1.3 Algorithms and Convergence

Algorithm & Pseudocode

- An algorithm is an ordered sequence of unambiguous and well-defined instructions that performs some tasks.
- **Pseudocode** is an artificial and informal high-level language that describes the operating principle of a computer program or algorithm.
 - Pseudocode allows ones to focus on the logic of the algorithm without being distracted by details of language syntax.
 - The pseudo-code is a "text-based" detail (algorithmic) design tool and is complete. It describes the entire logic of the algorithm so that implementation is a task of translating line by line into source code.
 - See one page summary of pseudocode in the course website 2

Pseudocode

Example. Compute
$$\sum_{i=1}^{N} x_i$$

INPUT N, x_1, x_2, \dots, x_N . OUTPUT $SUM = \sum_{i=1}^{N} x_i$ Step 1 Set SUM = 0. // Initialize accumulator Step 2 For i = 1, 2, ... N doset $SUM = SUM + x_i$. // add next term Step 3 OUTPUT(SUM); STOP.

Pseudocode \rightarrow Matlab code Example. Compute $\sum_{i=1}^{N} x_i$

```
------ mySum. m ------
function [SUM] = mySum(N, X)
% INPUT: N, X (vector of length N)
% OUTPUT: SUM
SUM=0; % STEP 1
for i=1:N % STEP 2
   SUM = SUM + X(i);
end
return
%% compute the sum \sum_{i=1}^{10} i (=55)
>> N = 10; X = [1:N]
>> SUM = mySum(N,X)
```

Characterizing Algorithms

Error Growth

Suppose $E_0 > 0$ denotes an initial error, and E_n is the error after n subsequent operations.

- 1. If $E_n \approx CnE_0$, where C is a const. independent of n: the growth of error is **linear**. (stable)
- 2. If $E_n \approx C^n E_0$, where C > 1: the growth of error is **exponential.** (unstable)

Remark: linear growth is unavoidable; exponential growth must be avoided.

Stability

- Stable algorithm: small changes in the initial data produce small changes in the final result
- Unstable or conditionally stable algorithm: small changes in all or some initial data produce large errors

Definition 1.18 Rate of convergence for sequences

Suppose $\{\beta_n\}_{n=1}^{\infty}$ is a sequence converging to 0, and $\{\alpha_n\}_{n=1}^{\infty}$ converges to a number α . If a positive constant K exists with

$$|\alpha_n - \alpha| \le K |\beta_n|$$
, for large n ,

then $\{\alpha_n\}_{n=1}^{\infty}$ is said to converges to α with rate of convergence $O(\beta_n)$, indicated by $\alpha_n = \alpha + O(\beta_n)$.

Typical
$$\{\beta_n\}_{n=1}^{\infty}$$
:
 $\beta_n = \frac{1}{n^p}$ for some $p > 0$

Example 1. Suppose that, for $n \ge 1$, $\alpha_n = \frac{n+3}{n^3}$.

The sequence $\{\alpha_n\}_{n=1}^{\infty}$ converges to 0. Find the rate of convergence for this sequence.

Example 2. Find the rate of convergence of $\lim_{n\to\infty} \sin\left(\frac{1}{n}\right) = 0$

Definition 1.19 Rate of convergence for functions

Suppose that $\lim_{h\to 0} G(h) = 0$ and $\lim_{h\to 0} F(h) = L$.

If a positive constant K exists with

 $|F(h) - L| \le K|G(h)|$, for sufficiently small h,

then F(h) = L + O(G(h)).

Typical G(h): $G(h) = h^{P}$ for some p > 0 **Example 3**. Use the third Taylor polynomial about h = 0 to show that $\cosh h + \frac{1}{2}h^2 = 1 + O(h^4)$.

Example 4. Find the rate of convergence of $\lim_{h\to 0} \frac{\sin(h)}{h} = 1$