
Ph. D. Qualifying Exam: Applied Probability. June, 2018

ACMS Applied Probability Qualifying exam committee.

Candidate:

There are 8 problems. Show all your work.

1. A die is rolled until two different numbers appear. Let T be the total number of times
the die is rolled. Obviously P (T = 0) = P (T = 1) = 0. Find ET and V arT . For example

{1, 1, 2}, T = 3;

{1, 0}, T = 2;

{0, 0, 0, 0, 5}, T = 5;

{4, 4, 4, 4, 4, 6}, T = 6;

Sol. For k ≥ 2,

P (T = k) =
(1

6

)k−2
· 5

6
,

so that

ET =
∑
k≥2

k ·
(1

6

)k−2
· 5

6
=

11

5
,

ET 2 =
∑
k≥2

k2 ·
(1

6

)k−2
· 5

6
=

127

25
,

V arT = ET 2 − (ET )2 =
6

25
.
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2. SupposeX and Y are independent continuous random variables with uniform distributions
on [0, 1].

(a) Find the density function for X + 2Y ;

Sol.

fX(x) =

{
1, 0 < x < 1
0, otherwise

f2Y (y) =

{
1/2, 0 < y < 2
0, otherwise

fX+2Y (z) = fX ∗ f2Y =

∫
fX(x)f2Y (z − x)dx =

1

2

(
min(1, z)−max(0, z − 2)

)+

=


z/2, 0 < z < 1,
1/2, 1 ≤ z < 2,
(3− z)/2, 2 ≤ z < 3,
0, otherwise.

This is a trapezoid with vertices at (0, 0), (3, 0), (2, 1/2), (1, 1/2).

(b) Find the joint density function for X − Y,X + Y .

Sol. The joint density for X, Y is fX,Y (x, y) = fX(x)fY (y) = 1 for 0 < x < 1, 0 < y < 1 and
0 otherwise. Under the change of variables Z1 = X − Y, Z2 = X + Y the Jacobian is

∂(z1, z2)

∂(x, y)
=

∣∣∣∣ 1, −1
1, 1

∣∣∣∣ = 2,

so that
∂(x, y)

∂(z1, z2)
=

1

2
.

It follows that

fZ1,Z2(z1, z2) =

{
1
2
, for 0 < z1 + z2 < 2, 0 < z2 − z1 < 2,

0, otherwise.

The value of 1/2 is on a square with vertices’s at (0, 0), (1, 1), (0, 2), (−1, 1).
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3. Suppose that {Xn} is a sequence of random variables, and X is a random variable.

(a) If {Xn} converges to X mean square, is it true that {Xn} also converges to X in proba-
bility? Prove or given an counter example.

True.

P (|Xn −X| ≥ ε) ≤ 1

ε2
E|Xn −X|2 → 0.

(b) If {Xn} converges to X in probability, is it true that {Xn} also converges to X mean
square? Prove or given an counter example.

Not necessarily. Example.

X ≡ 0, P (Xn = 0) = 1− 1

n
, P (Xn = n) =

1

n
.

Clearly,

P (|Xn −X| ≥ ε) =
1

n
→ 0,

but

E|Xn −X|2 = E|Xn|2 = n2 · 1

n
→∞.

(c) Let Xn, X, Yn, Y be random variables on the same probility space. If Xn
D−→ X and

Yn
D−→ Y both converges in distribution? Is it true Xn + Yn

D−→ X + Y also converges in
distribution? Prove or given an counter example.

Ans: No. Example: P (X = 0) = P (X = 1) = 1/2, Xn = X, Yn = 1−X. Xn → X in
distribution, Yn → X in distribution. Then Xn + Yn ≡ 1 6= 2X.
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4. Factory A produces 70 % of a special brand of umbrellas with defective rate 2 %. Factory
B produces the remaining 30 % of the same umbrellas with defective rate 1 %.

(a) What is the defective rate of a randomly purchased umbrella of this brand of this product?

Sol.

P (def) = P (def |A)P (A) + P (def |B)P (B) =
2

100

7

10
+

1

100

3

10
=

17

1000
.

(b) Given that an umbrella of this brand is defective, what is the probability that it is from
Factory B?

Sol.

P (B|def) =
P (def and B)

P (def)
=
P (def |B)P (B)

P (def)
=

1
100

3
10

17
1000

=
3

17
.

(c) 25% of umbrellas from Factory A are blue and the rest are other colors. Defective rate
does not vary for different colors. All umbrellas from Factory B are blue. Given that a blue
umbrella of this brand is defective, what is the probability that it is from Factory B?

Sol.

P (A and Blue) = P (Blue|A)P (A) =
25

100

7

10
=

7

40

P (B and Blue) = P (Blue|B)P (B) =
100

100

3

10
=

3

10

P (B|def and Blue) =
P (def and Blue and B)

P (def and Blue)

=
P (def |B and Blue)P (B and Blue)

P (def |B and Blue)P (B and Blue) + P (def |A and Blue)P (A and Blue)

=
1

100
3
10

1
100

3
10

+ 2
100

7
40

=
6

13
.
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5. Here is a simple random walk. Let Sn = S0 +
n∑
i=1

Xi, where Xi are independent, and

takes the value −1, 1. Assume

P (Xi = 1) = p, P (Xi = −1) = q, p+ q = 1, p > q.

(a) Give a definition of a martingale.

Def. {Sn : n ≥ 1} is a martingale with respect to {Xn : n ≥ 1} if

(i) E|Sn| <∞ for all n, and

(ii) E(Sn+1|X1, X2, · · · , Xn) = Sn.

(b) Show that Mn = |Sn|2 − n is a martingale with respect to {Xn}. (Show all your work)

Proof. Obviously E|Sn|2 <∞.

Since |Sn+1|2 = |Xn+1 + Sn|2 = |Sn|2 + 2Xn+1Sn + |Xn+1|2 = |Sn|2 + 2Xn+1Sn + 1,

E(|Sn+1|2 − (n+ 1)
∣∣∣X1, · · · , Xn) = (|Sn|2 + 2SnEXn+1 + 1)− (n+ 1)

= |Sn|2 − n.
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6. Suppose also that the random variables Xi are all independent, and is of Poisson distri-
bution with parameter λi > 0, i.e.,

P (Xi = k) =
e−λiλki
k!

, k = 0, 1, 2, 3, · · · .

(a) Find the generating function for each Xi.

Sol.

Gi(s) =
∞∑
k=0

sk
e−λiλki
k!

= e−λi
∞∑
k=0

(sλi)
k

k!
= e(s−1)λi .

(b) Let Y = X1 +X2 +X3 + · · ·Xn. Find the generating function for Y .

Sol.
GY (s) = G1(s)G2(s) · · ·Gn(s) = e(s−1)(λ1+···+λn).

(c) Find P (Y = k) for k = 0, 1, 2, 3, · · · .

Sol. Expanding answers from (b)

P (Y = k) =
e−(λ1+···+λn)(λ1 + · · ·+ λn)k

k!
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7. A die is rolled repeatedly. Which of the following are Markov Chains? For those that are,
supply the transition matrix.

(a) Sn =“the sum of all rolls up to nth roll.”

Sol. Yes. Since Sn = Sn−1 +Xn, the answer is “Yes”

pij = P (Sn = j|Sn−1 = i) = P (Xn = j − i) =

{
1/6, if 1 ≤ j − i ≤ 6,
0, otherwise.

(b) Yn =“the sum of (n− 1)th roll and nth roll.”= Xn +Xn−1 (Assume Y0 = 0, Y1 = X1).

Sol. No. Yn = Xn +Xn−1.

P (Y3 = 3|Y1 = 1, Y2 = 3) = P (Y3 = 3|X1 = 1, X2 = 2) = P (X3 = 1) = 1/6,

but

P (Y3 = 3|Y2 = 3) = P (Y3 = 3|Y1 = 1, Y2 = 3)P (Y1 = 1) + P (Y3 = 3|Y1 = 2, Y2 = 3)P (Y1 = 2)

=
1

6

1

6
+

1

6

1

6
=

1

18

(c) Zn =“total numbers of 6’s up to nth roll.”

Sol. “Yes.”

pij = P (Zn = j|Zn−1 = i) =


1/6, if j = i+ 1,
5/6, if j = i,
0, otherwise.
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8. Let Wt be the standard Brownian motion with W0 = 0, EWt = 0 and V arWt = t.
Suppose that 0 < s < t.

(a) Find
E(W 3

t |Ws)

Sol.

W 3
t = (Wt −Ws +Ws)

3 = (Wt −Ws)
3 + 3(Wt −Ws)

2Ws + 3(Wt −Ws)W
2
s +W 3

s ,

so that

E(W 3
t |Ws) = E

(
(Wt −Ws)

3|Ws

)
+ 3WsE

(
(Wt −Ws)

2|Ws

)
+ 3W 2

sE
(

(Wt −Ws)|Ws

)
+W 3

s

= EW 3
t−s + 3WsEW

2
t−s + 3W 2

sEWt−s +W 3
s

= 3(t− s)Ws +W 3
s .

(b) Using Itô’s formula, find d(Wt)
3 and d(tWt).

Sol.

d(Wt)
3 = 3(Wt)

2dWt +
1

2
· 3 · 2Wtdt = 3(Wt)

2dWt + 3Wtdt.

d(tWt) = tdWt +Wtdt

(c) Find ∫ T

0

(
W 2
t − t

)
dWt

Sol. From (b)

(W 2
t − t)dWt =

1

3
d(Wt)

3 − d(tWt)

so that ∫ T

0

(
W 2
t − t

)
dWt =

1

3
(Wt)

3 − tWt.
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