On the asymptotics of exit problem for controlled Markov diffusion processes with random jumps and vanishing diffusion terms

CONTROL SYSTEMS AND THE QUEST FOR AUTONOMY A Symposium in Honor of Professor Panos J. Antsaklis University of Notre Dame October 27-28, 2018

Getachew K. Befekadu, Ph.D.

Department of Electrical & Computer Engineering Morgan State University

Outline

- Introduction
 - General objectives
- Part I On the asymptotic estimates for exit probabilities
 - Exit probabilities
 - Connection with stochastic control problem
- Part II Minimum exit rate problem for prescription opioid epidemic models
 - On the minimum exit rate problem
 - Connection with principal eigenvalue problem
- Further remarks

Introduction

Consider the following *n*-dimensional process $x^{\epsilon}(t)$ defined by

$$dx^{\epsilon}(t) = F(t, x^{\epsilon}(t), y^{\epsilon}(t))dt$$
(1)

and an *m*-dimensional diffusion process $y^{\epsilon}(t)$ obeying the following SDE

$$dy^{\epsilon}(t) = f(t, y^{\epsilon}(t))dt + \sqrt{\epsilon}\sigma(t, y^{\epsilon}(t))dw(t),$$

(x^{\epsilon}(s), y^{\epsilon}(s)) = (x, y), t \epsilon [s, T], (2)

where

- (x^ϵ(t), y^ϵ(t)) jointly defined an ℝ^(n+m)-valued Markov diffusion process,
- w(t) is a standard Wiener process in \mathbb{R}^m ,
- the functions F and f are uniformly Lipschitz, with bounded first derivatives,

Introduction ...

 σ(t, y) is an ℝ^{m×m}-valued Lipschitz continuous function such that a(t, y) = σ(t, y) σ^T(t, y) is uniformly elliptic, i.e.,

$$a_{min}|p|^2 0,$$

for some $a_{max} > a_{min} > 0$, and

 $\blacktriangleright \epsilon$ is a small positive number representing the level of random perturbation.

Remark (1)

Note that the small random perturbation enters only in the second system and then passes to other system. As a result, the diffusion process $(x^{\epsilon}(t), y^{\epsilon}(t))$ is degenerate, i.e., the associated backward operator is degenerate.

Introduction ...

Here, we distinguish two general problems:

A direct problem: the study of asymptotic behavior for the diffusion process (x^ϵ(t), y^ϵ(t)), as ϵ → 0, provided that some information about the deterministic coupled dynamical systems, i.e.,

$$\dot{x}^{0}(t) = F(t, x^{0}(t), y^{0}(t)), \quad \dot{y}^{0}(t) = f(t, y^{0}(t))$$

and the type of perturbation are known.

► An indirect problem: the study of the deterministic coupled dynamical systems, when the asymptotic behavior of the diffusion process (x^ϵ(t), y^ϵ(t)) is known.

General objectives

- To provide a framework that exploits three way connections between:¹
 - (i) boundary value problems associated with certain second order linear PDEs,
 - $(\ensuremath{\mathsf{ii}})$ stochastic optimal control problems, and
 - (iii) probabilistic interpretation of controlled principal eigenvalue problems.
- To provide additional results for stochastically perturbed dynamical systems with randomly varying intensities.

Typical applications include: climate modeling [Benzi et al. (1983); Berglund & Gentz (2002, 2006)], electrical engineering [Bobrovsky, Zakai & Zeitouni (1988); Zeitouni and Zakai (1992)], molecular and cellular biology [Holcman & Schuss (2015)], mathematical finance [Feng et al. (2010)], and stochastic resonance [Häggi et al. (1998); Moss (1994)]. General works include: [Berglund & Gentz (2006); Freidlin & Wentzell (1998); Olivieri & Vares (2005)].

¹G. K. Befekadu & P. J. Antsaklis, On the asymptotic estimates for exit probabilities and minimum exit rates of diffusion processes pertaining to a chain of distributed control systems, *SIAM J. Contr. Opt.*, 53 (2015) 2297-2318.

Part I - Asymptotic estimates for exit probabilities

Let $D \subset \mathbb{R}^n$ be a bounded open domain with smooth boundary ∂D . Let τ_D^{ϵ} be the exit time for the process $x^{\epsilon}(t)$ from D

$$au_D^{\epsilon} = \inf\Big\{t > s \, \big| \, x^{\epsilon}(t) \in \partial D\Big\}.$$

For a given T > 0, define the exit probability as

$$q^{\epsilon}(s,x,y) = \mathbb{P}^{\epsilon}_{s,x,y} \Big\{ \tau^{\epsilon}_{D} \leq T \Big\},$$

where the probability $\mathbb{P}_{s,x,y}^{\epsilon}$ is conditioned on $(x, y) \in D \times \mathbb{R}^{m}$. **Important**: Note that the solution $q^{\epsilon}(s, x, y)$, as $\epsilon \to 0$, strongly depends on the behavior of the trajectories for the corresponding deterministic coupled dynamical systems, i.e.,

The backward operator for the process $(x^{\epsilon}(t), y^{\epsilon}(t))$, when applied to a certain smooth function $\psi(s, x, y)$, is given by

$$\psi_{s}(s, x, y) + \mathcal{L}^{\epsilon}\psi(s, x, y) \triangleq \psi_{s}(s, x, y) + \frac{\epsilon}{2}\operatorname{tr}\left\{a(s, y)\psi_{yy}(s, x, y)\right\} \\ + \langle F(s, x, y), \psi_{x}(s, x, y)\rangle \\ + \langle f(s, y), \psi_{y}(s, x, y)\rangle,$$
(3)

where \mathcal{L}^{ϵ} is a second-order elliptic operator, i.e.,

$$\mathcal{L}^{\epsilon}(\cdot) \triangleq \frac{\epsilon}{2} \operatorname{tr} \left\{ a(s, y) \, \nabla_{yy}^{2}(\cdot) \right\} + \left\langle F(s, x, y), \, \nabla_{x}(\cdot) \right\rangle + \left\langle f(s, y), \, \nabla_{y}(\cdot) \right\rangle$$

and

$$a(s, y) = \sigma(s, y) \sigma^{T}(s, y).$$

Let Q be an open set given by

$$Q=(0,T)\times D\times \mathbb{R}^m.$$

Assumption (1)

- (a) The function F is a bounded C[∞](Q₀)-function, with bounded first derivative, where Q₀ = (0,∞) × ℝⁿ × ℝ^m. Moreover, f, σ and σ⁻¹ are bounded C[∞]((0,∞) × ℝ^m)-functions, with bounded first derivatives.
- (b) The backward operator in Eq (3) is hypoelliptic in $C^{\infty}(Q_0)$ (which is also related to an appropriate Hörmander condition).
- (c) Let n(x) be the outer normal vector to ∂D . Furthermore, let Γ^+ and Γ^0 denote the sets of points (t, x, y), with $x \in \partial D$, such that $\langle F(t, x, y), n(x) \rangle$ is positive and zero, respectively.²

²Note that

$$\mathbb{P}^{\epsilon}_{s,x,y}\Big\{ig(au^{\epsilon}_{D},x^{\epsilon}(au^{\epsilon}_{D}),y^{\epsilon}(au^{\epsilon}_{D})ig)\in\mathsf{\Gamma}^{+}\cup\mathsf{\Gamma}^{0}\ \Big|\ au^{\epsilon}_{D}<\infty\Big\}=1,\quad orall s,x,y\in\mathcal{Q}.$$

Consider the following boundary value problem

$$\psi_{s}(s, x, y) + \mathcal{L}^{\epsilon}\psi(s, x, y) = 0 \quad \text{in} \quad Q = (0, T) \times D \times \mathbb{R}^{m} \\ \psi(s, x, y) = 1 \quad \text{on} \quad \Gamma^{+}_{T} \\ \psi(s, x, y) = 0 \quad \text{on} \quad \{T\} \times D \times \mathbb{R}^{m}$$

$$\left. \right\}$$

$$(4)$$

where
$$\Gamma_T^+ = \left\{ \left(s, x, y\right) \in \Gamma^+ \mid 0 < s \le T \right\}.$$

Then, we have the following result for the exit probability.

Proposition (1)

Suppose that the statements (a)–(c) in the above assumption (i.e., Assumption (1)) hold true. Then, the exit probability $q^{\epsilon}(s, x, y) = \mathbb{P}_{s,x,y}^{\epsilon} \{\tau_D^{\epsilon} \leq T\}$ is a smooth solution to the above boundary value problem in Eq (4). Moreover, it is a continuous function on $Q \cup \{T\} \times D \times \mathbb{R}^m$.

Proof: Involves introducing a non-degenerate diffusion process³ $dx^{\epsilon,\delta}(t) = F(t, x^{\epsilon,\delta}(t), y^{\epsilon}(t))dt + \sqrt{\delta}dV(t)$ $dy^{\epsilon}(t) = f(t, y^{\epsilon}(t))dt + \sqrt{\epsilon}\sigma(t, y^{\epsilon}(t))dw(t),$

with V is a standard Wiener process in \mathbb{R}^n and independent to W. Then, using the following statements

$$\begin{array}{ll} (i) & \sup_{\substack{s \leq r \leq T \\ (ii) \\ (ii) \end{array}} \left| \begin{array}{c} \tau_D^{\epsilon,\delta} \to \tau_D^{\epsilon} \\ \tau_D^{\epsilon,\delta} \to \tau_D^{\epsilon} \end{array} \right| \to 0 \\ (iii) & x^{\epsilon,\delta}(\tau_D^{\epsilon,\delta}) \to x^{\epsilon}(\tau_D^{\epsilon}) \end{array} \right\}, \quad \text{as} \quad \delta \to 0, \quad \mathbb{P}-\text{almost surely}.$$

and the hypoellipticity assumption. We can relate the exit probability of the process $(x^{\epsilon,\delta}(t), y^{\epsilon}(t))$ with the boundary value problem in Eq (4).

³G. K. Befekadu & P. J. Antsaklis, On the asymptotic estimates for exit probabilities and minimum exit rates of diffusion processes pertaining to a chain of distributed control systems, SIAM J. Contr. Opt., vol. 53 (4), pp. 2297–2318, 2015.

Connection with stochastic control problems

Consider the following boundary value problem

$$g_{s}^{\epsilon} + \frac{\epsilon}{2} \operatorname{tr} \left\{ a g_{yy}^{\epsilon} \right\} + \langle F, g_{x}^{\epsilon} \rangle + \langle f, g_{y}^{\epsilon} \rangle = 0 \quad \text{in} \quad Q \\ g^{\epsilon} = \mathbb{E}_{s,x,y}^{\epsilon} \left\{ \exp \left(-\frac{1}{\epsilon} \Phi \right) \right\} \quad \text{on} \quad \partial^{*} Q \qquad \left\}$$
(5)

where $\Phi(s, x, y)$ is bounded, nonnegative Lipschitz such that

$$\Phi(s, x, y) = 0, \quad \forall (s, x, y) \in \Gamma^+_T.$$

Introduce the following logarithm transformation

$$J^{\epsilon}(s, x, y) = -\epsilon \log g_{s}^{\epsilon}(s, x, y).$$

Then, $J^{\epsilon}(s, x, y)$ satisfies the following HJB equation

$$0 = J_{s}^{\epsilon} + \frac{\epsilon}{2} \operatorname{tr} \left\{ a J_{x^{\epsilon,1}x^{\epsilon,1}}^{\epsilon,\ell} \right\} + F^{T} \cdot J_{x}^{\epsilon} + H(s, y, J_{y}^{\epsilon}) \text{ in } Q, \qquad (6)$$

where

$$H(s, y, J_y^{\epsilon}) = f^{T}(s, y) \cdot J_y^{\epsilon} - \frac{1}{2}J_y^{\epsilon T} \cdot a(s, y)J_y^{\epsilon}.$$

Connection with stochastic control problems

Then, we see that $J^{\epsilon}(s, x, y)$ is a solution for the DP equation in Eq (6), which is associated to the following stochastic control problem

$$J^{\epsilon}(s, x, y) = \inf_{\hat{u} \in \hat{U}_{(s, x, y)}} \mathbb{E}^{\epsilon}_{s, x, y} \left\{ \int_{s}^{\theta} L(s, y^{\epsilon}(t), \hat{u}(t)) dt + \Phi(\theta, x^{\epsilon}(\theta), y^{\epsilon}(\theta)) \right\}$$

with the SDE

$$\left. \begin{array}{l} dx^{\epsilon}(t) = F(t, x^{\epsilon}(t), y^{\epsilon}(t)) dt \\ dy^{\epsilon}(t) = \hat{u}(t) dt + \sqrt{\epsilon} \, \sigma(t, y^{\epsilon}(t)) dW(t) \\ (x^{\epsilon}(s), y^{\epsilon}(s)) = (x, y), \quad s \leq t \leq T \end{array} \right\}$$

where $\hat{U}_{(s,x,y)}$ is a class of (non-anticipatory) continuous functions for which $\theta \leq T$ and $(\theta, x^{\epsilon}(\theta), y^{\epsilon}(\theta)) \in \Gamma_{T}^{+}$.

Connection with stochastic control problems ...

Define

$$\begin{split} I^{\epsilon}\Big(\big(s,x,y\big);\,\partial D\Big) &= -\epsilon\,\log\mathbb{P}^{\epsilon}_{s,x,y}\Big\{x^{\epsilon}(\theta)\in\partial D\Big\}\\ &\triangleq -\epsilon\,\log\,q^{\epsilon}\big(s,x,y\big), \end{split}$$

where θ (or $\theta = \tau_D^{\epsilon} \wedge T$) is the exit time of $x^{\epsilon}(t)$ from D. Then, we have

$$I^{\epsilon}ig(s,x,yig)
ightarrow Iig(s,x,yig) \quad ext{as} \quad \epsilon
ightarrow 0,$$

uniformly for all (s, x, y) in any compact subset Q.⁴

Further Remark: Such an asymptotic estimate is obtained based on a precise interpretation of the exit probability as a value function for a family of stochastic control problems.

⁴Important: The process $\{x^{\epsilon}(t): \epsilon > 0\}$ obeys a Large deviations principle with the rate function $I^{\epsilon}(s, x, y)$, i.e., a logarithmic asymptotic for the exit position $\epsilon \to 0$,

$$\mathbb{P}^{\epsilon}_{s,x,y}\Big\{x^{\epsilon}(\theta)\in\partial D\Big\}{\asymp}\exp\Big\{-\tfrac{1}{\epsilon}f^{\epsilon}\big(s,x,y\big)\Big\}\quad\text{as}\quad\epsilon\to0$$

Part II - Minimum exit rate problem for prescription opioid epidemic models

- Recently, the United States is experiencing an epidemic of drug overdose deaths (e.g., Warner et al. NCHS Data Brief, No 81, 2011; Buchanich et al. Prev Med 89:317–323, 2016; Dart et al. N Engl J Med, 372:241–248, 2015).
- In part, the opioid epidemic has been attributed due to inappropriate physician prescribing practices or higher prescribing rates, which led to an increase in substance abuse and overdose deaths (see Figure 2 below).

Figure 1: Number of drug overdose deaths per year in US from 1979 to 2015 (Source: MOIRA Death Record Repository, University of Pittsburgh).

Part II - Minimum exit rate problem ...

Consider the following prescription opioid epidemic dynamical model

For a normalized population, denote the susceptible **S**, addicted **A** and recovered **R** by $X_1(t)$, $X_2(t)$ and $X_3(t)$, respectively. Then, we can be written the opioid epidemics as follows

$$d\mathbf{X}(t) = \mathbf{F}(\mathbf{X}(t))dt + \sqrt{\epsilon}BdW(t), \tag{7}$$

Minimum exit rate problem

Consider the following controlled-version of SDE

$$d\mathbf{X}_{0,\mathbf{x}}^{u,\epsilon}(t) = \left[\mathbf{F}(\mathbf{X}_{0,\mathbf{x}}^{u,\epsilon}(t)) + \tilde{B}u(t)\right]dt + \sqrt{\epsilon}BdW(t), \ \mathbf{X}_{0,\mathbf{x}}^{u,\epsilon}(0) = \mathbf{x},$$

where u is a progressively measurable process such that

$$\mathbb{E}\int_0^\infty |u(t)|^2 dt < \infty.$$

Let τ_D^{ϵ} be the exit time for $\mathbf{X}_{0,\mathbf{x}}^{u,\epsilon}(t)$ from the domain D, with smooth boundary ∂D , i.e.,

$$\tau_D^{\epsilon} = \inf \Big\{ t > 0 \, \big| \, \mathbf{X}_{0,\mathbf{x}}^{u,\epsilon}(t) \in \partial D \Big\}.$$
(8)

Connection with principal eigenvalue problem

Typical problem: Involves maximizing the mean exit time, which is equivalent to minimizing the principal eigenvalue λ_{μ}^{ϵ}

$$\lambda_u^\epsilon = -\limsup_{t\to\infty} \frac{1}{t} \log \mathbb{P}^{u,\epsilon}_{\mathbf{x}} \big\{ \tau_D^\epsilon > t \big\},$$

with respect to a certain class of admissible controls.

Connection with controlled-eigenvalue problem

$$\begin{aligned} -\mathcal{L}_{u}^{\epsilon}\psi_{u}(\mathbf{x}) &= \lambda_{u}^{\epsilon}\psi_{u}(\mathbf{x}) \quad \text{in} \quad D \\ \psi_{u}(\mathbf{x}) &= 0 \quad \text{on} \quad \partial D \end{aligned}$$
 (9)

where the admissible optimal control u^* can be determined by any measurable selector of

$$\arg \max \{ \mathcal{L}^{\epsilon}_{u} \psi (\mathbf{x}, \, \cdot \,) \}, \quad \mathbf{x} \in D.$$

Simulation results

Parameter	Numerical value	Parameter	Numerical value
α	0.15	δ	0.1
ε	0.8 - 8	ν	0.2
β	0.0036	σ	0.7
ξ	0.74	μ	0.007288
γ	0.00744	μ^*	0.01155
ζ	0.2 - 2	-	-

Table: Literature based parameter values

For an addiction-free equilibrium

$$X_1^* = rac{arepsilon+\mu}{lpha+arepsilon+\mu}, \quad X_2^* = 0, \quad X_3^* = 0 \ \ ext{and} \quad Z^* = rac{lpha}{lpha+arepsilon+\mu}.$$

Domain of interest,

$$D \subset \left\{ egin{array}{c} X_i(t) \geq 0, & i=1,2,3 \ X_1(t) + X_2(t) + X_3(t) \leq 1, & orall t \geq 0 \end{array}
ight\},$$

with smooth boundary ∂D .

Simulation results ...

The Jacobian matrix $J(\mathbf{X})$ is given by

$$\begin{aligned} J(\mathbf{X})\big|_{\mathbf{X}=\mathbf{X}^*} &= \left[\frac{\partial f_i(\mathbf{X})}{\partial X_j}\right]_{ij}\Big|_{\mathbf{X}=\mathbf{X}^*}, \qquad i,j \in \{1,2,3\} \\ &= \left[\begin{array}{cc} -(\alpha + \varepsilon + \mu) & \frac{\beta(\varepsilon + \mu)}{\alpha + \varepsilon + \mu} - (\varepsilon + \mu) + \mu^* & \delta - \varepsilon \\ 0 & \frac{\beta(\varepsilon + \mu)}{\alpha + \varepsilon + \mu} - (\zeta + \mu^*) & \sigma \\ 0 & \zeta & -(\delta + \sigma + \mu) \end{array}\right] \end{aligned}$$

The corresponding eigenvalues for $J(\mathbf{X}^*)$, that is, { -3.1573, -0.0323, -1.0331}, are all strictly negative and, hence, the addiction-free equilibrium is asymptotically stable, with a **reproduction number** $\mathcal{R}_o = 0.0766$.

Simulation results ...

Figure: Population trajectory for small randomly perturbing noise, with an intensity level of $\epsilon = 0.01$.

Some relevant publications

- G. K. Befekadu & P. J. Antsaklis, On the asymptotic estimates for exit probabilities and minimum exit rates of diffusion processes pertaining to a chain of distributed control systems, SIAM J. Control & Opt., vol. 53 (4), pp. 2297–2318, 2015.
- G. K. Befekadu & P. J. Antsaklis, On the problem of minimum asymptotic exit rate for stochastically perturbed multi-channel dynamical systems, IEEE Trans. Automat. Contr., vol. 60 (12), pp. 3391–3395, 2015.
- G. K. Befekadu & P. J. Antsaklis, On noncooperative n-player principal
 - eigenvalue games, J. Dynamics & Games AIMS, vol. 2 (1), pp. 51-63, 2015.
- **G. K. Befekadu**, *Large deviation principle for dynamical systems coupled with diffusion-transmutation processes*, Accepted to Syst. & Contr. Lett., 2018.
- G. K. Befekadu, On the controlled eigenvalue problem for stochastically
- perturbed multi-channel systems, Preprint arXiv:1501.01256 [math.OC], 9 pages,
- October 2016.

G.K. Befekadu & Q. Zhu, *Optimal control of diffusion processes pertaining to an opioid epidemic dynamical model with random perturbations*, Submitted to the J. Math. Biology.