
Section 5.1 Elementary Theory of 
Initial-Value Problems



• Ordinary differential equations (ODE) describe the change of some 
variables with respect to another:

𝑑𝑦
𝑑𝑡

= 𝑓 𝑡, 𝑦 , for 𝑎 ≤ 𝑡 ≤ 𝑏
𝑦 𝑎 = 𝛼

Definition 5.1. A function 𝑓(𝑡, 𝑦) is said to satisfy a Lipschitz condition
in the variable 𝑦 on a set 𝐷 ⊂ 𝑅3 if a constant 𝐿 > 0 exists with

|𝑓 𝑡, 𝑦8 − 𝑓 𝑡, 𝑦3 | ≤ 𝐿|𝑦8 − 𝑦3|
whenever 𝑡, 𝑦8 and 𝑡, 𝑦3 are in 𝐷. The constant 𝐿 is called a 
Lipschitz constant for 𝑓.



Definition 5.2 A set 𝐷 ⊂ 𝑅3 is said to be convex if whenever 𝑡8, 𝑦8
and 𝑡3, 𝑦3 belongs to 𝐷 and 𝜆 ∈ [0,1], the point ( 1 − 𝜆 𝑡8 + 𝜆𝑡3,
1 − 𝜆 𝑦8 + 𝜆𝑦3) also belongs to 𝐷.

Remark:
1. Convex means that line segment connecting 𝑡8, 𝑦8 and 𝑡3, 𝑦3 is in 
𝐷 whenever 𝑡8, 𝑦8 and 𝑡3, 𝑦3 belongs to 𝐷. 
2. The set 𝐷 = { 𝑥, 𝑦 𝑎 ≤ 𝑡 ≤ 𝑏 𝑎𝑛𝑑 −∞ ≤ 𝑦 ≤ ∞} is convex. 



Theorem 5.3 Suppose 𝑓(𝑡, 𝑦) is defined on a convex set 𝐷 ⊂ 𝑅3. If a 
constant 𝐿 > 0 exists with | EF

EG
(𝑡, 𝑦)| ≤ 𝐿 for all (𝑡, 𝑦) ∈ 𝐷, then 𝑓

satisfies a Lipschitz condition on 𝐷 in the variable 𝑦 with Lipschitz 
constant 𝐿. 

Theorem 5.4 (existence & uniqueness) Suppose that 𝐷 = { 𝑥, 𝑦 𝑎 ≤
𝑡 ≤ 𝑏 𝑎𝑛𝑑 −∞ < 𝑦 < ∞} and that 𝑓(𝑡, 𝑦) is continuous on 𝐷. If 𝑓
satisfies a Lipschitz condition on 𝐷 in the variable 𝑦, then the initial-
value problem (IVP) 

𝑦I = 𝑓 𝑡, 𝑦 , 𝑎 ≤ 𝑡 ≤ 𝑏, 𝑦 𝑎 = 𝛼,
has a unique solution 𝑦(𝑡) for 𝑎 ≤ 𝑡 ≤ 𝑏.



Definition 5.5 The initial value problem
KG
KL
= 𝑓 𝑡, 𝑦 , 𝑎 ≤ 𝑡 ≤ 𝑏, 𝑦 𝑎 = 𝛼

is said to be a well-posed problem if:
1. There exists a unique solution 𝑦(𝑡).
2. Small perturbations in the statement of the problem 

𝑓 𝑡, 𝑦 −→ 𝑓 𝑡, 𝑦 + 𝛿 𝑡 ,        𝛼 −→ 𝛼 + 𝛿O
introduce correspondingly small changes in the solution

𝑦(𝑡) −→ 𝑦(𝑡) + 𝜖(𝑡)

Well-posedness

Why well-posedness?  Numerical methods always solve perturbed problem 
because of, e.g., round-off errors. 



Theorem 5.6 Suppose 𝐷 = { 𝑥, 𝑦 𝑎 ≤ 𝑡 ≤ 𝑏 𝑎𝑛𝑑 −∞ < 𝑦 < ∞} and 
that 𝑓(𝑡, 𝑦) is continuous on 𝐷 and satisfies a Lipschitz condition on 𝐷
in the variable 𝑦, then IVP 

𝑦I = 𝑓 𝑡, 𝑦 , 𝑎 ≤ 𝑡 ≤ 𝑏, 𝑦 𝑎 = 𝛽,
is well-posed.

Example 1.  Show the IVP 𝑦I = 𝑦 − 𝑡3 + 1, 0 ≤ 𝑡 ≤ 2, 𝑦 0 = 0.5
is well-posed on 𝐷 = { 𝑥, 𝑦 0 ≤ 𝑡 ≤ 2 𝑎𝑛𝑑 −∞ < 𝑦 < ∞}

Well-posedness



Section 5.2 Euler’s method



Some problems modeled by differential equations
1) Epidemics (spread of a disease in population)

Population in three categories: Susceptible (𝑆(𝑡)), Infectious (𝐼(𝑡)), Recovered (𝑅(𝑡)). 

𝑑𝑆(𝑡)
𝑑𝑡

= −𝛽𝑆 𝑡 𝐼 𝑡

𝑑𝐼(𝑡)
𝑑𝑡

= 𝛽 𝑆 𝑡 𝐼 𝑡 − 𝛾 𝐼 𝑡

𝑑𝑅(𝑡)
𝑑𝑡

= 𝛾 𝐼 𝑡

2) Income and wealth distribution (with wealth 𝑎 and income 𝑧)

max𝐸O\
O

]

𝑒_`L𝑢 𝑐L 𝑑𝑡 𝑠. 𝑡.

𝑑𝑎L = 𝑧L + 𝑟 𝑡 𝑎L − 𝑐L 𝑑𝑡
𝑑𝑧L = 𝜇 𝑧L 𝑑𝑡 + 𝜎 𝑧L 𝑑𝑊L

𝑎L ≥ 𝑎.



Summary of Problems to Be Solved

• Consider to solve i
KG
KL
= 𝑓 𝑡, 𝑦 𝑎 ≤ 𝑡 ≤ 𝑏
𝑦 𝑎 = 𝛼

• Choose integer 𝑁. Let ℎ = l_m
n
, and 𝑡o = 𝑎 + 𝑖ℎ with 𝑖 = 0,1, … , 𝑁.

ℎ is called the step size, 𝑡o are called mesh points. 
• We want to compute approximate solutions 𝑤O,𝑤8, 𝑤3, … ,𝑤o, 𝑤o}8, …𝑤n step 

by step



Deriving Euler’s method by Taylor’s Theorem

1) For each 𝑖 = 0,1, … , 𝑁,

𝑦 𝑡o}8 = 𝑦 𝑡o + ℎ𝑦I 𝑡o +
ℎ3

2
𝑦II 𝜉o .

Since KG
KL
= 𝑓 𝑡, 𝑦 , 𝑦 𝑡o}8 = 𝑦 𝑡o + ℎ𝑓 𝑡o, 𝑦(𝑡o) + ��

3
𝑦II 𝜉o

2) Drop �
�

3
𝑦II 𝜉o , and let 𝑤O = 𝛼,𝑤o ≈ 𝑦 𝑡o , we obtain:

Euler’s method:
𝑤O= 𝛼
𝑤o}8 = 𝑤o + ℎ𝑓 𝑡o, 𝑤o , for each 𝑖 = 0,1, … , 𝑁 − 1.



Geometric Interpretation of Euler’s Method
𝑓 𝑡o, 𝑤o ≈ 𝑦I 𝑡o = 𝑓(𝑡o, 𝑦 𝑡o ) implies 𝑓 𝑡o, 𝑤o is an approximation 
to slope of 𝑦 𝑡 at 𝑡o.



Example 1. Solve 𝑦I = 𝑦 − 𝑡3 + 1, 0 ≤ 𝑡 ≤ 2, 𝑦 0 = 0.5
numerically using Euler’s method with time step size ℎ = 0.5.
Exact value: 𝑦 𝑡 = 𝑡 + 1 3 − 0.5 𝑒L. 

(MATLAB) Implement Euler’s method for Example 1 using ℎ = 0.1.



% inputs
f = @(t,y) y - t.^2 +1;
tend = 2;
y0 = 0.5;
h = 0.1;
yex = @(t) (t+1).^2-0.5*exp(t); % exact solution

% Euler's method
tGrid = [0:h:tend];
N = length(tGrid)-1;
wGrid = zeros(1,N+1);
wGrid(1) = y0; % initial data
for i = 1:N
    ti = tGrid(i); wi = wGrid(i);
    wGrid(i+1) = wi + h*f(ti, wi); % Euler update
end

plot(tGrid, yex(tGrid),'b', tGrid, wGrid, 'ro--')
legend('Exact', 'Euler','Location','Best')
set(gca, 'FontSize',24)
shg
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Error Bound of Euler’s Method
Theorem 5.9  Suppose 𝐷 = { 𝑥, 𝑦 𝑎 ≤ 𝑡 ≤ 𝑏 𝑎𝑛𝑑 −∞ < 𝑦 < ∞}
and that 𝑓(𝑡, 𝑦) is continuous on 𝐷 and satisfies a Lipschitz condition 
on 𝐷 in the variable 𝑦 with Lipschitz constant 𝐿 and that a constant 𝑀
exists with 

𝑦II 𝑡 ≤ 𝑀, for all 𝑡 ∈ 𝑎, 𝑏 .
Let 𝑦(𝑡) denote the unique solution to the IVP 

𝑦I = 𝑓 𝑡, 𝑦 , 𝑎 ≤ 𝑡 ≤ 𝑏, 𝑦 𝑎 = 𝛽,
and  𝑤O,𝑤8,⋯ ,𝑤� as in Euler’s method. Then

𝑦 𝑡o − 𝑤o ≤
ℎ𝑀
2𝐿

𝑒� L�_m − 1 .



Example 2 The solution to the IVP 𝑦I = 𝑦 − 𝑡3 + 1, 0 ≤ 𝑡 ≤
2, 𝑦 0 = 0.5 was approximated by Euler’s method with ℎ =
0.2. Find the bound for approximation. Compare the actual 
error at each step to the error bound.


