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Anomalies and Autoencoders

 Anomalous events may be new physics
candidates

* Deep learning in real-time

* Model independent method requiring high
rejection rate for low trigger rate

e Autoencoders
* Encode input in smaller dimensional space
 Anomalous events will fail encode/decode flow
* Anomalous data have high loss

e Convolutional autoencoder
* Build “image” from event object
e Convolution learns small, meaningful features
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Prior Work

* Threshold test for identifying anomalous events in the LHC’s High
Level Trigger (HLT)
 Variational autoencoders trained on SM events
* Mixed events -> categorize BSM events as anomalous
* Resources - GPU
e Latency O(1 ms)

* hls4ml: Fast inference of deep neural networks in FPGAs
* Jet classifier
* Resources - FPGA
* Latency ~ 100 ns
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L1 Trigger Restrictions

* Need an online algorithm
* Trigger system might miss anomalies

* L1 Trigger
e Limited resources (FPGA)
* Low latency requirements (O(1 ps))
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Data - SM

* Trained on SM, tested on BSM

* SM dominated by QCD

* For simplicity, SM sample is 3.8 million QCD events
* Ntuples with up to 10 jets, 4 muons, and 4 electrons

* P, 1, Cl)
* Array of size [3.8M, 18, 3]
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Data - BSM

* 4 sample BSM events
e 291k VBF -> H -> invisible (VBF)
e 50k Z’ -> ZH, MZ’ = 1TeV (ZH 1000)
e 49k 7’ -> ZH, MZ’ = 0.8TeV (ZH 800)
e 50k 2’ -> ZH, MZ’ = 0.6TeV (ZH 600)
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Basic Algorithm

e Standardized Data

* Training, validation, test - 3:1:1
ratio

* Developed in Keras with
TensorFlow

* MSE loss, Adam optimizer

e Alternative architectures -> no
significant improvement
* Latent Space Sizes
* Coordinate Systems
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Quantized Algorithm

 Further reduction of
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Results — ROC Curves
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Future

* Test on Run3 data in FPGA for resource and latency usage
* his4dml

* Deploy in L1 trigger
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Summary

* Anomaly detection algorithm in the L1 trigger
* Real-time Machine Learning
* Model-independent method with high background rejection rate

e Convolutional autoencoder
e trained on SM, tested on BSM

* Quantized layers to reduce resources and latency
e Resources and latency post-synthesis still being calculated
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