Section 5.1 Elementary Theory of
Initial-Value Problems



* Ordinary differential equations (ODE) describe the change of some
variables with respect to another:

d
—y—f(t,y), fora<t<b

— =
; y(a) =«

Definition 5.1. A function f (¢, y) is said to satisfy a Lipschitz condition
in the variable y on aset D < R* if a constant L > 0 exists with

1f(t,y) — f(&y2)| < Ly, — v,

whenever (t,y,) and (t,y,) are in D. The constant L is called a
Lipschitz constant for f.



Definition 5.2 Aset D C R* is said to be convex if whenever (t{, ;)
and (t,, y,) belongsto D and A € [0,1], the point ((1 — A)t; + At,,
(1—-A)y, + Ay,) also belongs to D.

Remark:

1. Convex means that line segment connecting (t;, y;) and (t,, y,) isin
D whenever (t,,y,) and (t,, y,) belongs to D.

2. ThesetD ={(x,y) a <t <band — o <y < o} is convex.



Theorem 5.3 Suppose f(t,y) is defined on a convexset D < R?.If a
constant L > 0 exists with |Z—£ (t,y)| < Lforall(t,y) € D, then f

satisfies a Lipschitz condition on D in the variable y with Lipschitz
constant L.

Theorem 5.4 (existence & uniqueness) Suppose that D = {(x,y) a <
t <band — o <y < o} andthat f(t,y) is continuouson D. If f
satisfies a Lipschitz condition on D in the variable y, then the initial-
value problem (IVP)

y'=f(t,y), a <t <b, y(a) = «a,
has a unique solution y(t) fora <t < b.



Well-posedness

Definition 5.5 The initial value problem

%=f(t,y), a <t<b yla)=a«a
is said to be a well-posed problem if:
1. There exists a unique solution y(t).
2. Small perturbations in the statement of the problem
fit,y) — ft,y) +6(), a——>a+d

introduce correspondingly small changes in the solution
y(t) — y(t) + e(t)

Why well-posedness? Numerical methods always solve perturbed problem
because of, e.g., round-off errors.




Well-posedness

Theorem 5.6 Suppose D = {(x,y) a <t <band — oo <y < o}and
that f (¢, y) is continuous on D and satisfies a Lipschitz condition on D
in the variable y, then IVP

y'=f(t,y), a <t <b yla)=p,
is well-posed.

Example 1. ShowthelVPy =y —t4+1, 0 <t <2, y(0) = 0.5
is well-posedon D = {(x,y) 0 <t<2and — oo <y < oo}



Section 5.2 Euler’s method



Some problems modeled by differential equations

1) Epidemics (spread of a disease in population)
Population in three categories: Susceptible (S(t)), Infectious (I(t)), Recovered (R(t)).

( dsS(t)

BT —BS(®)I(t)

dl
T ps@1w -y 1)
dR(¢)

\ dt

A

=y I(t)

2) Income and wealth distribution (with wealth a and income z)

0.0)

max on e Plu(c)dt s.t.
0
dat — (Zt + T(t)at — Ct)dt
dzy = u(z;)dt + o(z;)dW;
as = a.



Summary of Problems to Be Solved

(
2 = f(t,y) a<t<b

y(a) =«

e Consider to solve <«

\
* Choose integer N. Let h = b;,—a, and t; = a+ihwithi =0,1,...,N.
h is called the step size, t; are called mesh points.

* We want to compute approximate solutions wy, wy, w,, ..., wW;, W;, ¢, ... Wy step
by step LY

Step 0: Step 2: Step i: Step N:
Wo =a w, = y(t;) w; = y(t;) wy = y(ty)
Step 1:
a W1 =Y(t) b
| | | | | | | | |




Deriving Euler’s method by Taylor’s Theorem

1) Foreachi =0,1, ..., N,
2

y(tiy1) = y(t;) + hy'(t;) + 7}’”(51')-

since 2 = £(£,), ¥(ti41) = ¥(t) + hf (t,y(t)) + 5 "' (&)

2
2) Drop h?y”(fi), and let wy = a, w; = y(t;), we obtain:

Euler’s method:
W0= a
Wi, =w; + hf(t;,w;), foreachi=0,1,..,N—1.



Geometric Interpretation of Euler’s Method
f(t,w;) = y'(t;) = f(t;,y(t;)) implies f(t;, w;) is an approximation

to slope of y(t) att;.

¥ (L), yit)

Euler Approximation to dy/dt=y-t>+1, h=0.5
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Example1l.Solvey' =y —t4+1, 0 <t <2, y(0)= 05
numerically using Euler’s method with time step size h = 0.5.

Exact value: y(t) = (t + 1)% — 0.5 et.

(MATLAB) Implement Euler’s method for Example 1 using h = 0.1.



% Euler's method
tGrid = [0:h:tend];
N = length(tGrid)-1;
wGrid = zeros(1l,N+1);
wGrid(l) = y0; % initial data
for i = 1:N
ti = tGrid(i); wi = wGrid(1i);

wGrid(i+l) = wi + h*f(ti, wi); % Euler update

end

plot(tGrid, yex(tGrid), 'b', tGrid, wGrid,
legend( 'Exact’', 'Euler', 'Location’', 'Best')
set(gca, 'FontSize',b24)

shg

1;
@(t) (t+l1l)."2-0.5*exp(t); % exact solution

‘ro--")

—Exact

—o Euler

0.5 1 1.5




Error Bound of Euler’s Method

Theorem 5.9 Suppose D = {(x,y) a <t <band — o <y < o}
and that f(t, y) is continuous on D and satisfies a Lipschitz condition

on D in the variable y with Lipschitz constant L and that a constant M
exists with

ly"(t)| < M, forallt € [a,b].
Let y(t) denote the unique solution to the IVP
y' =fty), a <t<b  yla)=5,
and wq, Wy, -+, W, as in Euler’s method. Then

hM
() —wil < — [t — 1],



Example 2 The solutiontothe IVPy' =y —t? +1,0 <t <
2, y(0) = 0.5 was approximated by Euler’s method with h =
0.2. Find the bound for approximation. Compare the actual
error at each step to the error bound.

Table 5.2
l; 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Actual Error  0.02930  0.06209  0.09854  0.13875  0.18268  0.23013  0.28063 0.33336  0.38702  0.43969
Error Bound 0.03752  0.08334  0.13931 0.20767 0.29117 0.39315 0.51771  0.66985  0.85568  1.08264




