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The ‘History’ – Intelligent Control

 Foundations of classical control – 1950’s

 Adaptive and learning control – 1960’s

 Self-organizing control – 1970’s

 Intelligent control -1980’s

 K. S. Fu (Purdue) - 1970’s coins the term ‘intelligent control’

 G. N. Saridis (Purdue) introduces ‘hierarchically intelligent control

systems’ (PhDs: J. Graham, H. Stephanou, S. Lee)

 The 1980’s

 J. Albus (NBS, then NIST)

 Antsaklis – Passino

 Meystel

 Ozguner – Acar

 Saridis – Valavanis

Common theme: multi-level/layer architectures; time-based and

event-based considerations; mathematical approaches

Common limitation: lack of computational power (very crucial)

Videos/DU2SRI/Real-time, GPU-based pose estimation of a UAV for autonomous landing - Experimental evaluation.mp4
Videos/DU2SRI/ICRA2015.mp4
Videos/DU2SRI/SID_Yaw_sweep.mp4


Hierarchical Architecture (Saridis – Valavanis)

Functionality – One Framework
• Modular
• Spatio-temporal
• Explicit human interaction modeling
• Event-based and Time-based
• On-line / Off-line components
• Vertical/horizontal functionality
• Independent of specific methodologies

used for implementation

Antsaklis - Passino



Coordination Level

p(k+1/ui) = p(k/ui) + βi+1[ξ-p(t/ui)]

J(k+1/ui) = J(k/ui) + γi+1[Jobs(k+1/ui)-J(k/ui)]

 Learning



Adaptation/Learning (Vachtsevanos et al, 30 years

later….)

𝑠𝑖𝑚(𝐸𝑛𝑡𝑒 , 𝐸𝑛𝑡𝑗) =
σ𝑘=1
𝑛 𝛼 × 𝑠𝑖𝑚 𝐸𝑙𝑖,𝑘 , 𝐸𝑙𝑙,𝑘 + σ𝑘=1

𝑛 𝑛𝑘𝑖,𝑝𝑟𝑒𝑑 × 𝑛𝑖,𝑝𝑒𝑟𝑡 × 𝑠𝑖𝑚 𝐸𝑙𝑖,𝑘 , 𝐸𝑙𝑙,𝑘

𝛼 × 𝑛 + σ𝑘=1
𝑛 𝑛𝑘𝑖,𝑝𝑟𝑒𝑑 × 𝑛𝑖,𝑝𝑒𝑟𝑡

Ente is a new case, Entj represents previous cases;
Eli is a feature; ni,pert is a pertinence weighted
variable associated with the description element Eli;
ni,pred is a predictive weighted variable associated
with each case in memory, which is increased as the
corresponding element (feature) is favorably
selecting a case, and decreased as this selection
leads to a failure; 𝛼 is an adjustable parameter.
Incremental learning will occur whenever a new
case is processed, and its results are identified.

Incremental learning will be pursued using Q-Learning, a popular reinforcement learning scheme
for agents learning to behave in a game-like environment. Q-Learning is highly adaptive for on-line
learning since it can easily incorporate new data as part of its stored database.

Advantage: COMPUTATIONAL POWER!!!



…. And 35 years later (2016) 

…35 years later

(Lin–Antsaklis–Valavanis– Rutherford)

Advantage:

COMPUTATIONAL

POWER!!!



2012: Challenge of Autonomy 

U.S. DoD



Why Entropy? 

• Duality of the concept of Entropy
• Measure of uncertainty as defined in Information Theory (Shannon).

Measures throughput, blockage, internal decision making,
coordination, noise, human involvement etc., of data / information
flow in any (unmanned) system. Minimization of uncertainty
corresponds to maximization of autonomy / intelligence.

• Control performance measure, suitable to measure and evaluate
precision of task execution (optimal control, stochastic optimal
control, adaptive control formulations)

• Entropy measure is INVARIANT to transformations – major plus

• Deviation from ‘optimal’ is expressed as cross-Entropy and shows autonomy
robustness / resilience

• Additive properties
• Accounting for event-based and time-based functionality
• Horizontal and vertical measure
• Suitable for component, individual layer, overall system evaluation
• Independent of specific methodologies used for implementation
• One measure fits all!



Metrics to evaluate Autonomy/Intelligence

(Vachtsevanos – Valavanis – Antsaklis)

• Performance and Effectiveness metrics
• Confidence (expressed as reliability measure, probabilistic metric)
• Risk is interpreted via a ‘value at risk level’, which is indicative of not

nominal situation, i.e., fault, failure, etc.
• Trust and trust consensus are evaluated through Entropic measures

indicating precision of execution, deviation from optimal, information
propagation, etc.

• Remaining Useful Life (RUL) of system components, sub-systems
• Probabilistic measure of resilience (PMR) - to quantify the probability

of a given system being resilient to forecasted environmental
conditions, denoting the ratio of integrated real performance over the
targeted one – thus, expressed as Entropy, too

𝐑 𝐓 = ൙
𝟎
𝐓
𝐏𝐑 𝐭 𝐝𝐭

𝟎
𝐓
𝐏𝐓 𝐭 𝐝𝐭



Entropy for control (Saridis – Valavanis)

S = -k∫x{(ψ-H)/kT} e(ψ-H)/kTdx S = -k∫Xp(x)lnp(x)dx

Boltzmann (theory of statistical thermodynamics) defined the Entropy, S, of a perfect gas

changing states isothermally at temperature T in terms of the Gibbs energy ψ, the total energy

of the system H and Boltzmann’s universal constant k, as

p(x) = e(ψ-H)/kT

I = ∫L(x, t)dt

When applying dynamical theory of thermodynamics on the aggregate of the molecules of a

perfect gas, an average Langangian, I, may be defined to describe the performance over time of

the state x of the gas

S = -k∫x{(ψ-H)/kT}e(ψ-H)/kTdx, I = ∫L(x, t)dt are equivalent, which leads to S = I/T

with T the constant temperature of the isothermal process of a perfect gas.



Entropy for control, cont…

Express performance measure of a control problem in terms of Entropy: for example, consider

the optimal feedback deterministic control problem with accessible states for the n-dimensional

dynamic system with state vector x(t), dx/dt = f(x, u, t), with initial conditions x(to)=xo, and cost

function V(u, xo, to) = ∫L(x, u, t)dt, where the integral is defined over [to, T], and with u(x, t) the m-

dimensional control law. An optimal control u*(x, t) minimizes the cost V(u*; xo, to) = min u ∫L(x,

u, t)dt with the integral defined over [to, T]. Saridis proposed to define the differential Entropy for

some u(x, t) as

H(xo, u(x, t), p(u)) = H(u) = - ∫Ωu∫ Ωx p(xo, u)lnp(xo, u)dxodu

where the integrals are defined over Ωu and Ωx, and found necessary and sufficient conditions to

minimize V(u(x, t), xo, to) by minimizing the differential Entropy H(u, p(u)) where p(u) is the

worst Entropy density as defined by Jayne’s Maximum Entropy Principle [104, 105].

By selecting the worst-case distribution satisfying Jaynes’ Maximum Entropy Principle, the

performance criterion of the control is associated with the Entropy of selecting a certain control

law.” Minimization of the differential Entropy results in the optimal control solution.



Entropy in general - duality 

H(X) = - ∑x p(x)logp(x) or H(X) = ∫f(x)lnf(x)dx

Conditional Entropies

HY(X) = - ∑ x, y p(x, y)logp(x/y) = - ∑ y p(y)∑ x p(x/y)logp(x/y) 

(9)

Transmission of information

T(X : Y) = H(X) + H(Y) - H(X, Y) = H(X) - HY(X) = H(Y) – HX(Y) 



Entropy – Intelligence and Robust
Intelligence

Entropy Interval = Hmax – Hmin Kullback-Leibler (K-L) measure of cross-Entropy (1951) and

Kullback’s (1959) minimum directed divergence or minimum cross-Entropy principle,

MinxEnt

Human intervention introduced mathematically via additional probabilistic constraints, for

example pi, i=1, 2, 3…, n, ∑pi=1, and ∑cipi=c, ci’s are weights and c a bound, which are

imposed on (unconstraint) probability distributions and influence/alter the Hmax – Hmin interval.

p = (p1, p2…, pn) and q = (q1, q2, …, qn) may be measured (and evaluated) via the K-L

measure D(p:q) =∑piln(pi/qi). For example, when q is the uniform distribution (indicating

maximum uncertainty), then D(p:q) = lnn-H(p) where H(p) is Shannon’s Entropy.

Under this information theory related approach, which connects Entropy with the event-

based attributes of multi-level systems, the system starts from a state of maximum uncertainty

and through adaptation and learning, uncertainty is reduced as a function of accumulated and

acquired knowledge and information over time.



Entropy for control, cont.…

DS = {SO, SC, SE} - SO = {u, ζ, ξ, fCO,
OSint, Y|O|} - SC = {Y|O|, fEC,

CSint, F|C|} 

SE = { F|C|,
ESint, Z|E|} 

DS = {SO, SC, SE} = {u, ζ, ξ, fCO, fEC,
OSint,

CSint,
ESint, Z|E|} 

Augmented input is U = {u, ζ, ξ}, internal variables are Si = { fCO, fEC,
OSint,

CSint,
ESint}

and the output is Z|E|. 

GPLIR considers external and internal noise;

internal control strategies and internal coordination

of the levels and between the levels to execute the

requested mission

GPLIR may be derived for each top-down and

bottom-up function of the organizer

GPLIR is also derived for the coordination and

execution levels.



THANK YOU


