2.5 Accelerating Convergence

Aitken's Δ^2 Method

- Assume $\{p_n\}_{n=0}^{\infty}$ is a linearly convergent sequence with limit p.
- Further assume $\frac{p_{n+1}-p}{p_n-p} \approx \frac{p_{n+2}-p}{p_{n+1}-p}$ when n is large
- Solving for *p* yields:

$$p \approx \frac{p_{n+2}p_n - p_{n+1}^2}{p_{n+2} - 2p_{n+1} + p_n}$$

A little algebraic manipulation gives:

 $p \approx p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}$ • Define $\widehat{p_n} = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}$ Remark: The new sequence $\{\widehat{p_n}\}_{n=0}^{\infty}$ converges to p faster.

Definition 2.13

The **forward difference** Δp_n is defined by

 $\Delta p_n = p_{n+1} - p_n$. High powers of Δ are defined recursively by $\Delta^k p_n = \Delta (\Delta^{k-1} p_n).$

Remark: $\widehat{p_n}$ can also be rewritten as

$$\widehat{p_n} = p_n - \frac{(\Delta p_n)^2}{\Delta^2 p_n}$$

Theorem 2.14:

Suppose that $\{p_n\}_{n=0}^{\infty}$ converges linearly to the limit pand that $\lim_{n\to\infty} \frac{p_{n+1}-p}{p_n-p} < 1$. Then the Aitken's Δ^2 sequence $\{\widehat{p_n}\}_{n=0}^{\infty}$ converges to p faster than $\{p_n\}_{n=0}^{\infty}$ in the sense that $\lim_{n\to\infty} \frac{\widehat{p_n}-p}{p_n-p} = 0$. Example. Consider the sequence $\{p_n\}_{n=0}^{\infty}$ generated by the fixed point iteration $p_{n+1} = \cos(p_n)$, $p_0 = 0$.

iteration $\widehat{p_n}$ p_n 0.0000000000000000 0.6850733573260450 1.0000000000000000 **0.7** 28010361467617 2 0.540302305868140 **0.73** 3665164585231 3 0.857553215846393 **0.73** 6906294340474 0.654289790497779 **0.73**8050421371664 4 0.7 93480358742566 5 **0.73**8636096881655 6 **0.7** 01368773622757 **0.73** 8876582817136 7 **0.73**8992243027034 0.7 63959682900654 8 **0.7** 22102425026708 0.7390 42511328159 9 **0.7** 50417761763761 0.7390 65949599941 10**0.73** 1404042422510 0.7390 76383318956 11 **0.7** 44237354900557 0.73908 1177259563* 12 **0.73** 5604740436347 0.73908 3333909684* **Example 1.** Generate the first two terms of the sequence $\{\widehat{p_n}\}_{n=1}^{\infty}$ using Aitken's Δ^2 method if $p_n = \frac{1}{n}, n \ge 1$.

Steffensen's Method

• Steffensen's Method combines fixed-point iteration and the Aitken's Δ^2 method:

Step 0. Suppose we have a fixed point iteration:

 $p_{0}, \quad p_{1} = g(p_{0}), \quad p_{2} = g(p_{1})$ Once we have we have p_{0}, p_{1} and p_{2} , we can compute $p_{0}^{(1)} = p_{0} - \frac{(p_{1} - p_{0})^{2}}{(p_{2} - 2p_{1} + p_{0})}$ Step 1. Then we "restart" the fixed point iteration with $p_{1}^{(1)} = g(p_{0}^{(1)}), \quad p_{2}^{(1)} = g(p_{1}^{(1)})$

and compute:

$$p_0^{(2)} = p_0^{(1)} - \frac{\left(p_1^{(1)} - p_0^{(1)}\right)^2}{\left(p_2^{(1)} - 2p_1^{(1)} + p_0^{(1)}\right)}.$$

Step 2. We "restart" the fixed point iteration with $p_1^{(2)} = g\left(p_0^{(2)}\right)$, $p_2^{(2)} = g\left(p_1^{(2)}\right)$

and compute:

$$p_0^{(3)} = p_0^{(2)} - \frac{\left(p_1^{(2)} - p_0^{(2)}\right)^2}{\left(p_2^{(2)} - 2p_1^{(2)} + p_0^{(2)}\right)}.$$

Example 2. Use Steffensen's method for solving: $f(x) = x^3 + 4x^2 - 10 = 0.$

The base fixed point iteration takes $g(x) = \sqrt{\frac{10}{x+4}}$, and $p_0 = 1.5$.

Remark: Steffensen's method gives quadratic convergence. (see **Theorem 2.15** in page 89)