
Ph. D. Qualifying Exam: Applied Probability. June, 2020

ACMS Applied Probability Qualifying exam committee.

Candidate:

There are 8 problems. Each problem from problems 1 to 4 is worth 10 points.
Each problem from problems 5 to 8 is worth 15 points. Show all your work.

1. (10 points). Toss a coin until you get two consecutive heads. This is a fair coin with
P (H) = P (T ) = 1/2.

(a) Let X be the total number of tosses. Then

{X = 0} = {X = 1} = ∅,
{X = 2} = {HH}, {X = 3} = {THH}, {X = 4} = {TTHH,HTHH}, · · · ,

For n ≥ 3, find P (X = n) in terms of P (X = n− 1) and P (X = n− 2).

(b) What is the expected total number of tosses?
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2. (10 points). Let D be the region of a unit disk. Assume the joint density fX,Y (x, y) is
given by

fX,Y (x, y) =
1

π
ID(x, y),

where ID is the indicator function of D.

(a) Find the marginal density fX(x) and fY (y).

(b) Are X, Y independent? Justify your answer.

(c) Find the conditional density fX|Y (x|y).
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3. (10 points). Suppose X and Y are independent random variables with exponential dis-

tribution with density function f(x) =

{
x−2, 1 < x <∞
0, x ≤ 1

. Find the probability density

function for

(a)
√
X;

(b) XY ;
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4. (10 points). Factory A produces 65 % of a special brand of chips with defective rate 6 %.
Factory B produces the remaining 35 % of the same umbrellas with defective rate 5 %.

(a) What is the defective rate of a randomly selected chip of this brand of this product?

(b) Given that an chip of this brand is defective, what is the probability that it is from
Factory A?
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5. (15 points). Suppose G(s) = ses−1 is the generating function of the random variable X.
The random variable X takes non-negative integer values

(a) Find P (X = 0), P (X = 1), E(X) and E(X2).

(b) Let X1, X2 be independent, identically distributed random variables with the same mass
function as X. Find

E
1

X1 +X2
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6. (15 points). Suppose that {Sn} is a sequence of random walk with Sn = X0+X1+· · ·+Xn,
where X0 = 0, P (Xi = 1) = p and P (Xi = −1) = q where p+q = 1, and X1, X2, · · · , Xn, · · ·
are i.i.d,

(a) Prove that Sn is a Martingale if and only if p = q = 1
2
.

(b) Suppose that p 6= q. Find the constants cn (n = 1, 2, 3, · · · ) so that Mn = Sn + cn is a
Martingale.
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7. (15 points). Let {Sn} be a homogenous Markov chain taking integer values with the
transition probability

pij =


9/10 if j = i+ 1,
1/10 if j = i,
0 otherwise

(a) Find all persistent states.

(b) Find all states i and j such that i→ j, i.e., i communicates with j.

(c) Find all states i and j such that i↔ j, i.e., i and j intercommunicate.
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8. (15 points). Let Bt denote the Standard Brownian Motion EBt = 0 amd V arBt = t.

(a) Let Yt = (Bt + 5t)2. Find dYt.

(b) Suppose Xt is a geometric Brownian Motion representing an assert, i.e.,

dXt

Xt

= rdt+ σdBt,

where the constant r represents an interest rate and the constant σ represents the volatility.
Find

d ln |Xt|.

(c) Following (b), find Xt

(d) Two investments (both satisfy geometric Brownian Motions) with investment B twice
the interest rate and volatility of investment A, and the interest rate and volatility for
investment A are r = 0.05 and σ = 0.2. Which one is better in average? Justify your
answer.
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