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Introduction

Consider the following n-dimensional process xε(t) defined by

dxε(t) = F (t, xε(t), y ε(t))dt (1)

and an m-dimensional diffusion process y ε(t) obeying the following
SDE

dy ε(t) =f (t, y ε(t))dt +
√
εσ(t, y ε(t))dw(t),

(xε(s), y ε(s)) = (x , y), t ∈ [s,T ], (2)

where

I (xε(t), y ε(t)) jointly defined an R(n+m)-valued Markov
diffusion process,

I w(t) is a standard Wiener process in Rm,

I the functions F and f are uniformly Lipschitz, with bounded
first derivatives,
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I σ(t, y) is an Rm×m-valued Lipschitz continuous function such
that a(t, y) = σ(t, y)σT (t, y) is uniformly elliptic, i.e.,

amin|p|2 < p · a(t, y)p < amax |p|2, p, y ∈ Rm, ∀t > 0,

for some amax > amin > 0, and

I ε is a small positive number representing the level of random
perturbation.

Remark (1)
Note that the small random perturbation enters only in the second
system and then passes to other system. As a result, the diffusion process
(xε(t), y ε(t)) is degenerate, i.e., the associated backward operator is
degenerate.
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Here, we distinguish two general problems:

I A direct problem: the study of asymptotic behavior for the
diffusion process (xε(t), y ε(t)), as ε→ 0, provided that some
information about the deterministic coupled dynamical systems, i.e.,

ẋ0(t) = F (t, x0(t), y0(t)), ẏ0(t) = f (t, y0(t))

and the type of perturbation are known.

I An indirect problem: the study of the deterministic coupled
dynamical systems, when the asymptotic behavior of the diffusion
process (xε(t), y ε(t)) is known.



General objectives

I To provide a framework that exploits three way connections
between:1

(i) boundary value problems associated with certain second order
linear PDEs,

(ii) stochastic optimal control problems, and

(iii) probabilistic interpretation of controlled principal eigenvalue
problems.

I To provide additional results for stochastically perturbed
dynamical systems with randomly varying intensities.

Typical applications include: climate modeling [Benzi et al. (1983); Berglund

& Gentz (2002, 2006)], electrical engineering [Bobrovsky, Zakai & Zeitouni

(1988); Zeitouni and Zakai (1992)], molecular and cellular biology [Holcman &

Schuss (2015)], mathematical finance [Feng et al. (2010)], and stochastic

resonance [Häggi et al. (1998); Moss (1994)]. General works include:

[Berglund & Gentz (2006); Freidlin & Wentzell (1998); Olivieri & Vares

(2005)].

1
G. K. Befekadu & P. J. Antsaklis, On the asymptotic estimates for exit probabilities and minimum exit rates

of diffusion processes pertaining to a chain of distributed control systems, SIAM J. Contr. Opt., 53 (2015)
2297-2318.



Part I - Asymptotic estimates for exit probabilities
Let D ⊂ Rn be a bounded open domain with smooth boundary ∂D. Let
τ εD be the exit time for the process xε(t) from D

τ εD = inf
{
t > s

∣∣ xε(t) ∈ ∂D
}
.

For a given T > 0, define the exit probability as

qε
(
s, x , y

)
= Pεs,x,y

{
τ εD ≤ T

}
,

where the probability Pεs,x,y is conditioned on (x , y) ∈ D × Rm.
Important: Note that the solution qε

(
s, x , y

)
, as ε→ 0, strongly

depends on the behavior of the trajectories for the corresponding
deterministic coupled dynamical systems, i.e.,

ẋ0(t) = F (t, x0(t), y 0(t))

ẏ 0(t) = f (t, y 0(t)), (x0(0), y 0(0)) = (x , y).

(a) (b) (c)
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The backward operator for the process
(
xε(t), y ε(t)

)
, when applied

to a certain smooth function ψ
(
s, x , y

)
, is given by

ψs

(
s, x , y

)
+ Lεψ

(
s, x , y

)
,ψs

(
s, x , y

)
+
ε

2
tr
{
a
(
s, y
)
ψyy

(
s, x , y

)}
+ 〈F

(
s, x , y

)
, ψx

(
s, x , y

)
〉

+ 〈f
(
s, y
)
, ψy

(
s, x , y

)
〉, (3)

where Lε is a second-order elliptic operator, i.e.,

Lε
(
·
)
,
ε

2
tr
{
a
(
s, y
)
O2

yy

(
·
)}

+
〈
F
(
s, x , y

)
, Ox

(
·
)〉

+
〈
f
(
s, y
)
, Oy

(
·
)〉

and

a(s, y) = σ(s, y)σT (s, y).
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Let Q be an open set given by

Q = (0,T )× D × Rm.

Assumption (1)

(a) The function F is a bounded C∞(Q0)-function, with bounded
first derivative, where Q0 = (0,∞)×Rn ×Rm. Moreover, f , σ
and σ−1 are bounded C∞

(
(0,∞)× Rm

)
-functions, with

bounded first derivatives.

(b) The backward operator in Eq (3) is hypoelliptic in C∞(Q0)
(which is also related to an appropriate Hörmander condition).

(c) Let n(x) be the outer normal vector to ∂D. Furthermore, let
Γ+ and Γ0 denote the sets of points (t, x , y), with x ∈ ∂D,
such that

〈
F (t, x , y), n(x)

〉
is positive and zero, respectively.2

2Note that

Pεs,x,y
{(
τ εD , x

ε(τ εD), y ε(τ εD)
)
∈ Γ+ ∪ Γ0

∣∣∣ τ εD <∞} = 1, ∀s, x , y ∈ Q.
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Consider the following boundary value problem

ψs

(
s, x , y

)
+ Lεψ

(
s, x , y

)
= 0 in Q = (0,T )× D × Rm

ψ
(
s, x , y

)
= 1 on Γ+

T
ψ
(
s, x , y

)
= 0 on {T} × D × Rm

 (4)

where Γ+
T =

{(
s, x , y

)
∈ Γ+

∣∣ 0 < s ≤ T
}

.

Then, we have the following result for the exit probability.

Proposition (1)

Suppose that the statements (a)–(c) in the above assumption (i.e.,
Assumption (1)) hold true. Then, the exit probability
qε(s, x , y) = Pεs,x,y

{
τ εD ≤ T

}
is a smooth solution to the above boundary

value problem in Eq (4). Moreover, it is a continuous function on
Q ∪ {T} × D × Rm.
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Proof: Involves introducing a non-degenerate diffusion process3

dxε,δ(t) = F (t, xε,δ(t), y ε(t))dt +
√
δdV (t)

dy ε(t) = f (t, y ε(t))dt +
√
εσ(t, y ε(t))dw(t),

with V is a standard Wiener process in Rn and independent to W .
Then, using the following statements

(i) sup
s≤r≤T

∣∣∣xε,δ(r)− xε(r)
∣∣∣→ 0

(ii) τ ε,δD → τ εD
(iii) xε,δ(τ ε,δD )→ xε(τ εD)

 , as δ → 0, P− almost surely.

and the hypoellipticity assumption. We can relate the exit probability of
the process (xε,δ(t), y ε(t)) with the boundary value problem in Eq (4).

3
G. K. Befekadu & P. J. Antsaklis, On the asymptotic estimates for exit probabilities and minimum exit rates

of diffusion processes pertaining to a chain of distributed control systems, SIAM J. Contr. Opt., vol. 53 (4),
pp. 2297–2318, 2015.



Connection with stochastic control problems
Consider the following boundary value problem

g εs + ε
2 tr
{
a g εyy

}
+ 〈F , g εx〉+ 〈f , g εy 〉 = 0 in Q

g ε = Eεs,x ,y
{

exp
(
−1
εΦ
)}

on ∂∗Q

}
(5)

where Φ
(
s, x , y

)
is bounded, nonnegative Lipschitz such that

Φ
(
s, x , y

)
= 0, ∀

(
s, x , y

)
∈ Γ+

T .

Introduce the following logarithm transformation

Jε
(
s, x , y

)
= −ε log g εs

(
s, x , y

)
.

Then, Jε
(
s, x , y

)
satisfies the following HJB equation

0 = Jεs +
ε

2
tr
{
a Jε,`

xε,1xε,1

}
+ FT · Jεx + H

(
s, y , Jεy

)
in Q, (6)

where

H
(
s, y , Jεy

)
= f T (s, y) · Jεy −

1

2
Jεy

T · a(s, y)Jεy .
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Then, we see that Jε
(
s, x , y

)
is a solution for the DP equation in

Eq (6), which is associated to the following stochastic control
problem

Jε
(
s, x , y

)
= inf

û∈Û(s,x,y)

Eεs,x ,y

{∫ θ

s
L
(
s, y ε(t), û(t)

)
dt

+ Φ
(
θ, xε(θ), y ε(θ)

)}

with the SDE

dxε(t) = F
(
t, xε(t), y ε(t)

)
dt

dy ε(t) = û(t)dt +
√
ε σ
(
t, y ε(t)

)
dW (t)

(xε(s), y ε(s)) = (x , y), s ≤ t ≤ T


where Û(s,x ,y) is a class of (non-anticipatory) continuous functions

for which θ ≤ T and
(
θ, xε(θ), y ε(θ)

)
∈ Γ+

T .
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Define

I ε
((

s, x , y
)
; ∂D

)
= −ε logPεs,x,y

{
xε(θ) ∈ ∂D

}
, −ε log qε

(
s, x , y

)
,

where θ (or θ = τ εD ∧ T ) is the exit time of xε(t) from D.
Then, we have

I ε
(
s, x , y

)
→ I

(
s, x , y

)
as ε→ 0,

uniformly for all
(
s, x , y

)
in any compact subset Q.4

Further Remark: Such an asymptotic estimate is obtained based on a

precise interpretation of the exit probability as a value function for a

family of stochastic control problems.

4Important: The process
{
xε(t) : ε > 0

}
obeys a Large deviations principle

with the rate function I ε
(
s, x , y

)
, i.e., a logarithmic asymptotic for the exit

position ε→ 0,

Pεs,x,y
{
xε(θ) ∈ ∂D

}
� exp

{
− 1
ε
I ε
(
s, x , y

)}
as ε→ 0.



Part II - Minimum exit rate problem for prescription opioid
epidemic models

I Recently, the United States is experiencing an epidemic of
drug overdose deaths (e.g., Warner et al. NCHS Data Brief, No

81, 2011; Buchanich et al. Prev Med 89:317–323, 2016; Dart et al.

N Engl J Med, 372:241–248, 2015).
I In part, the opioid epidemic has been attributed due to

inappropriate physician prescribing practices or higher
prescribing rates, which led to an increase in substance
abuse and overdose deaths (see Figure 2 below).

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
Year

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Nu
m

be
r o

f D
ru

g 
O

ve
rd

os
e 

De
at

hs

104

Actual Data
Exponential Fitted Model

Average Increase Per Year = 9% 
Doubling Time = 8 Years 

Figure 1: Number of drug overdose deaths per year in US from 1979 to 2015
(Source: MOIRA Death Record Repository, University of Pittsburgh).
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Consider the following prescription opioid epidemic dynamical
model �

�
�

µP S P 

R A 

µS 

µ(S+P+R)+µ*A 

δR 

µR 

νRA 

µ*A 

εP 

αS 

γP 

β(1-ξ)SA βξSP 

σR 

Random 
Perturbation 

 

ζA 

For a normalized population, denote the susceptible S, addicted A
and recovered R by X1(t), X2(t) and X3(t), respectively. Then, we
can be written the opioid epidemics as follows

dX(t) = F(X(t))dt +
√
εBdW (t), (7)
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Consider the following controlled-version of SDE

dXu,ε
0,x(t) =

[
F(Xu,ε

0,x(t)) + B̃u(t)
]
dt +

√
εBdW (t), Xu,ε

0,x(0) = x,

where u is a progressively measurable process such that

E
∫ ∞

0
|u(t)|2dt <∞.

Let τ εD be the exit time for Xu,ε
0,x(t) from the domain D, with

smooth boundary ∂D, i.e.,

τ εD = inf
{
t > 0

∣∣Xu,ε
0,x(t) ∈ ∂D

}
. (8)



Connection with principal eigenvalue problem

Typical problem: Involves maximizing the mean exit time, which
is equivalent to minimizing the principal eigenvalue λεu

λεu = − lim sup
t→∞

1

t
logPu,ε

x

{
τ εD > t

}
,

with respect to a certain class of admissible controls.

Connection with controlled-eigenvalue problem

−Lεuψu

(
x
)

= λεuψu

(
x
)

in D

ψu

(
x
)

= 0 on ∂D

}
(9)

where the admissible optimal control u∗ can be determined by any
measurable selector of

arg max
{
Lεuψ

(
x, ·
)}
, x ∈ D.



Simulation results
Table: Literature based parameter values

Parameter Numerical value Parameter Numerical value

α 0.15 δ 0.1
ε 0.8 - 8 ν 0.2
β 0.0036 σ 0.7
ξ 0.74 µ 0.007288
γ 0.00744 µ∗ 0.01155
ζ 0.2 - 2 - -

For an addiction-free equilibrium

X ∗
1 =

ε+ µ

α + ε+ µ
, X ∗

2 = 0, X ∗
3 = 0 and Z∗ =

α

α + ε+ µ
.

Domain of interest,

D ⊂
{

Xi (t) ≥ 0, i = 1, 2, 3
X1(t) + X2(t) + X3(t) ≤ 1, ∀t ≥ 0

}
,

with smooth boundary ∂D.
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The Jacobian matrix J(X) is given by

J(X)
∣∣

X=X∗ =

[
∂fi (X)

∂Xj

]
ij

∣∣∣∣
X=X∗

, i , j ∈ {1, 2, 3}

=


−(α + ε+ µ)

β(ε+ µ)

α + ε+ µ
− (ε+ µ) + µ∗ δ − ε

0
β(ε+ µ)

α + ε+ µ
− (ζ + µ∗) σ

0 ζ −(δ + σ + µ)



The corresponding eigenvalues for J(X∗), that is,{
− 3.1573,−0.0323,−1.0331

}
, are all strictly negative and,

hence, the addiction-free equilibrium is asymptotically stable, with
a reproduction number Ro = 0.0766.
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Figure: Population trajectory for small randomly perturbing noise, with
an intensity level of ε = 0.01.
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