1.2 Round-off Errors and Computer Arithmetic

- In a computer model, a memory storage unit word is used to store a number.
- A word has only a finite number of bits.
- These facts imply:
 - 1. Only a small set of real numbers (rational numbers) can be accurately represented on computers.
 - 2. (Rounding) errors are inevitable when computer memory is used to represent real, infinite precision numbers.
 - Small rounding errors can be amplified with careless treatment.
- So, do not be surprised that $(9.4)_{10}$ = $(1001.\overline{0110})_2$ can not be represented exactly on computers.
- Round-off error: error that is produced when a computer is used to perform real number calculations.

Binary numbers and decimal numbers

Binary number system:

A method of representing numbers that has 2 as its base and uses only the digits 0 and 1. Each successive digit represents a power of 2.

$$(\dots b_3 b_2 b_1 b_0. b_{-1} b_{-2} b_{-3} \dots)_2$$
 where $0 \le b_i \le 1$, for each $i = \dots 2, 1, 0, -1, -2$

Binary to decimal:

$$(\dots b_3 b_2 b_1 b_0. b_{-1} b_{-2} b_{-3} \dots)_2$$

$$= \frac{(\dots b_3 2^3 + b_2 2^2 + b_1 2^1 + b_0 2^0}{+b_{-1} 2^{-1} + b_{-2} 2^{-2} + b_{-3} 2^{-3} \dots)_{10} }$$

Example 1: Convert the binary number $(101.11)_2$ to decimal number

Binary machine numbers

- IEEE (Institute for Electrical and Electronic Engineers)
 - Standards for binary and decimal floating point numbers
- For example, a "double" type real number uses a 64-bit (binary digit) representation
 - 1 sign bit (s),
 - 11 exponent bits characteristic (c),
 - 52 binary fraction bits mantissa (f)

X	xxxxxxxxx	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
S	С	f

$$0 \le c \le 2^{11} - 1 = 2047$$

This 64-bit binary machine number gives a decimal floatingpoint number (Normalized IEEE floating point number):

$$(-1)^{s}2^{c-1023}(1+f)$$

where 1023 is called exponent bias.

- Smallest normalized positive number on machine has s=0, c=1, f=0: $2^{-1022}\cdot(1+0)\approx 0.22251\times 10^{-307}$
- Largest normalized positive number on machine has $s=0, c=2046, f=1-2^{-52}$: $2^{1023}\cdot(1+1-2^{-52})\approx 0.17977\times 10^{309}$
- Underflow: $|numbers| < 2^{-1022} \cdot (1+0)$
- Overflow: $numbers > 2^{1023} \cdot (2 2^{-52})$
- Machine epsilon $(\epsilon_{mach}) = 2^{-52} \approx 2.2204 \times 10^{-16}$: this is the difference between 1 and the smallest machine floating point number greater than 1. (roughly 16 decimal digits of precision)

- Positive zero: s = 0, c = 0, f = 0.
- Negative zero: s = 1, c = 0, f = 0.
- Inf: s = 0, c = 2047, f = 0
- NaN: s = 0, c = 2047, $f \neq 0$
- Machine epsilon $\epsilon_{mach} = 2^{-52}$.
 - Difference between 1 and the smallest floating point number greater than 1.

Example 2.

a) Convert the following binary machine number (P)₂ to decimal number.

 $(P)_2 = 0$ 10000000011 10111000000000...0

b) What's the next smallest/largest machine number of (P)₂ ?

Decimal machine numbers

Normalized decimal floating-point form:

$$\pm 0. d_1 d_2 d_3 \dots d_k \times 10^n$$

where $1 \le d_1 \le 9$ and $0 \le d_i \le 9$, for each $i = 2 \dots k$.

A. Chopping arithmetic:

- 1. Represent a positive number y as $0. d_1 d_2 d_3 \dots d_k d_{k+1} d_{k+2} \dots \times 10^n$
- 2. Chop off digits $d_{k+1}d_{k+2}$ This gives: $fl(y) = 0. d_1d_2d_3 ... d_k \times 10^n$

B. Rounding arithmetic:

- 1. If $d_{k+1} \ge 5$, add 1 to d_k (round up), and then chop
- 2. If $d_{k+1} < 5$, do nothing (round down), and then chop

Remark: fl(y) represents normalized decimal machine number.

Example 3. Compute 5-digit (a) chopping and (b) rounding values of $\pi = 3.14159265 \dots$

- Definition. Suppose p^* is an approximation to p. The actual error is $p-p^*$. The absolute error is $|p-p^*|$. The relative error is $\frac{|p-p^*|}{|p|}$, provided that $p \neq 0$.
 - Remark. Relative error takes into consideration the size of value.
- Definition. The number p^* is said to approximate p to t significant digits if t is the largest nonnegative integer for which $\frac{|p-p^*|}{|p|} \le 5 \times 10^{-t}$.

Example 4. Find absolute and relative errors, number of significant digits for:

(a)
$$p = 0.3000 \times 10^{1}$$
 and $p^{*} = 0.3100 \times 10^{1}$
(b) $p = 0.3000 \times 10^{-3}$ and $p^{*} = 0.3100 \times 10^{-3}$.

Example 5. Find the largest interval in which p^* approximates $\sqrt{2}$ with relative error at most 10^{-3} .

Finite-Digit arithmetic

- Arithmetic operation in a computer is not exact.
- Let machine addition, subtraction, multiplication and division be $\bigoplus, \bigcirc, \bigotimes, \oslash$.

$$x \oplus y = fl(fl(x) + fl(y))$$

$$x \ominus y = fl(fl(x) - fl(y))$$

$$x \otimes y = fl(fl(x) \times fl(y))$$

$$x \otimes y = fl(fl(x) \times fl(y))$$

Remark: A machine operation preform exact arithmetic on the floating-point representations of x and y, then convert the exact result to its finite-digit floating-point representation.

Example 6. $x = \frac{5}{7} = 0.714285 \dots, y = \frac{1}{3} = 0.3333333 \dots$ Use 5-digit chopping arithmetic to compute $x \oplus y$. Find its absolute error and relative error, and number of significant digits.

Example 7. $x = \frac{5}{7}$, u = 0.714251. Use 5-digit chopping arithmetic to compute $x \ominus u$. Find its absolute error and relative error, and number of significant digits.

Calculations resulting in loss of accuracy

- 1. Subtracting nearly equal numbers gives fewer significant digits.
- 2. Dividing by a number with small magnitude or multiplying by a number with large magnitude will enlarge the error.

Example 8. Suppose z is approximated by $z+\delta$. where error δ is introduced by previous calculation. Let $\varepsilon=10^{-n}, n>0$. Estimate the absolute error of z $(\!\!\!/)$ ε .

Technique to reduce round-off error

Reformulate the calculation.

Example 9. Compute the most accurate approximation to roots of $x^2 + 62.10x + 1 = 0$ with 4-digit rounding arithmetic.

- Nested arithmetic
 - Purpose is to reduce number of calculations.

Example 10. evaluate $f(x) = x^3 - 6.1x^2 + 3.2x + 1.5$ at x = 4.71 using 3-digit chopping arithmetic.