the field certainly benefits from borrowing principles and

theory from ecology, there is an urgent need to develop theory

specific to the microbiome that incorporates the many complex-

ities and nuances of the microbiome.

Finally, we suggest five questions that we believe are particularly

fruitful avenues where longitudinal primate studies are well

positioned to fill key major gaps in microbiome dynamics. While

our review largely focuses on 16S rRNA amplicon sequencing, rapid

progress may entail longitudinal sampling combined with “multi‐
omic” approaches, such as transcriptomics, proteomics, and metabo-

lomics. We are not aware of any such longitudinal studies to date, but

it is certain that such approaches will allow for a considerably higher

resolution and more insight into the dynamic interplay between hosts

and microbes, including the functional changes that emerge from it.
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