2.4 Error Analysis for lterative
Methods



Definition 2.7. Order of Convergence

Suppose {p, },=o is a sequence that converges to p with
pn, * p for all n. If positive constants A and a exist with

oo 1Pt — IZ[I _
n-o |py —p
then {p,, },—o is said to converges to p of order a with

asymptotic error constant A.

A higher order convergence means that the sequence
converges more rapidly.

e Special cases
1. Ifa=1(and A < 1), the sequence is linearly convergent
2. If a = 2, the sequence is quadratically convergent



Linear vs. Quadratic Convergence

Suppose we have two sequences converging to 0 with:

lim |pn+1| :0.9’ lim |Qn+1| — 09

n- |p, | n-o g, |?

Roughly we have:
Ipnl| = 0.9|pp—1| = -+ = 0.9%|py|,
Gnl = 0.9]qy_1]? = - = 0.927H|qql,
Assume py = qo = 1

n  Ppn qn
1 1
0.9 0.9
0.81 0.729
0.729 0.4782969

. 0.205891132094649
0.59049 0.0381520424476946
0.531441 0.00131002050863762
0.4782969  0.00000154453835975
0.43046721 0.00000000000021470
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Convergence of Fixed-Point Iteration

* Theorem 2.8

Let g € C|[a, b] be such that g(x) € [a, b] forall x €
la, b]. Suppose g’ is continuous on (a, b) and that 0 <
k < 1 exists with |g'(x)| < k forall x € (a, b).

If g'(p) # 0, then for all number p, in [a, b], the sequence
pn, = g(p,,—1) converges only linearly to the unique fixed
pointp in |a, b].

Proof:
Pn+1— P = g(n) —9g() = 9'($)(Pn — P), $n € (P, P)
Since {p,, }n=o converges to p, {&,,},=o converges to p.

Since g’ is continuous, lim g'(&,) = g'(p)
n—oo

lim PrriPl — iy ‘g’(fn)| = |g'(p)] < 1 = linear convergence

n-o |py —p| n—oo



Comparison of fixed-point iteration and
Newton’s method

Revisit MATLAB DEMO:EX1 in Lec 2.3

Consider the function f(x) = cos(x) — x. Solve f(x) = 0 using
(a) fixed-point method with g(x) = cos(x),

(b) Newton’s method.

Recall: to reach an accuracy of 10719, we need 53 iterations for
fixed-pt algorithm, but only 4 for Newton’s method

The slow convergence of fixed-pt algorithm can be explained by
Theorem 2.8. Why Newton’s method converges much faster?



Speed up Convergence of Fixed Point Iteration

* |f we look for faster convergence methods, we must
have g'(p) = 0 where p is the fixed-point.

Theorem 2.9

Let p be a solution of x = g(x). Suppose g'(p) = 0 and
g''is continuous with |g" (x)| < M on an open interval |

containing p. Then there exists a 06 > 0 such that for p, €

lp — 6, p + 6], the sequence defined by p,,.1 = g(p,),
when n = 0, converges at least quadratically to p. For

sufficiently large n

M 2
|Dn+1 — Pl < 7|pn — p|



Newton’s Method as Fixed-Point Problem

Consider to solve f(x) = 0 by Newton’s method:

_ - f(pn)
Pn+1 Pn f,(pn) -

Let’s define function g(x) by g(x) = x — ]]:(x) . The zero

p of f(x) = 0 is also the fixed-point of g(x) (assuming
f'(p) # 0).

(Fr))2=f ) fri(x)
(fr(x))?

Compute g'(x) tosee: g'(x) =1 —

(') -or"@ _

(F' @)’
Note: Newton’s method will converge at least quadratically if

f(p) = 0and f'(p) # 0.

Thus g'(p) =1 —



Multiple Roots

Newton’s method and Secant method have difficulty to solve
f(x) =0when f(p) =0and f'(p) = 0.

How to modify Newton’s method when f'(p) = 0? Here p is
the root of f(x) = 0.

Definition 2.10. Multiplicity of a Root

A solution p of f(x) = 0 is a zero of multiplicity m of f if for
x + p, we can write f(x) = (x — p)mq(xg where hm q(x) +

0.

Theorem 2.11

f € C'[a, b] has a simple zero at p in (a, b) if and only if

f(p) =0, but f'(p) = 0.
Theorem 2.12

The function f € C™[a, b] has a zero of multiplicity m at point
p in (a, b) if and only if

0=F) =f'(p)=f"p = =F™V(p),but f™(p) * 0



Example 1.

Let f(x) = e* — x — 1. Show that f has a zero
of multiplicity 2 at x = 0.



Modified Newton’s Method for Zeroes of Higher
Multiplicity (m > 1)

Define the new function u(x) = ]{,((z))
Write f(x) = (x — p)™q(x), hence
() = fx) (x — 1) q(x)
@) PG + (@ — p)a’ ()

Note that f(p) = 0 and p is a simple zero of u(x).
* Apply Newton’s method to solve u(x) = 0 to give:

x=gx)=x— H(x)
u'(x)
fQ)f' (x)

Lf' ()] = Ff" (x)
e Quadratic convergence of the modified Newton’s method:
. . f(pn—l)f,(pn—l)
P = Pt T [ G D= 1) (Prt) .




Drawbacks of modified Newton’s method:
» Compute f''(x) is expensive

* [teration formula is more complicated — more
expensive to compute

* Roundoff errors in denominator — both f'(x)
and f(x) approach zero.



Example 2. (MATLAB)

Let f(x) = e* — x — 1. Use Newton’s method
and modified Newton’s method to solve f(x) =



f = @(x) exp(x)-x-1;
df = @(x) exp(x)-1; %
po = 1;

TOL = le-5; NI = 100;

function derivative

converge = false; % convergence flag
% STEP 2
while i<=NI
$ STEP 3: compute p(i)
p = p0-£(p0)/df(p0);
err = abs(p-p0);
$ STEP 4: check if meets the stopping criteria

°

if (err< TOL)

converge = true; break
else

i = i+l; ¢ STEP 5

p0 = p; % STEP 6: update pO
end

end

if converge
fprintf('\n\nApproximate solution P = %.8f\n',p)

fprintf('With F(P) = %.3e\n',£f(p))
fprintf('Number of iterations = %3i\n',i)
fprintf('Tolerance = %.3e |p-pold| = %.3e\n',TOL, err)

end

Approximate solution P = 0.00000542

With F(P) = 1.472e-11

Number of iterations = 18

Tolerance = 1.000e-05 [p-pold| = 5.425e-06

B e 1nputS————— e ]
f = @(x) exp(x)-x-1;

df = @(x) exp(x)-1; ¢ function derivative

ddf = @(x) exp(x); % second derivative

p0 = 1;

TOL = le-5; NI = 100;

)

converge = false; % convergence flag
% STEP 2
while i<=NI
$ STEP 3: compute p(i)
£0 = £(p0);
df0 = df(p0);
ddf0 = ddf(p0);
p = p0-£f0*df0/(df0"2-£0*ddf0);
err = abs(p-p0);
% STEP 4: check if meets the stopping criteria
if (err< TOL)

converge = true; break
else

i = i+1;

p0 = p; % update pO
end

end

if converge
fprintf('\n\nApproximate solution P = %.8f\n',p)

fprintf('with F(P) = %.3e\n',f(p))
fprintf('Number of iterations = %3i\n',1i)
fprintf('Tolerance = %.3e |p-pold| = %.3e\n',TOL, erry
end
Approximate solution P = -0.00000000
With F(P) = 0.000e+00
Number of iterations = 5 13

Tolerance = 1.000e-05

|p-pold| = 0.000e+00




