Human in the Loop – Network Control Systems

Mike McCourt University of Washington Tacoma

Prior research

• Nonlinear analysis of hybrid systems

- Passivity, dissipativity, conic systems
- Hybrid systems: Switched systems, hybrid automata, discrete event systems

Network control systems

- Delays, dropped packets, quantization
- Motivated by...
 - Cyber-physical-systems
 - Human-robotic systems
 - Telemanipulation systems
 - Human-in-the-loop control

Ongoing research projects

- Human control implemented over networks
- Human-machine joint control
- Human-machine sensor fusion for estimation
- Adaptive randomized path planning
- Nonlinear/non-Gaussian estimation problems
- Estimation of team behavior
- Estimating human intent from EKG data

Estimation and control problems

- Estimation of team behavior
 - Teams can be autonomous agents, humans, or both
 - Information could be available or limited
 - Monitoring continuous states (position, velocity, etc.) as well as discrete behaviors (sensing, acting, group actions)

Human control over networks

- Human as a non-ideal controller
- Potentially unstable plant
- Network effects (delays, lost data, etc.)

Motivation for team estimation

Monitor a team with limited information

- Could be self-reported information or observed
- Make decisions based on agent states and behaviors
- Better information fusion leads to better decision making
- Interested in tracking...
 - Continuous states: position, velocity, etc.
 - Discrete states: sensing, moving towards goal, interacting with the environment
- Applications
 - Network intrusion detection
 - Robotic soccer strategy
 - Economic strategy models

Hybrid system estimation approach

- Estimation performed in stages
 - Continuous states then discrete variables
- Discrete estimator can be broken into two parts
 - Individual agent actions considered before collective team behaviors
- Under certain conditions can use discrete estimator to update the continuous estimator

Application: Robotic vehicle formation identification

- We applied this approach to estimating an ٠ opposing teams formation
 - Ring, line, random motion •
- **Incomplete information** ۲
 - Can only sense a subset of the opponent agents (40-60%)
 - Measurements have Gaussian additive noise •
- Applied EKF for continuous state estimation

(a) Ring formation

(b) Line formation

Discrete state estimation

- Developed geometric rules for determining formation
 - Score based on closeness to ring/line shape
- Collected data on randomly generated formations
 - Fit a Gaussian distribution based on noisy generated data
 - Naïve approach
- Used this score to update discrete state of the team behavior
 - Hidden Markov model (HMM)
 - Generate a likelihood of each state
 - At each step, belief changed using a Bayesian update law

Feedback mechanism for updating continuous estimator

- Can use knowledge of the discrete state to update the continuous states
- When discrete behavior is known with some confidence, can generate virtual measurements

Experimental validation

- Three graduate students implemented this as a summer project
- Five mobile robots, alternating between three discrete team states
- Results were promising but requires additional testing

Human Control Over Networks

Human in the control loop

- Assumptions...
 - Nonlinear (possibly unstable) plant
 - Control over wireless network (delays, etc.)
- Classic nonlinear control approaches...
 - Passivity
 - Dissipativity
 - Small gain theorem
- These can't be directly applied due to...
 - Network delays
 - Unstable plant

Existing approaches for human-in-the-loop

- Telemanipulation or networked control
 - Assumes the human is a passive system
- "Network interface" to maintain stability despite network delay
 - Wave variable transformation
 - Generalized network interface
- Problem: Doesn't work for human in the loop
 - Can't handle delays in the systems
 - Typical human reaction time delay is 200-500 ms

Solution – two new transforms

- Transforms are implemented on each side of the network
 - These can be used to "pre-stabilize" each side
- On the human side, the transform scales down the response
 - Slows system response
- On the plant side, the transform rotates
 - Based on conic system analysis
- Stability results follow using the small gain theorem

Plant transformation...

- We are applying an input-output variable transformation
 - Can be described as a rotation
- Can take an unstable conic system and rotate it to be stable

Applying this to human controlled vehicle experiments

- Supervising undergraduate research applying this to ground robots
 - Turtlebot 3
 - Wifi for network
- The goal is to have a human controlled ground robot using wireless internet as a delayed network

