June 25, 2018

You have 10 minutes for this quiz. Please show your work and write neatly.
NO CALCULATORS please!

1. Let f be the function defined by

$$
f(x)= \begin{cases}|x|+1 & \text { if } x<2 \\ 3 \sqrt{x} & \text { if } x \geq 2\end{cases}
$$

Compute the following:
(a) $f(-2)=|-2|+1=2+1=3$
(b) $f(2)=3 \sqrt{2}$
(c) $f(4)=3 \sqrt{4}=3 \cdot 2=6$
2. (a) Which one of the following gives the meaning of $(f \circ g)(x)$?
a. $f(x) g(x)$
b. $f(x)+g(x)$
c. $f(g(x))$
d. $\frac{f(x)}{g(x)}$
e. $f(x)-g(x)$
(b) Now, given

$$
f(x)=2 x+1 \quad \text { and } \quad g(x)=\frac{1}{2 x}
$$

Compute $(f \circ g)(x)$. Simplify your answer!

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =f\left(\frac{1}{2 x}\right) \\
& =2\left(\frac{1}{2 x}\right)+1 \\
& =\frac{1}{x}+1
\end{aligned}
$$

3. Find the values of x that satisfy the inequality

$$
\frac{|x-3|}{x-1} \geq 0
$$

We must have either: $1 . \frac{|x-3|}{x-1}=0$, or 2 . $\frac{|x-3|}{x-1}>0$. The first case occurs when $x=3$, and the second case occurs when $x-1>0$, that is, when $x>1$ (since $|x-3|$ is always positive). We conclude that the inequality holds when $x>1$, or in the interval $(1, \infty)$.

