MATH 10250 Practice Exam 1 - Extras

1. Factor: (a) $x^{2}+x-2 \quad$ (b) $x^{2}-9$
2. Write the slope intercept form of the equation of a line that passes through $(-1,4)$ and $(2,5)$
3. Given $f(x)= \begin{cases}\frac{x^{2}-2 x+1}{x-1} & \text { if } x<1 \\ 0 & \text { if } x \geq 1\end{cases}$

Find
(a) $\lim _{x \rightarrow 1^{-}} f(x)=$
(b) $\lim _{x \rightarrow 1^{+}} f(x)=$
(c) $\lim _{x \rightarrow 1} f(x)=$
(d) $f(1)=$

Is f continuous at $x=1$? Justify your answer.
4. Let $f(x)=x^{2}-4 \sqrt{x}$. Find the (instantaneous) rate of change of f at $x=4$.
5. Find derivative of
(a) $f(x)=\frac{1}{2} \sqrt{x}+x^{2}-\sqrt{2}$
(b) $g(x)=\frac{2}{x^{2}}-x^{-1}+\sqrt[5]{x}$
(c) $h(x)=2 \sqrt{100-x^{2}}$
6. Find the second derivative of

$$
f(x)=\left(x^{3}-3\right)^{-1}
$$

7. Given

$$
f(x)=\frac{\sqrt{2 x}}{x^{2}-1}
$$

What is $f^{\prime}(2) ?$

Page 3
8. The demand for VR-glasses is modeled by the function

$$
p(x)=-x^{2}-4 x+64
$$

where p is measured in dollars and x is measured in thousands of glasses.

1. Find the average rate of change in the unit price of VR-glasses if the quantity demanded is between 0 and 5 thousand.
2. What is the instantaneous change in the unit price of VR-glasses at a demand of 3 thousand units $(x=3)$?
3. Given $f(x)=\sqrt{2 x}$ and $g(x)=x^{2}-x$. Compute the following (Simplify your answers if possible; but, don't combine anything in part (a)):
(a) $(f+g)(x)=$
(a) $(f-g)(x)=$
(b) $(f g)(x)=$
(c) $\left(\frac{f}{g}\right)(x)=$
(e) $(f \circ g)(x)=$
(f) $(g \circ f)(x)=$
$(\mathrm{g})(g \circ f)(2)=$
