Section 4.3 Elements of Numerical Integration

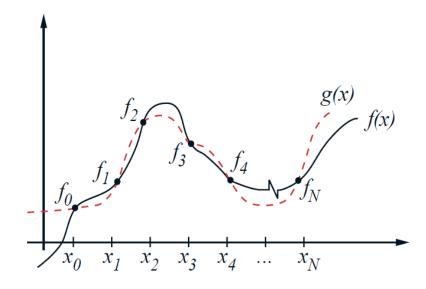
Numerical quadrature: $\int_a^b f(x)dx \approx \sum_{i=0}^N f(x_i)a_i$.

 $\sum_{i=0}^{N} f(x_i)a_i$ is the quadrature formula.

Idea for deriving quadrature formula

1. Let the interpolation points be given as:

$$(x_0, f(x_0)), (x_1, f(x_1)), ... (x_N, f(x_N)).$$
 Here $a = x_0$; $b = x_N$.



2. By Lagrange Interpolation Theorem (Thm 3.3):

$$f(x) = \sum_{i=0}^{N} f(x_i) L_{N,i}(x) + \frac{(x - x_0) \cdots (x - x_N)}{(N+1)!} f^{(N+1)}(\xi(x))$$

3.
$$\int_{a}^{b} f(x)dx = \int_{a}^{b} \sum_{i=0}^{N} f(x_i) L_{N,i}(x) dx +$$

$$\frac{1}{(N+1)!} \int_{a}^{b} (x - x_0) \cdots (x - x_N) f^{(N+1)}(\xi(x)) dx$$

- Quadrature formula: $\int_a^b f(x)dx \approx \sum_{i=0}^N a_i f(x_i)$ with $a_i = \int_a^b L_{N,i}(x)dx$.
- Error (Remainder): $E(f) = \frac{1}{(N+1)!} \int_a^b (x x_0) \cdots (x x_N) f^{(N+1)}(\xi(x)) dx$

Definition (quadrature formula)

Let f(x) be an arbitrary continuous function in [a, b], then a

(N+1)-point quadrature formula for the integral $\int_a^b f(x)dx$ is an approximation of the form $\sum_{i=0}^N f(x_i)a_i$.

Here the x_i are called the *quadrature nodes* (abscissas) and the a_i are the *quadrature weights*.

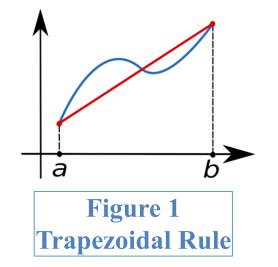
Remark: For a given set of quadrature nodes $\{x_i\}$, the quadrature weights are uniquely determined via $a_i = \int_a^b L_{N,i}(x) dx$

The (2-pts) Trapezoidal Quadrature Rule

• Obtained by first degree Lagrange interpolating polynomial. (Figure 1)

• Let
$$x_0 = a$$
; $x_1 = b$; and $h = b - a$.
$$\int_a^b f(x) dx = \frac{h}{2} [f(x_0) + f(x_1)] - \frac{h^3}{12} f^{(2)}(\xi).$$
 Error term

• Trapezoidal rule: $\int_a^b f(x)dx \approx \frac{h}{2}[f(x_0) + f(x_1)]$ with h = b - a.



Example 1. Derive the 3-pts quadrature formula for

$$\int_{0}^{1} f(x)dx$$

using quadrature nodes $x_0 = 0$; $x_1 = \frac{1}{2}$, $x_2 = 1$.

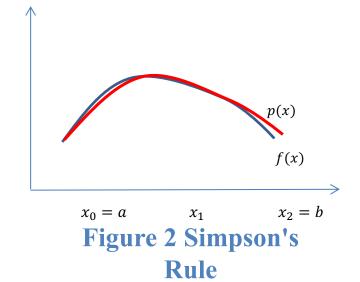
Answer:
$$\int_0^1 f(x) dx \approx \frac{1}{6} \left[f(0) + 4f\left(\frac{1}{2}\right) + f(1) \right]$$

The (3-pts) Simpson's Quadrature Rule

Obtained by second degree Lagrange interpolating polynomial.

• Let
$$x_0 = a$$
; $x_1 = \frac{a+b}{2}$, $x_2 = b$; and $h = \frac{b-a}{2}$.
$$\int_a^b f(x) dx = \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)] - \frac{h^5}{90} f^{(4)}(\xi)$$
• Simpson's rule: $\int_a^b f(x) dx \approx \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)]$

• Simpson's rule:
$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)]$$



Example 2. Compare the Trapezoidal rule and Simpson's rule approximations to $\int_0^2 f(x)dx$ when f(x) is:

(a) x^2 ; (b) $(x + 1)^{-1}$.

Measuring Precision

Definition 4.1. The **degree of accuracy** or **precision** of a quadrature formula is the largest positive integer n such that the formula is exact for x^k , for each $k = 0, 1, \dots, n$.

Remark: If a quadrature formula has degree of accuracy n, then the error of approximation is zero for all polynomials of degree $\leq n$. But is not zero for some polynomial of degree n+1.

• Trapezoidal rule has degree of accuracy one.

1).
$$\int_a^b x^0 dx = b - a$$
; $\frac{b-a}{2} [1+1] = b - a$.

 \rightarrow Trapezoidal rule is exact for 1 (or x^0).

2).
$$\int_a^b x dx = \frac{x^2}{2} \Big|_a^b = \frac{b^2 - a^2}{2}; \quad \frac{b - a}{2} [a + b] = \frac{b^2 - a^2}{2}.$$

 \rightarrow Trapezoidal rule is exact for x.

3).
$$\int_a^b x^2 dx = \frac{x^3}{3} \Big|_a^b = \frac{b^3 - a^3}{3}; \qquad \frac{b - a}{2} [a^2 + b^2] \neq \frac{b^3 - a^3}{3}.$$

 \rightarrow Trapezoidal rule is **NOT** exact for x^2 .

Example 3. approximate $\int_0^1 x^3 dx$ using Simpson's rule.

Remark: Simpson's rule has degree of accuracy three.

Example 4. Let $h = \frac{b-a}{3}$, $x_0 = a$, $x_1 = a + h$, $x_2 = b$. Find degree of precision of quadrature formula $\int_a^b f(x) dx = \frac{9}{4} h f(x_1) + \frac{3}{4} h f(x_2)$.

Closed Newton-Cotes Formulas

• Let $a = x_0$; $b = x_n$; and $h = \frac{b-a}{n}$. $x_i = x_0 + ih$, for $i = 0,1,\cdots,n$.

• The formula: $\int_a^b f(x)dx \approx \sum_{i=0}^n a_i f(x_i)$ with $a_i = \int_a^b L_{n,i}(x)dx$ is called **Closed Newton-Cotes Formula.** Here $L_{n,i}(x)$ is the ith Lagrange base polynomial of degree n.

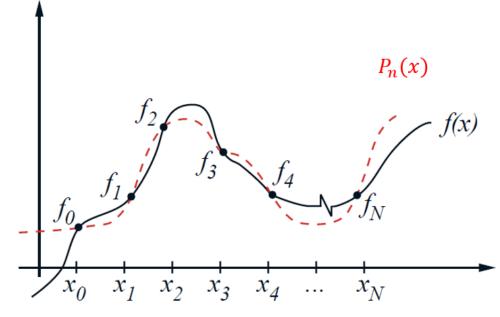


Figure 3 Closed Newton-Cotes Formulas

Theorem 4.2 Suppose that $\sum_{i=0}^{n} a_i f(x_i)$ is the (n+1)-point closed Newton-Cotes

formula with $a = x_0$; $b = x_n$; and $h = \frac{b-a}{n}$. There exists $\xi \in (a,b)$ for which

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n} a_{i}f(x_{i}) + \frac{h^{n+3}f^{(n+2)}(\xi)}{(n+2)!} \int_{0}^{n} t^{2}(t-1)\cdots(t-n)dt, \text{ if } n \text{ is}$$

even and $f \in C^{n+2}[a,b]$, and $\int_a^b f(x)dx = \sum_{i=0}^n a_i f(x_i) +$

$$\frac{h^{n+2}f^{(n+1)}(\xi)}{(n+1)!}\int_0^n t^2(t-1)\cdots(t-n)dt \text{ if } n \text{ is odd and } f \in C^{n+1}[a,b].$$

Remark: n is even, degree of precision is n+1; n is odd, degree of precision is n.

(4-pts) Simpson's Three-Eighths rule

$$\int_{x_0}^{x_3} f(x) dx = \frac{3h}{8} \left(f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3) \right) - \frac{3h^5}{80} f^{(4)}(\xi)$$
where $x_0 < \xi < x_3; h = \frac{x_3 - x_0}{3}$.

• Degree of precision is 3 for Simpson's three-eighths rule, which is the same as Simpson's rule.

Open Newton-Cotes Formula

See Figure 4. Let $h=\frac{b-a}{n+2}$; and $x_0=a+h$. $x_i=x_0+ih$, for $i=0,1,\cdots,n$. This implies $x_{-1}=a$; and $x_{n+1}=b$.

The formula: $\int_a^b f(x)dx \approx \sum_{i=0}^N a_i f(x_i)$ with $a_i = \int_{x_{-1}}^{x_{n+1}} L_{n,i}(x) dx$ is called **open Newton-Cotes Formula.** $L_{n,i}(x)$ is the ith Lagrange basis polynomial using nodes x_0, \dots, x_n .

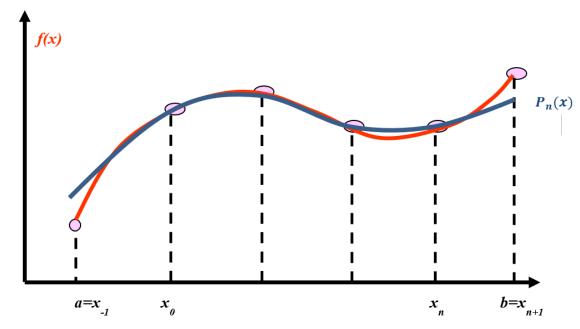


Figure 4 Open Newton-Cotes Formula

Theorem 4.3 Suppose that $\sum_{i=0}^n a_i f(x_i)$ is the (n+1)-point open Newton-Cotes formula with $a=x_{-1}$; $b=x_{n+1}$; and $h=\frac{b-a}{n+2}$. There exists $\xi\in(a,b)$ for which $\int_a^b f(x)dx\approx\sum_{i=0}^n a_i f(x_i)+\frac{h^{n+3}f^{(n+2)}(\xi)}{(n+2)!}\int_{-1}^{n+1}t^2(t-1)\cdots(t-n)dt$, if n is even and $f\in C^{n+2}[a,b]$, and

 $\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} a_{i}f(x_{i}) + \frac{h^{n+2}f^{(n+1)}(\xi)}{(n+1)!} \int_{-1}^{n+1} t^{2}(t-1)\cdots(t-n)dt, \text{ if } n \text{ is odd and } f \in C^{n+1}[a,b].$

Examples of open Newton-Cotes formulas

• n = 0: Midpoint rule (Figure 5)

$$\int_{x_{-1}}^{x_1} f(x)dx = \frac{2hf(x_0)}{3} + \frac{h^3}{3}f^{(2)}(\xi) \text{ where } x_{-1} < \xi < x_1. \ h = \frac{b-a}{3}.$$

•
$$n = 1$$
: $\int_{x_{-1}}^{x_2} f(x) dx = \frac{3h}{2} [f(x_0) + f(x_1)] + \frac{3h^3}{4} f^{(2)}(\xi)$; where $x_{-1} < \xi < x_2$. $h = \frac{b-a}{3}$.

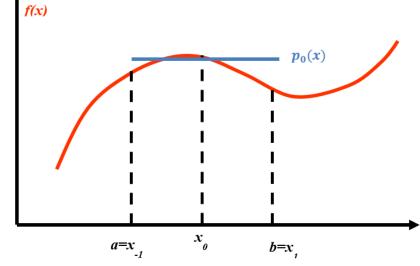


Figure 5 Midpoint rule