Section 5.6 Multistep
Methods

Motivation

* How to design a high-order accurate method without the need to
compute intermediate (stage) values as Runge-Kutta methods.

General idea: Consider IVP: y' = f(t,y), a <t <b, y(a) = a.

Let the approximate solutions at mesh points t,, t4, t,, ... t; be already
obtained. Since in general error |y(t;;1) — W;41| grows with respect to
time t, it then makes sense to use more previously computed
approximate solution w;, w;_1,w;_», ... when computing w; 1.

Definition 5.14 An m-step multistep method for solving the IVP:

y' =fty), a<t<bh y@)=a

has a difference equation for computing w;, 1 at the mesh point t;,
represented by:

Wit1 = QWi T QWi + -+ AQoWit1-m
+h[by f (tir1, Wit1) + by f (&, W;)

+ o+ bof (Liv1—m Wit1-m)]
fori=m-—1,m,..,N —1,where h = (b —a)/N, the a,,
a,...,a,_1 and by, by, ..., b, are constants, and the starting values
Wy = a, Wy = dq, ., W1 = 1 are specified.

Remark. 1. When b,,, = 0, the method is called explicit;
2. When b,,, # 0, the method is called implicit

Adams-Bashforth Two-step Explicit Method

ti / L
1) y(tiv) =y(&) +), y'@®)dt = y(&) + [, f (¢, y(0)dt
2) Treat f as a function of t. Do linear Lagrange interpolation by using (t;, f (t;, ¥;))
and (t;—1, f (ti-1,Yi-1)):

fty) =f(ti—1,yi-1)

t

i ti—1
+ 0 hz

—t
" + (¢, 1)

Li+1

y(tiv1) —y(t;) = j f(ty(®)de

ti
Ci+1
t —t;

= f [f(ti—1»)’(ti—1)) — T ft,y()) ‘ _;i_l + 0| dt
ti

h 3h
= —f(ti1, (i) 5 + f (6 y () =+ 0(h%)

Adams-Bashforth two-step explicit method (AB2):
Wo = (o, Wi =y
h
Wipr = Wi+ [3f (6, W) = F (i1, wi-))
wherei =1,2,..N — 1.

Remark:
a) AB2 method has local truncation error of order two.

b) AB2 method needs two starting values. w; can be computed
by a Runge-Kutta method of the same order.

Adams-Moulton Two-step Implicit Method

Wqp = Qa, Wi = 4,

h
Wiy1 = w; + E[Sf(tiﬂ;wiﬂ) + 8 (t;, w;y) — f(ti—, wi—1)],
wherei =1,2,..N — 1.

Remark:

a) AM2 method has local truncation error of order three.

b) AM2 method is obtained by treating f as a function of ¢, and
applying quadratic Lagrange interpolation using data points at
ti+1' ti and ti—l'

c) AM2 method needs two starting values. w; can be computed by a
Runge-Kutta method of the same order.

Local Truncation Error of Multistep Methods

Definition 5.15 Local Truncation Error. If y(t) solvesthe IVP y' = f(t,y), a <

t <b, y(a) =aand
Wit1 = QWi T QWi + -+ QoWit1-m

h[bmf(ti+1'wi+1) T bm—lf(tirwi) T e
+bof (tiv1—m» Wit1—m)],
the local truncation error is:
V(i) — A V(&) — a2y (Eim1) — - — @Y (Eiz1-m)
Tiv1(h) =)
_[bmf(ti+1;3’(ti+1)) Tt bof(ti+1—m»3’(ti))]
foreach i=m—-—1,m,..,N — 1.
NOTE:

a) the local truncation error of a m-step explicit step is O (h™);

b) the local truncation error of a m-step implicit step is O(h™*1).

explicit method vs. implicit method

1. Explicit method is cheaper to calculate per step. (no equations to
solve)

2. Implicit method is more stable, but is also more expensive to
compute.

* Explicit methods are usually preferred over implicit methods due to
their computational efficiency, but there are some exceptions in
favor of implicit methods (stiff problems).

3rd order methods
 Adams-Bashforth Three-step Explicit Method:

" 1231 (t;, w;) — 16f (i1, Wi—q) + 5f (L2, w;i_3)]

1+1 l 12

 Adams-Moulton Two-step Implicit Method:
h
Wit1 = W; + 12 [Sf(tis1, Wivq) +8F(t, wy) — f(ti—1, wi—q)]

4th order methods

 Adams-Bashforth Four-step Explicit Method:
Wit1

= w; [55f(t;, w;) — 59f (ti—1, wi—1) + 37f(ti—2, wi—3) — 9f (ti—3, w;_3)]

_I__
24

 Adams-Moulton Three-step Implicit Method:
h
Wir1 = Wi + 57 [9F (tiv1, Wigr) + 19 (&5, wy) — 5F (L1, Wi—1) + f(ti—2, Wi—3)]

Predictor-Corrector Method

 Motivation:

Consider tosolvethe IVPy' =¢eY, 0 <t <0.25 y(0) = 1 by the two-
step Adams-Moulton method.

Solution: The two-step Adams-Moulton method is

h
Wiy = W + 17 |5eVit1 4 BeWi — eWi-1] Eq.(1)
Eq. (1) can be solved (for w;, 1) by Newton’s method. However, this can be

quite computationally expensive.

* To avoid solving nonlinear equations, we can combine explicit and implicit
methods to form a predictor-corrector method.

Ath order Predictor-Corrector Method

Step 1: Use 4t order Runge-Kutta method to compute w,, w;, w, and wj.
Step 2: Fori = 3,4,5,..N

a) Predictor sub-step. Use 4th order 4-step explicit Adams-Bashforth method to
compute a predicated value w; . ,,

Wi+1,p
h
= W; + ﬁ [55f(ti;Wi) — 59f(ti—1;Wi—1) + 37f(ti—2:Wi—2) — 9f(ti—3:Wi—3)]

b) Correction sub-step. Use 4th order three-step Adams-Moulton implicit
method to compute a correction w;, ; (the approximation at i + 1 time step)

Wit1

h
= w; + >Z [9f(ti+1,Wi+1,p) + 19/ (t;, wy) — 5F (i1, wi—q) + f(ti_2, wi—3)]

The epidemics (S-1-R) model (revisit)

ds(o)
— = = —BS(OI(®)
: ﬁ = BSOI®) -y I(£)
dR(t) B
k = =V I(t)

e Variable for the S-I-R Model:

t = the time in days with t=0 at the start of observation
S = the number of susceptible individuals

I = the number of infectious individuals

R = the number of removed individuals

+ Parameters in the S-I-R Model:
f: the daily rate of contacts per infective

Y. 1/(the average number of days infectious)

S-I-R (epidemics) Model is a 3-component ODE system.

Example 1. Use Adams 4t order predictor-corrector method to
solve the SIR model with initial condition

S(0) =0.89, I1(0) =0.01, R(0) =0.10, (add up to one)
and the following parameters:

a) f =0.61818,y = 0.09091 (Rubella)

b)p =1.875,y = 0.125. (Measles)

c) f = 0.46667,y = 0.33333 (Influenza)

Computing starting values using RK4 method.

Take final time tend = 120, take step size h = 0.5.

Reformulation the ODE system

y3(t).

*Set S(t) =yi(t), I(t) = y2(t), R(t) =
POPE () = — Byiye,
Yo (1) =By1y2 — VY2,
y3(t) =7y2.
* Or, equivalently
y Y1 | —BYy1y2,
P Y2 = By1y2 — vy2,
Y3 VY2

We walk through the code sir.m step-by-step

STEP O: set-up

% 1lnputs

tbeta = 0.61818; gamma = 0.09091; % rubella
tbeta = 1.875; gamma = 0.125; % measles

beta = 0.46667; gamma = 0.33333; % Influenza

f = @(t, y) [-beta*y(l)*y(2);...
beta*y(l)*y(2)-gamma*y(2);...
gamma*y(2)];

tend = 120; % final time (~4 month)

y0 = [0.89;0.01; 0.1]; % initial data

h = 0.5; % half-day step size

STEP 1: RK4 for wl, w2, w3

tGrid = [0O:h:tend]; N = length(tGrid)-1;
wGrid = zeros(3,N+1); wGrid(:,1) = yO0;

% RK4 for wl,w2,w3
for 1 = 1:3
tl =

end

kl = £(ti,wl);
k2 = f(ti+h/2, wi+h/2%*kl);
k3 = f(ti+h/2, wi+h/2%k2);

k4
wGrid(:,1+1)

tGrid(1i); wi = wGrid(:,1);

f(ti+h, wi+h*k3);

wi + h/6%(k1+2*k2+2%k3+k4);

STEP 2: predictor-corrector for w4, ... ,wN

for

end

i = 4:N

ti = tGrid(i); wi = wGrid(:,1i);
wil = wGrid(:,1i-1);

wi2 = wGrid(:,1-2);

wi3 = wGrid(:,1-3);

% predictor: AB4

wip = wi + h/24*(55*f(ti,wi)...
-59*f(ti-h, wil)...
+37*£(t1i-2*h, wi2)...
-9*f(ti-3*h, wi3));

% corrector AM3

wGrid(:,i+1l) = wi + h/24*(9*f(ti+h,wip)...
+19*f(ti, wi)...
—5*xf(ti-h, wil)...
+f(ti-2*h, wi2));

STEP 3: outputs and plots

fprintf('\n at time t=%i',tend)

fprintf('\n Susceptible = %.2f%%', wGrid(1,N+1)%*100)
fprintf('\n Infected = %.2f%%"', wGrid(2,N+1)*100)
fprintf('\n Removed = %.2f%%\n' ,wGrid(3,N+1)*100)

figure(l)

plot(tGrid, wGrid(l,:), 'r')
title('Susceptibles’)
set(gca, 'FontSize',18)

0.9

Susceptibles

Infected

at time t=120 =

Susceptible = 53.08%
Infected

0.008
Removed =

0.6

46.92% 7

AN

S~]

0.5 *
0 20

40 60 80 100 120 0 20 40 60 80 100 120

