## MATH 10250 Extra Credit Problems

1. Find the slope of the tangent line of $g(x)=(2-x)^{3}\left(e^{5}+5 \ln (2 x+3)\right)$ at the point $x=0$.
2. Which integral do you obtain if you preform the $u$ substitution $u=\sqrt{2 x}+1$ to the integral $\int \frac{1}{\sqrt{2 x}+1} d x$
3. Compute

$$
\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-x-6}
$$

4. Compute $\frac{d y}{d x}$ given

$$
e^{x^{3}} y-\ln (x) x^{2}=y+1
$$

5. The weekly demand for the LectroCopy photocopying machine is given by the demand equation

$$
p(x)=20-4 x
$$

where $p$ denotes the wholesale unit price in dollars and $x$ denotes the quantity demanded. The weekly total cost function for manufacturing these copiers is given by

$$
C(x)=2 x^{3}-x^{2}+10 x+120
$$

where $C(x)$ denotes the total cost incurred in producing $x$ units.

Find the revenue function, the profit function, the average cost function, and the marginal profit function.
6. The demand equation for a certain product is

$$
p(x)=10-2 x
$$

Compute the elasticity of demand when $p=15$. Is the demand elastic, unitary, or inelastic at this price?
7. Suppose the whole sale price of a certain brand of eggs, $p$ (in dollars per carton), is related to the weekly supply, $x$ (in thousands of carton), by the equation

$$
10 p^{2}-x^{2}=186
$$

If $8,000(x=8)$ carton of eggs are available at the beginning of a certain week and the price is failing at the rate of $\$ 0.02$ per carton per week, at what rate is the weekly supply changing?
8. Given the graph of $f$


- The intervals on which $f$ is decreasing are:
- The intervals on which $f$ is increasing are:
- The intervals on which $f$ is concave upward are:
- The interval on which $f$ is concave downward is:
- The critical numbers of $f$ are: $x=$
- The inflection points of $f$ are: $x=$

Fill in the blanks:

- $f^{\prime}(x) \_0$ for $x$ inside $(-1,1)$
- $f^{\prime}(x) ~ \_\_0$ for $x$ inside $(-\infty,-1)$
- $f^{\prime \prime}(x)$ _ 0 for $x$ inside $(0,2)$
- $f^{\prime \prime}(x) \_0$ for $x$ inside $(2, \infty)$

9. Let $g(x)=\frac{x}{x-2}$
(a) Domain of $g$ is:
(b) The $y$-intercept of $g$ is: $(0, \ldots)$
(c) The $x$-intercept of $g$ is: $(\ldots, 0)$
(d) Find the vertical asymptote of $g$ :
(e) Find the horizontal asymptote of $g$ by computing:
$\lim _{x \rightarrow-\infty} \frac{x}{x-2}=$
$\lim _{x \rightarrow \infty} \frac{x}{x-2}=$
(f) Find the interval of increasing and decreasing of $g$ :
$g$ is increasing on:
$g$ is decreasing on:
(g) Find the interval of concavity of $g$ :
$g$ is concave downward on:
$g$ is concave upward on:
10. Odyssey Travel Agency's monthly profit, $P$ (in thousands of dollars), depends on the amount of money spent on advertising each month, denote $x$ (in thousands of dollars). The relationship between $P$ and $x$ is given by:

$$
P(x)=-x^{2}+8 x+20
$$

(a) To maximize its monthly profits, what should be Odyssey's monthly advertising budget? (note: your answer should be more than a thousand of dollars).
(b) What is the maximum monthly profit realizable?
11. The temperature of a cup of coffee $t$ minutes after it is poured is given by

$$
T=70+100 e^{-.05 t}
$$

a) What was the temperature of the coffee when it was poured?
b) When will the coffee be cool enough to drink, that is, when will it reach 120 degrees?
12. A culture of bacteria that initially contained 3000 bacteria has a count of 18000 bacteria after 2 hours.
(a) Determine the function $Q(t)=Q_{0} e^{k t}$, where $Q(t)$ is the population of the culture of bacteria after $t$ hours.
(b) Find the number of bacteria present after 4 hours
13. Given $f^{\prime}(x)=e^{-6 x}+1$, find $f(x)$ given that $f(0)=\frac{5}{6}$.
14. Compute the following integrals:
(a) $\int 2 x^{3}+\frac{1}{x^{2}}-x+3 \sqrt{x}-\frac{1}{x}-4 d x$
(b) $\int 3 t^{2}\left(t^{3}+3\right)^{14} d t$
15. Given that

$$
\int_{2}^{3} f(x) d x=6 \quad \text { and } \quad \int_{2}^{3} g(x) d x=-2
$$

Compute $\int_{2}^{3} f(x)-4 g(x) d x$.
16. Compute the following definite integrals:
(a) $\int_{1}^{4} \frac{1}{\sqrt{x}}-3 d x$
(b) $\int_{0}^{1} x e^{x^{2}} d x$
17. Find the AREA underneath the curve $h(x)=\frac{2}{x^{2}}$ on the interval $[1,2]$.
18. Given $f(x)=x^{2}+3 x$, compute

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

(For this one I want to see the whole computation.)
19. Approximate the area under the curve $f(x)=e^{x}+3$ between $x=0$ and $x=6$ using 3 rectangles and midpoints (the height of each rectangle should be computed using the midpoint of its interval base).
20. What is the area between $f(x)=2 x+3$ and $g(x)=x$ on the interval $[0,1]$.

Hint: Draw a picture.
21. Each integral on the left is equal to exactly one integral on the right. Match them.
(1) $\int_{a}^{a} e^{x} d x$
$\int_{-2}^{2} x d x+\int_{-2}^{2} 4 d x(\mathrm{~A})$
(2) $\int_{1}^{5} e^{x} d x$
$\int_{0}^{1} u^{5} d u(\mathrm{~B})$
(3) $\int_{1}^{e} \frac{(\ln x)^{5}}{x} d x$
$\int_{1}^{4} \frac{2}{u^{2}} d u(\mathrm{C})$
(4) $\int_{-1}^{1} \sqrt{x+1} d x$
$-\int_{5}^{1} e^{x} d x(\mathrm{D})$
(5) $\int_{0}^{1} e^{x} d x+\int_{1}^{2} e^{x} d x$
$\int_{0}^{2} \sqrt{u} d u(\mathrm{E})$
(6) $\int_{-2}^{2} x+4 d x$
$\int_{0}^{2} e^{x} d x(\mathrm{~F})$
(7) $2 \int_{0}^{1} \frac{3 x^{2}+2 x+1}{\left(x^{3}+x^{2}+x+1\right)^{2}} d x$
22. Find the average value of
(a) $e^{x}$ on $[0,10]$
(b) $\frac{1}{x-1}$ on $[2,10]$
23. Given that:
A) The area under $f(x)$ on $[0,1]$ is 2 .
B) The area under $f(x)$ on $[0,5]$ is 7 .
C) The area under $g(x)$ on $[0,1]$ is 1 .
D) The area under $g(x)$ on $[1,5]$ is 2 .

Either find the following or explain why there is not enough information.
a) $\int_{0}^{5} f(x)-g(x) d x$
b) $\int_{0}^{1} f(x)-g(x) d x$
c) $\int_{1}^{5} f(x)+4 g(x) d x$
d) $\int_{2}^{5} 6 f(x) d x$
e) $\int_{2}^{5} 6 d x$
f) $\int_{1}^{5} 2 f(x)-3 g(x) d x$
24. Use the laws of logs to expand and simplify.
a) $\log \left(x(x+1)^{4}\right)$
b) $\ln \frac{e^{x}}{1+e^{x}}$
c) $\ln \left(x e^{-x^{2}}\right)$

