Name: Version #1

Instructor: Bullwinkle

Exam II October 31, 2019

- \bullet The Honor Code is in effect for this examination. All work is to be your own.
- Please turn off all cellphones and electronic devices.
- Calculators are **not** allowed.
- The exam lasts for 1 hour and 15 minutes.
- Be sure that your name and your instructor's name are on the front page of your exam.
- ullet Be sure that you have all 8 pages of the test.

PLEASE N	MARK YOUR AN	SWERS WI	TH AN X, no	ot a circle!
1. (•)	(b)	(c)	(d)	(e)
2. (•)	(b)	(c)	(d)	(e)
3 _⊡ (•)	(b)	(c)	(d)	(e)
4 _□ (•)	(b)	(c)	(d)	(e)
5. (•)	(b)	(c)	(d)	(e)
6. (•)	(b)	(c)	(d)	(e)
7. (•)	(b)	(c)	(d)	(e)
8. (•)	(b)	(c)	(d)	(e)
9. (•)	(b)	(c)	(d)	(e)
10. (•)	(b)	(c)	(d)	(e)

Please do NOT write in this box.		
Multiple Choice		
11.		
12.		
13.		
Total _		

Name:			
Instruct	or:		

Exam II October 31, 2019

- The Honor Code is in effect for this examination. All work is to be your own.
- Please turn off all cellphones and electronic devices.
- Calculators are **not** allowed.
- The exam lasts for 1 hour and 15 minutes.
- Be sure that your name and your instructor's name are on the front page of your exam.
- \bullet Be sure that you have all 8 pages of the test.

PLE	ASE MARK	YOUR ANSW	VERS WITH	AN X, not a o	circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(e)

Please do NOT write in this box.		
Multiple Choice		
11.		
12.		
13.		
Total _		

- 2.
- 1.(6pts) Find the eigenvalues of the matrix

$$A = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$

- (a) 0, 2, 4
- (b) 0, 0, 2
- (c) 0, 1, 2
- (d) 2, 2, 2
- (e) 2, 4, 4

Solution. Computing the characteristic polynomial $p(\lambda) = \det(A - \lambda I)$ yields via cofactor expansion along the first column $(2-\lambda)^3 - 4(2-\lambda) = (2-\lambda)((2-\lambda)^2 - 4) = (2-\lambda)(\lambda)(\lambda-4)$. Thus, the eigenvalues are 0, 2, 4.

- **2.**(6pts) Let A, B, C be 4×4 matrices with $\det(A) = \frac{1}{5}$, $\det(B) = 5$, and $\det(C) = 8$. What is $\det(2A^TB^2C^{-1})$?
 - (a) 10
- (b) $\frac{5}{4}$ (c) $\frac{1}{4}$ (d) 124 (e) 620

Solution. We compute $\det(2A^TB^2C^{-1}) = 2^4 \det(A) \det(B)^2 \det(C)^{-1} = 2^4 \cdot \frac{1}{5} \cdot 5^2 \cdot \frac{1}{8} = 10$

- 3.
- **3.**(6pts) Find the change-of-coordinates matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ from \mathcal{B} to \mathcal{C} between the following bases of \mathbb{R}^2 :

$$\mathcal{B} = \left\{ \begin{bmatrix} 6 \\ 9 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix} \right\} \qquad \mathcal{C} = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \end{bmatrix} \right\}$$

- (a) $\begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ (d) $\begin{bmatrix} 3 & 0 \\ 2 & 0 \end{bmatrix}$ (e) $\begin{bmatrix} 0 & \frac{1}{3} \\ \frac{1}{2} & 0 \end{bmatrix}$

Solution. We row reduce the matrix $\begin{bmatrix} 1 & 2 & 6 & 2 \\ 2 & 3 & 9 & 4 \end{bmatrix}$ to find the change-of-coordinates matrix to be $\begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix}$.

- **4.**(6pts) The vector $\vec{v} = \begin{bmatrix} -1+3i \\ 2 \end{bmatrix}$ is a complex eigenvector of the matrix $A = \begin{bmatrix} 3 & -5 \\ 2 & 5 \end{bmatrix}$. What is the corresponding complex eigenvalue?
 - (a) 4 + 3i
- (b) 3+2i (c) 3-4i (d) 4-3i (e) 3-2i

Solution. By assumption, $A\vec{x} = \lambda \vec{x}$, and we want to find λ . We compute $A\vec{x} = \begin{bmatrix} -13 + 9i \\ 8 + 6i \end{bmatrix}$. Examining the second entry, we thus see that $\lambda = 4 + 3i$.

5.(6pts) Which subsets of \mathbb{P}_3 are linearly independent?

I.
$$\{1+t, 1-t, t-t^3, (1-t)^2, 1+2t-t^2+5t^3\}$$

II.
$$\{t^3, (t-1)^2\}$$

III.
$$\{(t-1)^3, (t-2)^3, (t-3)^3, (t-4)^3, (t-5)^3\}$$

IV. $\{1+t+3t^2, 1, 1+2t\}$

IV.
$$\{1+t+3t^2,1,1+2t\}$$

(a) II and IV

- (b) II, III, and IV
- (c) all are linearly independent

- (d) I, II, and III
- (e) none are linearly independent

Solution. Both (I) and (III) have 5 vectors, so they are linearly dependent sets. On the other hand, we claim that (II) and (IV) are linearly independent. Indeed, t^3 is not a scalar multiple of $(t-1)^2$, which shows this for (II), and choosing standard coordinates $\{1, t, t^2, t^3\}$ for \mathbb{P}_3 we see that the matrix formed from the column vectors of (IV) is upper triangular with all nonzero diagonal entries, hence invertible.

6.(6pts) Let $T: \mathbf{R}^2 \to \mathbf{R}^2$, T(x) = Ax with $A = \begin{bmatrix} 1 & -2 \\ 4 & 7 \end{bmatrix}$. Which of the following bases \mathcal{B} for \mathbf{R}^2 gives a diagonal \mathcal{B} -matrix $[T]_{\mathcal{B}}$ for T?

(a)
$$\left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix} \right\}$$

(a)
$$\left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix} \right\}$$
 (b) $\left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ -2 \end{bmatrix} \right\}$ (c) $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$

(c)
$$\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$$

(d)
$$\left\{ \begin{bmatrix} 1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-1 \end{bmatrix} \right\}$$
 (e) $\left\{ \begin{bmatrix} 5\\0 \end{bmatrix}, \begin{bmatrix} 0\\3 \end{bmatrix} \right\}$

(e)
$$\left\{ \begin{bmatrix} 5\\0 \end{bmatrix}, \begin{bmatrix} 0\\3 \end{bmatrix} \right\}$$

Solution. A basis \mathcal{B} such that $[T]_{\mathcal{B}}$ is diagonal is given by the eigenvectors for A. We compute the eigenvalues to be 3 and 5, and then the corresponding eigenvectors to be $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$.

7.(6pts) Find the determinant of the matrix

$$\begin{bmatrix} 1 & 11 & 0 & 2 \\ 0 & -3 & 0 & 0 \\ 4 & -9 & 6 & 12 \\ 2 & -20 & 0 & 3 \end{bmatrix}$$

- (a) 18
- (b) 0
- (c) 25
- (d) -25 (e) -18

Solution. Cofactor expansion along the second row shows the determinant to equal -3times the determinant of $\begin{bmatrix} 1 & 0 & 2 \\ 4 & 6 & 12 \\ 2 & 0 & 3 \end{bmatrix}$. Cofactor expansion along the second column then shows that determinant to equal 6 times 3-4=-1. We conclude the determinant to equal 18.

8.(6pts) Which of the following sets are subspaces of the indicated vector spaces?

- I. The set of all vectors of the form $\begin{bmatrix} s+t\\2t\\3s \end{bmatrix}$ in \mathbb{R}^3
- II. The set of all degree 2 polynomials p(t) (i.e., those of the form $at^2 + bt + c$ with $a \neq 0$), inside the vector space \mathbb{P}_2 of polynomials with degree ≤ 2 .
- III. The set of all invertible 2×2 matrices A, inside the vector space of 2×2 matrices.
- IV. The set of all 2×2 matrices A of the form $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$, inside the vector space $M_{2\times 2}$ of 2×2 matrices.
- (b) III and IV are subspaces (c) I, II, and III are subspaces (a) I and IV are subspaces
- (e) II and IV are subspaces (d) All are subspaces

Solution. (I) is given by the span of $\begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$, so is a subspace. (II) is not a

subspace since it doesn't contain the zero vector, which is the zero polynomial. (III) is not a subspace since it doesn't contain the zero vector, which is the 2×2 matrix with all zeroes as entries. (IV) is a subspace as one may check it is closed under vector addition and scalar multiplication.

9.(6pts) Let \mathbb{P}_2 be the vector space of degree ≤ 2 polynomials. Which of the following linear transformations $T: \mathbb{P}_2 \to \mathbb{R}^3$ are both one-to-one and onto? Select the answer that corresponds to *all* valid choices.

I.
$$T(p(t)) = \begin{bmatrix} p(1) \\ p(2) \\ p(3) \end{bmatrix}$$
.

II. $T(p(t)) = \begin{bmatrix} p(1) \\ p'(1) \\ p''(1) \end{bmatrix}$.

III. $T(p(t)) = \begin{bmatrix} p'(1) \\ p'(2) \\ p'(3) \end{bmatrix}$.

IV. $T(p(t)) = \begin{bmatrix} p(0) \\ p'(0) \\ p''(0) \end{bmatrix}$.

- (a) I, II, and IV only
- (b) None

(c) I, II, and III only

(d) All

(e) III and IV only

Solution. We see that (III) is not one-to-one since T(1) is the zero vector. This rules out all options except for 'None' and 'I, II, and IV only'. On the other hand, (IV) is one-to-one and onto, since if we use the standard basis $\{1, t, t^2\}$ of \mathbb{P}_2 to write the linear transformation

T as a matrix A, we get $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, which is invertible. Thus, the answer must be 'I,

II, and IV only'. We could also check (I) and (II) work via the same method.

- **10.**(6pts) Let A be an $n \times n$ matrix, n > 1. Which of the following statements is false?
 - (a) If A is diagonalizable, then A has n distinct eigenvalues.
 - (b) If A has n distinct eigenvalues, then A is diagonalizable.
 - (c) If 0 is an eigenvalue of A, then A is not invertible.
 - (d) If λ is an eigenvalue of A, then $Nul(A \lambda I)$ has dimension not equal to 0.
 - (e) If A is diagonalizable, then \mathbb{R}^n has a basis comprised of eigenvectors for A.

Solution. The identity matrix is diagonalizable, but its eigenvalues are all equal to one, hence the statement 'If A is diagonalizable, then A has n distinct eigenvalues.' is false.

- **11.**(14pts) The eigenvalues of the matrix $A = \begin{bmatrix} 1 & -1 & -2 \\ -1 & 1 & -2 \\ -1 & -1 & 0 \end{bmatrix}$ are 2 and -2.
 - (i) Find a basis for the eigenspace of A corresponding to the eigenvalue 2.
 - (ii) Find a basis for the eigenspace of A corresponding to the eigenvalue -2.
 - (iii) Give a diagonal matrix D and an invertible matrix P such that $A = PDP^{-1}$, or if none exists, explain why. (Note: you do not need to compute P^{-1} .)
 - **Solution.** For the 2-eigenspace, we have a basis given by the vectors $\begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$.

For the -2-eigenspace, we have a basis given by the vector $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$. Thus, for (iii) one possible option is given by $D = \begin{bmatrix} 2 & 0 & 0\\0 & 2 & 0\\0 & 0 & -2 \end{bmatrix}$ and $P = \begin{bmatrix} -2 & -1 & 1\\0 & 1 & 1\\1 & 0 & 1 \end{bmatrix}$.

12.(14pts) Let \mathbb{P}_2 be the vector space of degree ≤ 2 polynomials, and consider the two bases

$$\mathcal{B} = \{1, t, -2 + t^2\}, \quad \mathcal{C} = \{1 - 2t + t^2, t^2, 1 + 2t + t^2\}.$$

- (i) Let $p(t) = 2 t + t^2$. Find the \mathcal{B} -coordinate vector $[p(t)]_{\mathcal{B}}$ of p(t). (ii) Find the change-of-coordinates matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ from \mathcal{B} to \mathcal{C} , that transforms \mathcal{B} -coordinates into \mathcal{C} -coordinates.
 - (iii) Find the C-coordinate vector $[p(t)]_{\mathcal{C}}$ of $p(t) = 2 t + t^2$.

Solution. We may express both bases relative to the standard basis $\{1, t, t^2\}$ of \mathbb{P}_2 in order to compute. We thus row reduce the 3×6 -matrix $\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & -1 \\ -2 & 0 & 2 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 2 \end{bmatrix}$ to get $\begin{bmatrix} 1 & 0 & 0 & 1/2 & -1/4 & -1/2 \\ 0 & 1 & 0 & -1 & 0 & 3 \\ 0 & 0 & 1 & 1/2 & 1/4 & -1/2 \end{bmatrix}, \text{ so } \underset{\mathcal{C}\leftarrow\mathcal{B}}{P} = \begin{bmatrix} 1/2 & -1/4 & -1/2 \\ -1 & 0 & 3 \\ 1/2 & 1/4 & -1/2 \end{bmatrix}.$ For (i) solve: $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 2 & 1 \end{bmatrix} \text{ and for }$ (iii) solve $\begin{bmatrix} 1 & 0 & 1 & 2 \\ -2 & 0 & 2 & -1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \text{ or multiply } \underset{\mathcal{C}\leftarrow\mathcal{B}}{P} \text{ with the vector obtained in (ii)}.$

$$\begin{bmatrix} 1 & 0 & 0 & 1/2 & -1/4 & -1/2 \\ 0 & 1 & 0 & -1 & 0 & 3 \\ 0 & 0 & 1 & 1/2 & 1/4 & -1/2 \end{bmatrix}, \text{ so } P_{C \leftarrow \mathcal{B}} = \begin{bmatrix} 1/2 & -1/4 & -1/2 \\ -1 & 0 & 3 \\ 1/2 & 1/4 & -1/2 \end{bmatrix}.$$

13.(12pts) Let
$$\begin{bmatrix} 15 & 5 & 0 & 15 \\ 6 & 2 & 0 & 4 \\ 3 & 2 & 1 & 4 \\ 9 & 6 & 0 & 3 \end{bmatrix}$$

- (ii) Suppose $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ is a vector in \mathbb{R}^4 such that $Ax = \begin{bmatrix} 0 \\ 0 \\ -1 \\ 6 \end{bmatrix}$.

Solution. For (i), cofactor expansion along the third column shows that det(A) equals the determinant of the 3×3 matrix $\begin{bmatrix} 15 & 5 & 15 \\ 6 & 2 & 4 \\ 9 & 6 & 3 \end{bmatrix}$. Factoring out 5 from the first row, 2 from the second row, and 3 from the third row shows that the determinant is then 30 times

the determinant of $\begin{bmatrix} 3 & 1 & 3 \\ 3 & 1 & 2 \\ 3 & 2 & 1 \end{bmatrix}$. Replacement operations reduce this matrix to $\begin{bmatrix} 3 & 1 & 3 \\ 0 & 0 & -1 \\ 0 & 1 & -2 \end{bmatrix}$,

which cofactor expansion along the first column shows has determinant 3. We deduce that

det(A) = 90. For (ii), let $B = \begin{bmatrix} 0 & 5 & 0 & 15 \\ 0 & 2 & 0 & 4 \\ -1 & 2 & 1 & 4 \\ 6 & 6 & 0 & 3 \end{bmatrix}$. By similar methods to (i), we compute $\det(B) = -60$. Cramer's rule then shows that $x_1 = -60/90 = -1/3$.