Recent Results in Resilient CPS Design using Passivity and Dissipativity

Current Research by Panos Antsaklis' Group at Notre Dame: Hasan Zakeri Yang Yan Etika Agarwal

Control Systems and the Quest for Autonomy 28th October, 2018

Overview

Overview

Local Passivity Indices of Nonlinear Systems

- Behaviors of nonlinear systems change in different regions
- Examples: stability, controllability, and even uniqueness and existence
- Even systems that are passive around one equilibrium and nonpassive around another
- Limited course of action in most physical systems bounded control input
- Controllers and feedback loops "tame" the system to operate around an equilibrium
- Solution: studying IO properties (particularly passivity indices) with respect to regions of state space and known bounds on input signal
- New definitions for passivity indices with respect to restrictions on the state and input spaces

Example

Figure: OFP index ρ , for $X = \{x \mid ||x||_2^2 \le r\}$ For an example nonlinear system

Approximate Methods For Passivity Indices

Adaptation Method Based on Experimental Passivity Indices

- Experimental passivity indices of the system (with respect to current input)
- A measure of failure in the system (data-driven, no model)
- Adaptive method to mitigate any shortage with changing the controller

Overview

Challenge in Connection Level

Joint Disturbance Observer and Controller Design

The **immune system** (from the Latin work immunis, meaning: "untouched") protects the body like a guardian from harmful influences from the environment and is essential for survival^{*}.

* U.S. National Library of Medicine, "Immune System". https://www.ncbi.nlm.nih.gov/pubmedhealth/.

Y. Yan, P. Antsaklis and V. Gupta, "A resilient design for cyber physical systems under attack," 2017 American Control Conference (ACC), Seattle, WA, 2017, pp.4418-4423.

Joint Disturbance Observer and Controller Design

Attack Monitor:

Switching the controller:

Self-Triggered Strategy under DoS Attack

A **denial-of-service (DoS attack)** is a cyber-attack where the perpetrator seeks to make a machine or network resource unavailable to its intended users by temporarily or indefinitely disrupting services of a host connected to the Internet^{*}.

* "Understanding Denial-of-Service Attacks". US-CERT. https://www.us-cert.gov/ncas/tips/ST04-015 Retrieved Dec 8th 2017.

Y. Yan, M. Xia, A. Rahnama and P. Antsaklis, "A passivity-based self-triggered strategy for cyber physical systems under denial-ofservice attack," 2017 IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, VIC, 2017, pp. 6072-6088.

Self-Triggered Strategy under DoS Attack

Attack : communication through the network is not ideal *Objective* :

- Maximum tolerable length of attack
- Switching strategy

Overview

Distributed Mixed Voltage Angle and Frequency Droop Control of Microgrid Interconnections with Loss of Distribution-PMU Measurements

D-MAFD

Passivity under loss of PMU-measurement
Robustness to topology changes

Next question – How do we facilitate ad-hoc connections of microgrids?

S. Sivaranjani^{*}, E. Agarwal^{*}, L. Xie, V. Gupta, and P. J. Antsaklis, "Distributed mixed voltage angle and frequency droop control of microgrid interconnections with loss of distribution-PMU measurements," submitted to IEEE Transactions on Smart Grid, arXiv:1810.09132, Oct 2018.

Compositional Control of Large-Scale Systems

"We refer to a system as large-scale if it is more appropriate to consider the system as an interconnection of small sub-systems than dealing with it as a whole"

Objective:

Develop an algorithm to guarantee passivity of a dynamically growing interconnection, such that the addition of new subsystems does not require redesigning the pre-existing local controllers in the network.

- Distributed verification of passivity using equivalent analysis on passivity of individual subsystems and coupling at individual interconnections.
- Local synthesis of individual sub-system level controllers, with no direct knowledge of the dynamics of other subsystems, for passivity guarantees on large-scale system.

Sequential Synthesis of Distributed Controllers for Cascade Interconnected Systems

E. Agarwal*, S. Sivaranjani*, V. Gupta, P. J. Antsaklis, "Sequential synthesis of distributed controllers for cascade interconnected systems," submitted to American Control Conference, 2019, pre-print: goo.gl/JTCV6z.

Thank You For always being there for us, and for all your mentorship

Microgrids

Intra -grid

Stability with respect to small disturbances Robustness to generation-load mismatch Information and network limitations

Inter -grid

PMU-measurement loss Robustness to topology changes Facilitate ad-hoc connections of microgrids

Dissipativity of Networks of Hybrid Systems

E. Agarwal, M. J. McCourt, and P. J. Antsaklis, "Dissipativity of hybrid systems: Feedback interconnections and networks," in American Control Conference (ACC), 2016. IEEE, 2016, pp. 6060-6065.

E. Agarwal, M. J. McCourt, and P. J. Antsaklis, "Dissipativity of finite and hybrid automata: An overview," in Control and Automation (MED), 2017 25th Mediterranean Conference on. IEEE, 2017, pp. 1176-1182.

Resilient Design for Connection Level

Yang Yan and Panos Antsaklis, "Stabilizing Nonlinear Model Predictive Control Scheme Based on Passivity and Dissipativity," *2016 American Control Conference (ACC)*, Boston, MA, 2016, pp.76-81.

Y. Yan, P. Antsaklis and V. Gupta, "A resilient design for cyber physical systems under attack," *2017 American Control Conference (ACC)*, Seattle, WA, 2017, pp.4418-4423.

Y. Yan, M. Xia, A. Rahnama and P. Antsaklis, "A passivity-based self-triggered strategy for cyber physical systems under denial-of-service attack," *2017 IEEE 56th Annual Conference on Decision and Control (CDC)*, Melbourne, VIC, 2017, pp. 6072-6088.

The system (1) is said to be dissipative with respect to the supply rate $\omega(w(t), y(t))$, if there exists a positive definite function V(x): $\mathbb{R}^n \to \mathbb{R}^+$ with V(0) = 0, called the storage function, such that

$$\int_{t_0}^{t_1} \omega(w(t), y(t)) dt \ge V(x(t_1)) - V(x(t_0))$$

holds, for all $w \in \mathbb{R}^m$, and all $t_1 \ge t_0 \ge 0$, where $x(t_1)$ is the state at time t_1 resulting from the initial condition $x(t_0)$ and input $w(\cdot)$.

The system (1) is said to be dissipative with respect to the supply rate $\omega(w(t), y(t))$, if there exists a positive definite function V(x): $\mathbb{R}^n \to \mathbb{R}^+$ with V(0) = 0, called the storage function, such that

$$\int_{t_0}^{t_1} \omega(w(t), y(t)) dt \ge V(x(t_1)) - V(x(t_0))$$

holds, for all $w \in \mathbb{R}^m$, and all $t_1 \ge t_0 \ge 0$, where $x(t_1)$ is the state at time t_1 resulting from the initial condition $x(t_0)$ and input $w(\cdot)$.

Supply rate	Dissipativity
	– Dissipativity
	Passivity
	State Strict Passivity;
	Input Feed-Forward Passivity (IFP); ISP if
	Output Feedback Passivity (OFP); OSP if
	Finite Gain stability,

Passivity, ISP, OSP State Strict Passivity – Dissipativity,

OSP

Lyapunov Stability Asymptotic stability Finite Gain Stability Finite Gain Stability

Passivity, ISP, OSP State Strict Passivity – Dissipativity, OSP Lyapunov Stability Asymptotic stability Finite Gain Stability Finite Gain Stability

Cyber-Physical Systems

¹CPS are engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components.

Large scale interconnection – Compositional design tools

