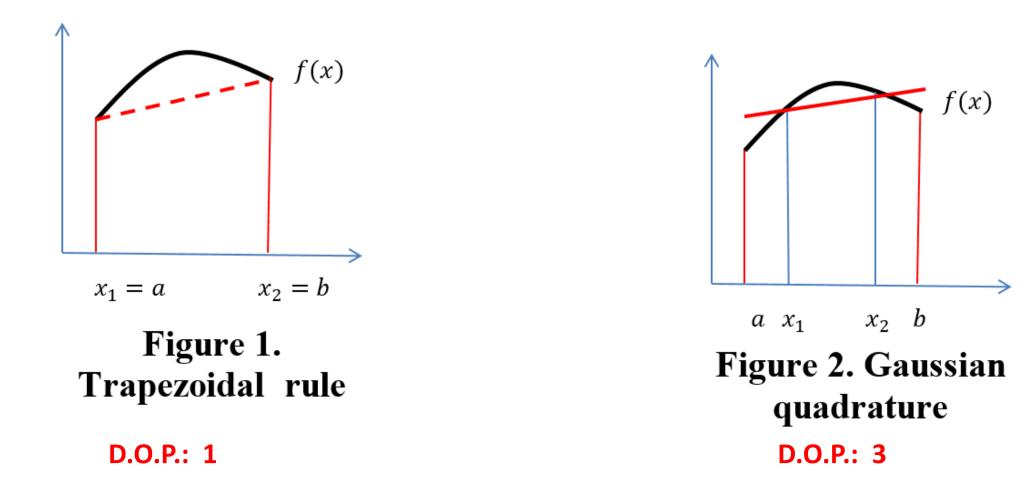
Section 4.7 Gaussian Quadrature

Motivation

When approximate $\int_{a}^{b} f(x)dx$, nodes x_0, x_1, \dots, x_n in [a, b] do not need to be equally spaced. This can lead to the greatest degree of precision (accuracy).



Deriving Gaussian Quadrature by Naïve approach

Consider $\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n} c_{i}f(x_{i})$. Here c_{1}, \dots, c_{n} and x_{1}, \dots, x_{n} are 2n parameters. We therefore determine a class of polynomials of degree at most 2n - 1 for which the quadrature formulas have the degree of precision less than or equal to 2n - 1.

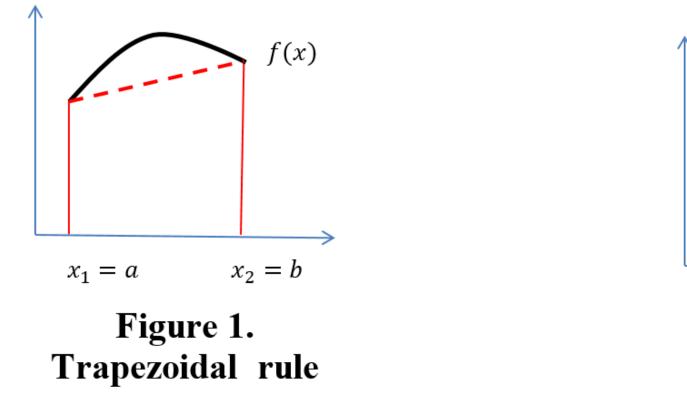
(The nodes and weights in Gaussian Quadrature are chosen in an optimal manner.)

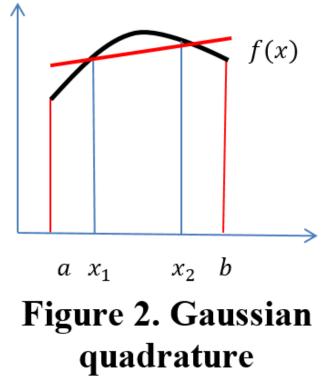
Example Consider n = 2 and [a, b] = [-1, 1]. We want to determine x_1, x_2, c_1 and c_2 so that quadrature formula $\int_{-1}^{1} f(x) dx \approx c_1 f(x_1) + c_2 f(x_2)$ has degree of precision 3. **Solution**: Let f(x) = 1. $c_1 + c_2 = \int_{-1}^{1} 1 dx = 2$ (Eq. 1) Let f(x) = x. $c_1 x_1 + c_2 x_2 = \int_{-1}^{1} x dx = 0$ (Eq. 2) Let $f(x) = x^2$. $c_1 x_1^2 + c_2 x_2^2 = \int_{-1}^1 x^2 dx = \frac{2}{2}$ (Eq. 3) Let $f(x) = x^3$. $c_1 x_1^3 + c_2 x_2^3 = \int_{-1}^1 x^3 dx = 1$ (Eq. 4)

Use (nonlinear) equations (1)-(4) to solve for x_1, x_2, c_1 and c_2 . We obtain:

$$\int_{-1}^{1} f(x)dx \approx f\left(\frac{-\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right)$$

Remark: Quadrature formula $\int_{-1}^{1} f(x) dx \approx f\left(\frac{-\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right)$ has degree of precision 3; while Trapezoidal rule has degree of precision 1.





Deriving Gaussian Quadrature by Legendre Polynomial

Definition. Legendre Polynomials

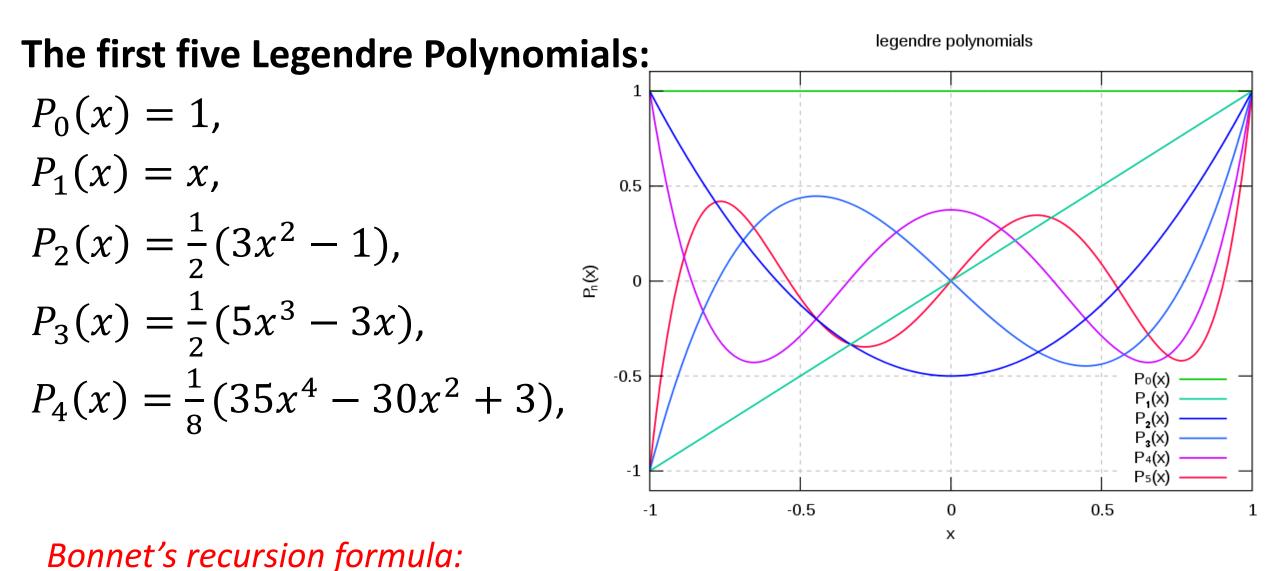
Legendre polynomials $P_n(x)$, defined on [-1,1] satisfy:

1) For each n, $P_n(x)$ is a polynomial of degree n, and $P_n(1) = 1$.

2) $\int_{-1}^{1} P(x)P_n(x)dx = 0$ whenever P(x) is a polynomial of degree less than n

Remark:

- In textbook, condition $P_n(1) = 1$ in Property **1**) is replaced by requiring leading coefficient of $P_n(x)$ is 1, which is not standard.
- Property 2) is usually referred to as P(x) and $P_n(x)$ are orthogonal.



 $(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x), n \ge 1$

Theorem of Gaussian Quadrature by Legendre Polynomial **Theorem 4.7** Suppose that x_1, \dots, x_n are the roots of the nth Legendre polynomial $P_n(x)$ and that for each $i = 1, 2, \dots n$, the numbers c_i are defined by

$$c_{i} = \int_{-1}^{1} \prod_{\substack{j=1; \ j \neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} dx$$

If P(x) is any polynomial of degree less than 2n, then $\int_{-1}^{1} P(x) dx = \sum_{i=1}^{n} c_i P(x_i)$

• Remark: $\prod_{\substack{j=1 \ j\neq i}}^{n} \frac{x-x_j}{x_i-x_j}$ is a (n-1)th degree Lagrange basis polynomial using nodes x_1, \dots, x_n .

Gaussian Quadrature Formula

$$\int_{-1}^{1} f(x) dx \approx \sum_{i=1}^{n} c_i f(x_i)$$

n	Abscissae (x _i)	Weights (c _i)	Degree of Precision
2	$\sqrt{3}/3$	1.0	3
	$-\sqrt{3}/3$	1.0	
3	0. 7745966692	0.555555556	5
	0.0	0.888888889	
	-0.7745966692	0.555555556	

More in **Table 4.12** of the textbook

Example 1. Approximate $\int_{-1}^{1} e^{x} dx$ using Gaussian quadrature with n = 3.

Gaussian Quadrature on Arbitrary Intervals

Use substitution or transformation to transform $\int_{a}^{b} f(x) dx$ into an integral defined over [-1,1].

Let
$$x = \frac{1}{2}(a+b) + \frac{1}{2}(b-a)t$$
, with $t \in [-1, 1]$

Then

$$\int_{a}^{b} f(x)dx = \int_{-1}^{1} f\left(\frac{1}{2}(a+b) + \frac{1}{2}(b-a)t\right)\left(\frac{b-a}{2}\right)dt$$

Example 2. Approximate $\int_{1}^{3} \cos x \, dx$ using Gaussian quadrature with n = 2.