July 5, 2018

You have 10 minutes for the quiz. Please show your work and write neatly.
NO CALCULATOR please!

1. Compute $h^{\prime}(x)$ given

$$
h(x)=\frac{(2 x+1)\left(x^{3}+x+7\right)}{\left(x^{2}+4 x\right)^{3}}
$$

(You don't need to simplify your solution.)

Solution: There are several ways to approach this problem. Here is mine: Let

$$
p(x)=(2 x+1)\left(x^{3}+x+7\right) \text { and } q(x)=\left(x^{2}+4 x\right)^{3} .
$$

So, $h(x)=\frac{p(x)}{q(x)}$. Using the product rule and chain rule, we find

$$
p^{\prime}(x)=2\left(x^{3}+x+7\right)+(2 x+1)\left(3 x^{2}+1\right) \text { and } q^{\prime}(x)=3\left(x^{2}+4 x\right)^{2}(2 x+4) .
$$

By quotient rule, we have

$$
\begin{aligned}
h^{\prime}(x) & =\frac{p^{\prime}(x) q(x)-p(x) q^{\prime}(x)}{[q(x)]^{2}} \\
& =\frac{\left[2\left(x^{3}+x+7\right)+(2 x+1)\left(3 x^{2}+1\right)\right]\left[\left(x^{2}+4 x\right)^{3}\right]-\left[(2 x+1)\left(x^{3}+x+7\right)\right]\left[3\left(x^{2}+4 x\right)^{2}(2 x+4)\right]}{\left[\left(x^{2}+4 x\right)^{3}\right]^{2}}
\end{aligned}
$$

2. Given the demand equation:

$$
x=4-2 p
$$

(a) Compute the elasticity of demand when $p=1$.

Solution: Let $f(p)=4-2 p$. Then,

$$
E(p)=-\frac{p f^{\prime}(x)}{f(p)}=-\frac{p(-2)}{4-2 p}
$$

Therefore,

$$
E(1)=-\frac{(1)(-2)}{4-2(1)}=1
$$

(b) The demand at this price is (circle one): Elastic Unitary Inelastic

