MATH 10250 Homework 2

1. Deduce the quotient rule from the product rule.

Hint: Express $\frac{f(x)}{g(x)}$ as $f(x)[g(x)]^{-1}$ and differentiate the second. (Don't forget the Chain Rule here!)

Solution:

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right) & =\frac{d}{d x}\left(f(x)[g(x)]^{-1}\right) \\
& =\frac{d}{d x}(f(x)) \cdot[g(x)]^{-1}+f(x) \cdot \frac{d}{d x}\left([g(x)]^{-1}\right) \\
& \left.=\frac{f^{\prime}(x)}{g(x)}+f(x)\left(-1[g(x)]^{-2} g^{\prime}(x)\right]\right) \\
& =\frac{f^{\prime}(x)}{g(x)}+\frac{-f(x) g^{\prime}(x)}{[g(x)]^{2}} \\
& =\frac{f^{\prime}(x) g(x)}{[g(x)]^{2}}-\frac{f(x) g^{\prime}(x)}{[g(x)]^{2}} \\
& =\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
\end{aligned}
$$

2. Let $f(x)$ be some function. What is the difference between saying "烈 $f(x)$ exists" and " $f(x)$ is continuous at $x=a$ "? Give an example of a function where the first statement is true, but the second is not. (A sketch of the function is fine.)

Solution: Saying " $\lim _{x \rightarrow a} f(x)$ exists" is equivalent to saying $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ both exist and are equal. Now, " $f(x)$ is continuous at $x=a "$ means that $\lim _{x \rightarrow a} f(x)$ exists AND $f(a)$ exists such that $\lim _{x \rightarrow a} f(x)=f(a)$. So, " $f(x)$ is continuous at $x=a$ " implies " $\lim _{x \rightarrow a} f(x)$ exists", but the reverse is not true.

Consider the function $f(x)=\frac{(x-1)(x+3)}{x+3}$. This function is not continuous at $x=-3$ (since $f(-3)$ is not defined), but $\lim _{x \rightarrow-3} f(x)$ does exist and is -4 .

