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Introduction

Consider the following n-dimensional process x¢(t) defined by
dx(t) = F(t,x(t),y*(t))dt (1)

and an m-dimensional diffusion process y¢(t) obeying the following
SDE

dy“(t) =f(t,y*(t))dt + Veo(t,y(t))dw(t),
(x(s),y(s)) = (x,¥), tels, Tl (2)

where

> (x(t), y(t)) jointly defined an R("*™)_valued Markov
diffusion process,

» w(t) is a standard Wiener process in R™,

» the functions F and f are uniformly Lipschitz, with bounded
first derivatives,
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» o(t,y) is an R™*™M-valued Lipschitz continuous function such

that a(t,y) = o(t,y) o " (t,y) is uniformly elliptic, i.e.,
amin|p‘2 <p- a(t7Y)p < amax|p|27 p,y € Rm’ vt > 07

for some amax > amin > 0, and

> ¢ is a small positive number representing the level of random
perturbation.

Remark (1)

Note that the small random perturbation enters only in the second
system and then passes to other system. As a result, the diffusion process
(x€(t), y<(t)) is degenerate, i.e., the associated backward operator is
degenerate.
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Here, we distinguish two general problems:

» A direct problem: the study of asymptotic behavior for the
diffusion process (x¢(t), y<(t)), as € — 0, provided that some
information about the deterministic coupled dynamical systems, i.e.,

X(t) = F(£,x°(1),y°(1),  y°(t) = £(t,y°(1))

and the type of perturbation are known.

» An indirect problem: the study of the deterministic coupled
dynamical systems, when the asymptotic behavior of the diffusion
process (x¢(t), y¢(t)) is known.



General objectives

» To provide a framework that exploits three way connections
between:!

(i) boundary value problems associated with certain second order
linear PDEs,
(ii) stochastic optimal control problems, and

(iii) probabilistic interpretation of controlled principal eigenvalue
problems.
» To provide additional results for stochastically perturbed
dynamical systems with randomly varying intensities.
Typical applications include: climate modeling [Benzi et al. (1983); Berglund
& Gentz (2002, 2006)], electrical engineering [Bobrovsky, Zakai & Zeitouni
(1988); Zeitouni and Zakai (1992)], molecular and cellular biology [Holcman &
Schuss (2015)], mathematical finance [Feng et al. (2010)], and stochastic
resonance [Haggi et al. (1998); Moss (1994)]. General works include:
[Berglund & Gentz (2006); Freidlin & Wentzell (1998); Olivieri & Vares
(2005)).

1G. K. Befekadu & P. J. Antsaklis, On the asymptotic estimates for exit probabilities and minimum exit rates
of diffusion processes pertaining to a chain of distributed control systems, SIAM J. Contr. Opt., 53 (2015)
2297-2318.



Part | - Asymptotic estimates for exit probabilities
Let D C R" be a bounded open domain with smooth boundary 0D. Let
Tf be the exit time for the process x¢(t) from D

TH = inf{t > s|x(t) € 3D}.

For a given T > 0, define the exit probability as
q° (s,x, y) = IE”;X_’},{TB < T},

where the probability PS , | is conditioned on (x,y) € D x R™.
Important: Note that the solution g° (s,x,y), as € — 0, strongly
depends on the behavior of the trajectories for the corresponding
deterministic coupled dynamical systems, i.e.,

X(1) = F(£,X°(t), y°(1))

Y1) = £(£.y°(1),  (x(0),¥°(0) = (x,¥)-
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The backward operator for the process (x*(t), y“(t)), when applied
to a certain smooth function ¢(s,x,y), is given by

Us(s,%,y) + LU (5.xy) 26s(s,x,y) + 5 tr{a(s.9) vy (5.x, ) }

+ (F(s,x,y), wx(s,x,y)>
+(f(s,¥), ¥y (s,%,¥)), (3)

where L€ is a second-order elliptic operator, i.e.,
€
£e() 2 Seefa(sy) V3, ()} + (F(s.x), () + (F(5.9), 7, ()
and

a(s,y) = U(Svy)UT(Svy)'
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Let @ be an open set given by

Q=(0,T)x DxR"

Assumption (1)

(a) The function F is a bounded C*°(Qo)-function, with bounded
first derivative, where Qy = (0,00) x R" x R™. Moreover, f, o
and o=t are bounded C>((0, 00) x R™)-functions, with
bounded first derivatives.

(b) The backward operator in Eq (3) is hypoelliptic in C*°( Qo)
(which is also related to an appropriate Hérmander condition).

(c) Let n(x) be the outer normal vector to OD. Furthermore, let
I+ and 0 denote the sets of points (t,x,y), with x € OD,
such that {F(t,x,y), n(x)) is positive and zero, respectively.?

ZNote that

PE,X,y{ (15, x“(5), ¥y (15)) € TTUT®

7‘E<OO}=1, Vs, x,y € Q.



Exit probabilities . ..

Consider the following boundary value problem

ws(s,x,y)+£€1/1(s,x,y) =0 in @=(0,T)xDxR"
w(s,x,y) =1 on FJ} (4)
Y(s,x,y) =0 on {T}xDxR"

where [T = {(s,x,y) erflo<s< T}.
Then, we have the following result for the exit probability.

Proposition (1)

Suppose that the statements (a)—(c) in the above assumption (i.e.,
Assumption (1)) hold true. Then, the exit probability

q°(s,x,y) =P¢, {75 < T} is a smooth solution to the above boundary

value problem in Eq (4). Moreover, it is a continuous function on
QU{T}xDxR™.
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Proof: Involves introducing a non-degenerate diffusion process?

dx“0(t) = F(t,x“°(t), y*(t))dt + VodV (t)
dy“(t) = f(t,y (t))dt + Veo(t, y(t))dw(t),

with V is a standard Wiener process in R” and independent to W.
Then, using the following statements

(i) sup xe"s(r)—xs(r)‘—>0
s<r<T

(i) 75‘5 — 75
(i) x“(r5°) = x*(75)

, as & — 0, P — almost surely.

and the hypoellipticity assumption. We can relate the exit probability of
the process (x°(t), y*(t)) with the boundary value problem in Eq (4).

3G. K. Befekadu & P. J. Antsaklis, On the asymptotic estimates for exit probabilities and minimum exit rates

of diffusion processes pertaining to a chain of distributed control systems, SIAM J. Contr. Opt., vol. 53 (4),
pp. 2297-2318, 2015.



Connection with stochastic control problems
Consider the following boundary value problem

g+ 5triagy}+(F, g0+ (f.g)=0 in Q :
g = EZ,X,y{eXp<f% )} on 9"Q (5)
where CD(s,x,y) is bounded, nonnegative Lipschitz such that
®(s,x,y) =0, V(s,x,y) €l
Introduce the following logarithm transformation
J(s,x,y) = —€log g<(s, x,y).
Then, J¢(s, x,y) satisfies the following HJB equation
€ .

0=J+ Etr{anflxe,l} +FT 4 H(s,y, JS) in Q,  (6)

where

1
His,y. ) = FT(s.y) - dy = 547 - als.y)dy.



Connection with stochastic control problems . ..

Then, we see that J*(s,x, y) is a solution for the DP equation in
Eq (6), which is associated to the following stochastic control
problem

[%
J(s,x,y) = inf ngy{/s L(s,y(t), a(t))dt

G€U (s x,y)
(6, x(6), y(0)) }

with the SDE

dx“(t) = F(t,x(t), y(t ))dt
dy<(t) = a(t)dt + \/Ea(t ye(t))dW(t)
(x°(s),y(s)) =(x,y), s<t<T

where U(s%y) is a class of (non-anticipatory) continuous functions
for which < T and (6, x(6),y(9)) € '+



Connection with stochastic control problems . ..
Define

IE((s,x,y); 8D>

—e log IP; {xe(ﬁ) € aD}

5,X,y
£ —€ |qu€(S7X,y),

where 0 (or § = 75 A T) is the exit time of x°(t) from D.
Then, we have

I°(s,x,y) = I(s,x,y) as e—0,

uniformly for all (s, x,y) in any compact subset Q.*

Further Remark: Such an asymptotic estimate is obtained based on a
precise interpretation of the exit probability as a value function for a
family of stochastic control problems.

*Important: The process {xe(t) D Ee> 0} obeys a Large deviations principle
with the rate function Ie(s,x,y), i.e., a logarithmic asymptotic for the exit
position € — 0,

P;XJ{XE(G) € 8D}x exp{—éle(s, x7y)} as e€—0.



Part Il - Minimum exit rate problem for prescription opioid

epidemic models
» Recently, the United States is experiencing an epidemic of
drug overdose deaths (e.g., Warner et al. NCHS Data Brief, No
81, 2011; Buchanich et al. Prev Med 89:317-323, 2016; Dart et al.

N Engl J Med, 372:241-248, 2015).
> In part, the opioid epidemic has been attributed due to

inappropriate physician prescribing practices or higher
prescribing rates, which led to an increase in substance
abuse and overdose deaths (see Figure 2 below).
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Figure 1. Number of drug overdose deaths per year in US from 1979 to 2015
(Source: MOIRA Death Record Repository, University of Pittsburgh).




Part Il - Minimum exit rate problem ...

Consider the following prescription opioid epidemic dynamical

model
Random
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For a normalized population, denote the susceptible S, addicted A
and recovered R by Xi(t), Xa(t) and X3(t), respectively. Then, we
can be written the opioid epidemics as follows

dX(t) = F(X(t))dt + VeBdW(t), (7)



Minimum exit rate problem ...

Consider the following controlled-version of SDE
dXox(t) = [F(Xgx(t)) + Bu(t)]dt + /eBdW(t), X5+ (0) = x,

where u is a progressively measurable process such that

E/ u(t)[2dt < oo.
0

Let 75, be the exit time for Xy, (t) from the domain D, with
smooth boundary 9D, i.e.,

% = inf{t > 0| XUL(t) € aD}. (8)



Connection with principal eigenvalue problem

Typical problem: Involves maximizing the mean exit time, which
is equivalent to minimizing the principal eigenvalue XS,

u

) 1
A\ = — I|£n_)s;L<1>p - log Py {rp > t},

with respect to a certain class of admissible controls.
Connection with controlled-eigenvalue problem
—LYy (x) = Ay (x) in D (©)
Wy (x) =0 on 0D

where the admissible optimal control u* can be determined by any
measurable selector of

arg max{EZ@D(x, )}, xeD.



Simulation results

Table: Literature based parameter values

Parameter Numerical value | Parameter Numerical value
« 0.15 é 0.1
€ 0.8-8 v 0.2
I5] 0.0036 o 0.7
13 0.74 I 0.007288
~y 0.00744 w 0.01155
¢ 0.2-2 - -
For an addiction-free equilibrium

Xp=—TH  xp—0, Xf=0and Z'=—2

atetp ate+p

Domain of interest,

Dc Xi(t)zov I:17233
Xi(t) + Xo(t) + X3(t) <1, Vt>0 [’

with smooth boundary 9D.



Simulation results . ..

The Jacobian matrix J(X) is given by

[0fi(X -
I - = | 3§9)L o hief23)
[ —(a+e+p) O’?(jim—(e—l—u)—l—u* 0—c¢
= Ble + 1) .
0 — = ((+n) o
at+e+u
L 0 ¢ —(0+o+p)

The corresponding eigenvalues for J(X*), that is,

{ — 3.1573,-0.0323, —1.0331}, are all strictly negative and,
hence, the addiction-free equilibrium is asymptotically stable, with
a reproduction number R, = 0.0766.
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Figure: Population trajectory for small randomly perturbing noise, with
an intensity level of ¢ = 0.01.
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