Reliably Accurate State Estimation for Connected and Autonomous Highway Vehicles

A Symposium to Honor Panos Antsaklis

Jay A. Farrell Department of Electrical and Computer Engineering University of California-Riverside

October 27, 2018

©University of California – All rights reserved

Connected Vehicles

Goals: Enhanced throughput & safety with decreased emissions.

- V2V: Vehicle to vehicle
- V2I: Vehicle to Infrastructure

©University of California – All rights reserved

Reliable Precise Positioning: AV & CV

- Autonomous & Connected Vehicles are in our future.
 - Early Phase: Commercial
 - Later: Consumer
- Vehicle Position Accuracy
 - Routing (10.0 m)
 - Coordination (1.0 m)
 - Infrastructure
 - Other vehicles
 - Control (0.1 m)
- Sensor Fusion
- Reliability = Trust

Signal Rich Environments

Significantly more measurements are available than are required to achieve observability or to meet the accuracy specification: $P_x < P_{II}$ or $J_x > J_I$ where $P_{II} = (J_I)^{-1}$

Camera-based navigation

- Hundreds of features per frame
- Each requires tracking and association between frames.

Global Navigation Satellite Systems

- GPS (original): 7-10 sv available per epoch w/ 1 signal/sv → 7-10 measurements/epoch
- GPS (modified): 7-10 sv available per epoch w/ 3 signal/sv → 21-30 measurements/epoch
- Now also have GLONASS, Galileo, Beidou ...

On the order of 50 measurements soon to be available per epoch

- Four sufficiently diverse measurements are needed for observability
- As the number of used measurements increases, both accuracy and risk increase

What is the most appropriate risk-reward tradeoff, given high probability of outliers? Which measurements should be selected to achieve a stated accuracy specification?

Sensor Fusion: Inertial Navigation

• Inertial Navigation: Full state, acceleration, angular rate

- Pro: High bandwidth, high sampling rate, high reliability
- Pro & Con: Well modeled slow, but unbounded, error growth
- Pro: Used in military & commerce since 1960's

Given:

• IC: $\boldsymbol{x}(0) \sim N(\hat{\boldsymbol{x}}(0), \boldsymbol{P}(0))$

$$ilde{oldsymbol{u}}_{a}=\mathbf{f}+oldsymbol{b}_{a}+oldsymbol{n}_{a},$$

• IMU data:
$$\tilde{\boldsymbol{u}} = \left\{ \begin{array}{l} \tilde{\boldsymbol{u}}_g = \boldsymbol{\omega} + \boldsymbol{b}_g + \boldsymbol{n}_g, \end{array} \right.$$

• Kinematic model: $\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t))$

The INS numerically solves:

$$\hat{\boldsymbol{x}}(\tau_{i+1}) = \hat{\boldsymbol{x}}(\tau_i) + \int_{\tau_i}^{\tau_{i+1}} \mathbf{f}(\mathbf{\hat{x}}(\tau), \mathbf{\hat{u}}(\tau)) d\tau$$

where τ_i represents the *i*-th IMU sample time and $\phi(\hat{\boldsymbol{x}}(\tau_i), \hat{\boldsymbol{u}}(\tau_i)) \doteq \hat{\boldsymbol{x}}(\tau_i) + \int_{\tau_i}^{\tau_{i+1}} \mathbf{f}(\hat{\mathbf{x}}(\tau), \hat{\mathbf{u}}(\tau)) d\tau$ State: $\boldsymbol{x}(t) = [\boldsymbol{p}^{\mathsf{T}}(t), \boldsymbol{v}^{\mathsf{T}}(t), \boldsymbol{q}^{\mathsf{T}}(t), \boldsymbol{b}_a^{\mathsf{T}}(t), \boldsymbol{b}_g^{\mathsf{T}}(t)]^{\mathsf{T}} \in \mathbb{R}^{n_s}, n_s \ge 15$

IMU price point now appropriate for commercial applications

©University of California – All rights reserved

Sensor Fusion: Aiding Measurements

 $ilde{oldsymbol{y}}_k = oldsymbol{h}(oldsymbol{x}_k) + oldsymbol{\eta}_k + oldsymbol{e}_k$

 $\delta oldsymbol{y}_k = oldsymbol{H}_k \delta oldsymbol{x}_k + oldsymbol{\eta}_k + oldsymbol{e}_k$

 $\hat{\boldsymbol{x}}_k = \hat{\boldsymbol{x}}(t_k) = \hat{\boldsymbol{x}}(kT)$

 $\delta \boldsymbol{y}_k \doteq \tilde{\boldsymbol{y}}_k - \boldsymbol{h}(\hat{\boldsymbol{x}}_k)$

Aiding Measurement Model:

Residual Computation:

Residual Model:

•GNSS: Position, attitude, velocity

- Pro: Bounded absolute position error $T \gg au$
- Pro: Bound is dependent on processing and signals used
- Con: Reliability is dependent on environment

• Feature sensors: Relative position

- Pro: Bounded feature relative accuracy. Abundant in urban areas.
- Con (?): No absolute accuracy (without EDM).
- Con: Not robust to environmental conditions (e.g. lighting)

Outlier Accommodation:

NP-KF: Discard measurements for which the residual: $|\delta \mathbf{y}_k| > \gamma$

Linear KF Problem Statement

Given:

- $x_{k-1} \sim N(\hat{x}_{k-1}^+, P_{k-1}^+)$
- $oldsymbol{x}_k = oldsymbol{\Phi} oldsymbol{x}_{k-1} + oldsymbol{B} oldsymbol{\mathrm{u}}_{k-1} + oldsymbol{\omega}_{k-1}$

•
$$\boldsymbol{y}_k = \boldsymbol{H} \boldsymbol{x}_k + \boldsymbol{\eta}_k$$

Find: $\hat{\boldsymbol{x}}_{k}^{+} = \operatorname*{arg\,max}_{\boldsymbol{x}_{k}} \left(p_{\boldsymbol{\eta}_{k}} (\boldsymbol{y}_{k} - \boldsymbol{H} \boldsymbol{x}_{k}) p_{\boldsymbol{x}_{k}} (\boldsymbol{x}_{k}) \right)$ where

$$p_{\boldsymbol{x}_{k}}(\boldsymbol{x}_{k}) = N(\hat{\boldsymbol{x}}_{k}^{-}, \boldsymbol{P}_{k}^{-})$$

$$\boldsymbol{P}_{k}^{-} = \boldsymbol{\Phi}_{k-1} \boldsymbol{P}_{k-1}^{+} \boldsymbol{\Phi}_{k-1}^{\top} + \boldsymbol{Q}_{k-1}$$

$$\hat{\boldsymbol{x}}_{k}^{-} = \boldsymbol{\Phi}\hat{\boldsymbol{x}}_{k-1}^{+} + \boldsymbol{B}\boldsymbol{u}_{k-1}$$

UC RIVERSITY OF CALIFORNIA

$$egin{array}{rcl} \hat{m{x}}_k^+ &=& rgmin_{m{x}_k} \left(\|m{x}_k - \hat{m{x}}_k^-\|_{m{P}_k^-}^2 + \|m{y}_k - m{H}m{x}_k\|_{m{R}_k}^2
ight) \ \hat{m{x}}_k^+ &=& ig(m{P}_k^{-1} + m{H}^ op m{R}_k^{-1}m{H}ig)^{-1}ig(m{P}_k^{-1} \hat{m{x}}_k^- + m{H}^ op m{R}_k^{-1}m{y}_kig) \end{array}$$

Standard Kalman Filter in Information Form

- Sensor rich Environments: many more signals available than required
 - GNSS: GPS + GLONASS + Galileo +
 - Images with numerous features
 - Sliding Window of measurements
- Important Points:
 - The specified accuracy can be achieved with a subset of measurements

UC RIVERSITY OF CALIFORNIA

• Using all measurements, exposes the estimate to unnecessary risk

New Perspectives:

- <u>Maximal consistent set</u>: Choose a maximal subset of self-consistent measurements
 - L. Carlone, A. Censi, and F. Dellaert. "Selecting good measurements via l₁ relaxation: A convex approach for robust estimation over graphs." Intelligent Robots and Systems (IROS), 2014.
 - N. Sünderhauf and P. Protzel, "Towards a robust back-end for pose graph SLAM," in Robotics and Automation (ICRA). IEEE, 2012, pp.1254–1261.
- <u>Risk-Averse Performance-Specified (RAPS)</u>: Choose a subset of measurements with minimum risk that achieves specified accuracy.

E. Aghapour and J. A. Farrell, "Performance specified state estimation with minimum risk." American Control Conference (ACC), 2018

MAP Cost: Risk Quantification

$$\begin{aligned} x_k^+ &= \operatorname*{argmax}_x \ p(x, x_{k-1}, u_{k-1}, z_k) \\ &= \operatorname*{argmax}_x \ p(x_{k-1}) p(x | x_{k-1}, u_{k-1}) p(z_k | x) \\ x_k^+ &= \operatorname*{argmin}_x \left(\|x_{k-1} - x_{k-1}^+\|_{P_{k-1}^+}^2 + \|f(x_{k-1}, u_{k-1}) - x\|_{Q_k}^2 \right. \\ &\quad + \|h(x) - z_k\|_{R_k}^2 \right) \\ x_k^+ &= \operatorname*{argmin}_x \left[\|x - x_k^-\|_{P_k^-}^2 + \|h(x) - z_k\|_{R_k}^2 \right] \end{aligned}$$

Assumptions:

- State transition and prior are trusted.
- Measurements may have outliers.

UCRIVERSITY OF CALIFORNIA

$$NP1: \min_{x, b} \left[\|x - x_k^-\|_{P_k^-}^2 + \|\sum_{i=1}^m \frac{b_i}{\sigma_i} e_i e_i^\top (h(x) - z_k)\|^2 \right]$$

subject to:
$$\left(\sum_{i=1}^{m} \frac{b_i}{\sigma_i^2} h_i^\top h_i + J_k^-\right) \ge J_l$$

 $b_i \in \{0, 1\}$ for $i = 1, \dots, m$.

Solution Approach: Relaxation

Nonbinary RAPS: NP2

1) Selecting the measurements: Given b^{ℓ} and x_k^{ℓ} , find the optimal $b^{\ell+1}$:

$$NP2_b : \min_b \|\sum_{i=1}^m \frac{b_i}{\sigma_i} e_i e_i^\top (z_k - h(x_k^\ell)) \|^2 + \lambda \|b - b^\ell\|^2$$

subject to: $J_l - \left(\sum_{i=1}^m \frac{b_i}{\sigma_i^2} h_i^\top h_i + J_k^-\right) \le 0$
 $b_i \in [0, 1]$ for $i = 1, \dots, m$.

where $\lambda > 0$ is a user-defined proximal parameter, $H_k^{\ell} = \nabla h(x)|_{x=x_k^{\ell}} \in \mathbb{R}^{m \times n}$, and h_i is the *i*-th row of H_k^{ℓ} . This is a standard semidefinite programming (SDP) problem.

2) *State update:* Given b^{ℓ} and x_k^{ℓ} , find the optimal $x_k^{\ell+1}$:

$$NP2_{x}: \min_{x} \left[\|x - x_{k}^{-}\|_{P_{k}^{-}}^{2} + \|\sum_{i=1}^{m} \frac{b_{i}^{\ell}}{\sigma_{i}} e_{i} e_{i}^{\top} (h(x) - z_{k}) \|^{2} + \beta \|x - x^{\ell}\|^{2} \right]$$

Problem $NP2_x$ can be solved over multiple linearized iterations.

<u>Summary</u>

- Multiple iterations to achieve convergence
- Interior point methods solve the SDP.

H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, "Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Łojasiewicz inequality," *Mathematics of Operations Research*, vol. 35, no. 2, pp. 438–457, 2010.

Drawbacks:

- User-selected proximal parameters λ and β affect the rate of convergence.
- Final solution only converges to a local minimum, even when h(x) is convex.

Solution Approach: Binary Search

Binary RAPS

Find Minimum Risk Feasible Measurement Subset:

$$C(x,b) = \|x - x_k^-\|_{P_k^-}^2 + \|\Phi(b)(h(x) - z_k)\|_{R_k}^2.$$

- For each b∈ M_s, keep the zero elements of b unchanged and deactivate exactly one of the active elements of b. Each b∈ M_s will produce the (m-s) permutations denoted as b^ℓ for ℓ = 1,..., (m-s). Each of the resulting b^ℓ vectors will have: n_z(b^ℓ) = (n_z(b) + 1) = (s + 1).
 - (a) For each b^{ℓ} , solve the least square optimization:

$$\hat{x}^{\ell} = \operatorname*{argmin}_{x} C(x, b^{\ell}).$$

Define $c^{\ell} = C(\hat{x}^{\ell}, b^{\ell})$.

- (b) Check whether b^{ℓ} satisfies the performance constraint. If it does, then add b^{ℓ} to \mathcal{M} and \mathcal{M}_{s+1} . If $c^{\ell} < c^{\star}$, then set $c^{\star} = c^{\ell}$, $\hat{x}^{+} = \hat{x}^{\ell}$, and $b^{\star} = b^{\ell}$.
- 2) If \mathcal{M}_{s+1} is empty the algorithm terminates; otherwise set s = s+1 and go to Step 1.

Since the algorithm considers all b's for which $J_b^+ \ge J_l$, the final b^* and \hat{x}^+ achieve the global minimum.

Summary

- Expands the full feasible set
- Finds the globally minimum risk feasible subset of measurements

Drawbacks:

 The number of feasible vectors is O(2^s) where s < m

• Computationally prohibitive for large m.

Computationally Feasible Implementation

Select measurements based on prior:

$$\min_{b} \left[\|\sum_{i=1}^{m} \frac{b_i}{\sigma_i} e_i e_i^\top (h(x_k^-) - z_k) \|^2 \right]$$

subject to: $\left(\sum_{i=1}^{m} \frac{b_i}{\sigma_i^2} h_i^\top h_i + J_k^- \right) \ge J_l$
 $b_i \in \{0, 1\}$ for $i = 1, \dots, m$,

where h_i is the i^{th} row of $H = \nabla h(x)|_{x=x_k^-}$

Diagonal Performance Specification:

$$NPD: \min_{x, b} \|\sum_{i=1}^{m} \frac{b_i}{\sigma_i} e_i e_i^\top (h(x_k^-) - z_k) \|^2$$

subject to:
$$\sum_{i=1}^{m} \frac{b_i}{\sigma_i^2} \begin{bmatrix} h_{i1}^2 \\ \vdots \\ h_{in}^2 \end{bmatrix} + diag(J_k^-) \ge J_d$$
$$b_i \in \{0, 1\} \text{ for } i = 1, \dots, m.$$

Algorithm 1: Greedy Search for b_0

1) *Definitions*.

Let ℓ be the number of selected measurements. The set \mathbb{S} contains the indices of deactivated bits in b_0 (i.e., $i \in \mathbb{S}$ means the i^{th} element of b_0 is 0). Let $H = \nabla h(x)|_{x=x_k^-}$.

- 2) Initialization. Initialize $\ell = 0$, $\mathbb{S} = \{1, \dots, m\}$, $b_0 = 0 \in \mathbb{R}^m$, and vector $J_p = diag(J_k^-) - J_d$.
- 3) Choose the next measurement.

Let $[J_p]_j$ be the minimum element in J_p . Activate a non-active bit of b_0 to maximize the added information to $[J_p]_j$:

$$i = \underset{i \in \mathbb{S}}{\operatorname{argmax}} \left(\frac{h_{ij}}{\sigma_i}\right)^2.$$
 (47)

4) Update. $J_p = J_p + \frac{1}{\sigma_i^2} diag(h_i^\top h_i), \ S^{\ell+1} = S^\ell \setminus i,$ $b_0 = b_0 \oplus e_i, \text{ and } \ell = \ell + 1. \text{ If } J_p < 0_n,$ go to Step 3. Otherwise stop.

GNSS Aided INS Experimental Results

UC RIVERSITY OF CALIFORNIA

Horizontal error, risk, and information diversity (i.e., GDOP) for $\mu = 2$

Mean horizontal position error and the percentage of selected measurements versus mean outlier magnitude.

The yellow, green, blue and black curves display the results for NP-EKF with γ =2, 3, 4, and 5, respectively.

The red curve shows the results for RAPS.

GNSS Aided INS Experimental Results

Methods	Mean of	Std. of	Sub-meter	Maximum	Methods	Mean of	Std. of	Error	Maximum
	error (m)	error (m)	accuracy	error (m)		error (m)	error (m)	< 2 m	error (m)
NP-EKF1 $\gamma = 5$	0.63	0.35	0.77	1.35	NP-EKF1 $\gamma = 5$	1.89	0.52	0.62	3.46
NP-EKF1 $\gamma = 4$	0.58	0.26	0.92	1.23	NP-EKF1 $\gamma = 4$	1.92	0.51	0.61	3.46
NP-EKF1 $\gamma = 3$	0.45	0.23	0.99	1.04	NP-EKF1 $\gamma = 3$	1.42	0.61	0.83	2.90
NP-EKF1 $\gamma = 2$	0.28	0.15	1	0.94	NP-EKF1 $\gamma = 2$	0.59	0.47	1	1.85
RAPS1	0.24	0.10	1	0.62	RAPS1	0.37	0.39	1	1.63
NP-EKF2 $\gamma = 5$	0.35	0.19	0.99	1.34	NP-EKF2 $\gamma = 5$	0.39	0.36	1	1.86
NP-EKF2 $\gamma = 4$	0.35	0.19	0.99	1.34	NP-EKF2 $\gamma = 4$	0.39	0.36	1	1.86
NP-EKF2 $\gamma = 3$	0.34	0.18	1	0.90	NP-EKF2 $\gamma = 3$	0.38	0.35	1	1.74
NP-EKF2 $\gamma = 2$	0.30	0.15	1	0.89	NP-EKF2 $\gamma = 2$	0.36	0.37	1	1.70
RAPS2	0.27	0.10	1	0.59	RAPS2	0.39	0.40	1	1.82
			%					%	

Algorithm Comparison for $\mu = 2$ (top) and $\mu = 7$ (bottom)

: GNSS-INS Vertical Performance Statistics For $\mu = 2$ (top) and $\mu = 7$ (bottom).

- All results are post-processed filters (not smoothers)
- Error computed relative to "ground truth", which is a full trajectory smoothed estimate based on integer-resolved carrier phase measurements.
- Real-time implementations are being investigated.

Acknowledgements

Panos Antsaklis

Thank you for your unceasing efforts to promote our field and your colleagues – always incorporating a light hearted nature, good food, and great wine.

- E. Aghapour and J. A. Farrell, "Performance specified Moving Horizon state estimation with minimum risk," ECC, 2018.
- E. Aghapour, F. Rahman, and J. A. Farrell, "Outlier Accommodation for Meter-level Positioning: Risk-Averse Performance-Specified State Estimation," IEEE/ION PLANS, 2018E.
- Aghapour and J. A. Farrell, Performance Specified State Estimation With Minimum Risk, ACC, 1114--1119, 2018.
- E. Aghapour, F. Rahman, J. A. Farrell, "Risk-Averse Performance-Specified Linear State Estimation: Measurement Selection", IEEE CDC, In Press.
- E. Aghapour, F. Rahman, J. A. Farrell, "Outlier Accommodation in State Estimation: Risk-Averse Performance-Specified," Submitted IEEE T-CST, October 2018.

Acknowledgements

- Many of the photos used herein were taken by others or downloaded from the internet.
- This research project has been ongoing since 1994 with many collaborators contributing ideas: E. Aghapour, M. Barth, M. Billah, A. Chen, Y. Chen, J. Cheng, T. Givargis, M. Li, Y. Lu, A. Mourikis, H. Qiu, A. Ramanandan, F. Rahman, P. Roysdon, A. Vu, Q. Yang, Y. Yang, H. Zhang, S. Zhao, D. Zheng.
- Research sponsors: USA-DOT-FHWA, DARPA, CA DOT, ARO, AFOSR, ONR, NSF, RAYS, SiriusXM.