Section 4.7 Gaussian
Quadrature



Motivation

When approximate f;f(x)dx, nodes Xy, X4, ", X, in [a, b] do not
need to be equally spaced. This can lead to the greatest degree of
precision (accuracy).
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Deriving Gaussian Quadrature by Naive approach

Consider f;f(x)dx ~ )i .cif(x;). Herecy, -, cp and x4, -, X, are
2n parameters. We therefore determine a class of polynomials of
degree at most 2n — 1 for which the quadrature formulas have the
degree of precision less than or equal to 2n — 1.

(The nodes and weights in Gaussian Quadrature are chosen in an
optimal manner.)



Example Consider n = 2 and [a, b] = [—1,1]. We want to determine
X1, X5, €1 and ¢, so that quadrature formula

f_llf(x)dx ~ c;f(x1) + c,f(x,) has degree of precision 3.
Solution: Let f(x) =1. ¢; + ¢, = f_ll 1dx = 2 (Eg. 1)
Let f(x) = x. cyx1 + Coxy, = f_ll xdx =0 (Eq. 2)

Let f(x) = x2. cyx% + x5 = f_ll x2dx =§ (Eq. 3)

Let f(x) = x3. cyx] + x5 = f_11x3dx =1 (Eq.4)

Use (nonlinear) equations (1)-(4) to solve for x4, x,, ¢; and ¢,. We

obtain:
1 —v3 3
f—1f(X)dx zf( ;/—) : f(g)




Remark: Quadrature formula f_llf(x)dx ~ f(_f) | f(ﬁ)

3
has degree of precision 3; while Trapezoidal rule has degree of

precision 1.
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Deriving Gaussian Quadrature by Legendre Polynomial

Definition. Legendre Polynomials
Legendre polynomials P,(x), defined on |—1,1] satisfy:
1) For each n, P,(x) is a polynomial of degree n, and P,(1) = 1.

2) f_ll P(x)P,(x)dx = 0 whenever P(x) is a polynomial of degree less
thann

Remark:

* In textbook, condition P,(1) = 1 in Property 1) is replaced by requiring leading
coefficient of P,(x) is 1, which is not standard.

* Property 2) is usually referred to as P(x) and B,(x) are orthogonal.



The first five Legendre Polynomials:

Po(x) =1,
P,(x) = x,

P,(x) = -(3x% — 1),
Py(x) = %(59(3 — 3x),
P,(x) = é(BSx4 — 30x?

Bonnet’s recursion formula:
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legendre polynomials

Po(X)
P,(x)
P,(X)
P4(X)
Pa(X)
Ps(X)

n+1P,,1(x) =02n+ 1)xP,(x) —nP,_;(x),n=>1



Theorem of Gaussian Quadrature by Legendre Polynomial

Theorem 4.7 Suppose that x4, ---, x,, are the roots of the nth Legendre
polynomial P, (x) and that for each i = 1,2, ---n, the numbers c; are

defined by
f X — Xj
‘ ‘ dx
X; — X

]:tz
If P(x) is any polynomial of degree Ies%than 2n, then

flP(x)dx = Z c;P(x;)

- =1
Zisa (n-1)th degree Lagrange basis polynomial using nodes

* Remark: [Tj=,

JEX!
xl, ...’xn_

X=X



Gaussian Quadrature Formula
n

f F)dx ~ 2 Cf ()

T
—/3/3 1.0

0. 7745966692 0.5555555556 5

0.0 0.8888838889
-0.7745966692 0.5555555556

More in Table 4.12 of the textbook



Example 1. Approximate f_ll e*dx using Gaussian quadrature with n =
3.



Gaussian Quadrature on Arbitrary Intervals

e : b :
Use substitution or transformation to transform fa f(x)dx into an
integral defined over [—1,1].

Let x =%(a+b) +%(b —a)t, witht € [-1,1]

Then , )
[[rae= [ 1 Jo-o0) (5




Example 2. Approximate f13 cos x dx using Gaussian quadrature with
n = 2.



