Section 5.11 Stiff Differential Equations

Stability on unbounded intervals
Motivation

Example 1. The initial-value problem \(y' = -30y, \quad 0 \leq t < \infty, \quad y(0) = 1 \) has exact solution \(y(t) = e^{-30t} \). Use Euler’s method to solve with step size \(h = 1 \).

Solution: Euler’s method

\[
\begin{align*}
 w_1 &= (1 - 30h)w_0 = (1 - 30h) = -29 \\
 w_2 &= (1 - 30h)w_1 = (1 - 30h)^2 = (-29)^2 \\
 &\quad \vdots \\
 w_{i+1} &= (1 - 30h)w_i = (1 - 30h)^{i+1}
\end{align*}
\]

If \(h > \frac{1}{15} \), then \(|1 - 30h| > 1 \), and \((1 - 30h)^{i+1} \) grows geometrically, in contrast to the true solution which decays to zero.

Facts:

1) A stiff differential equation is numerically unstable unless the step size is extremely small.

2) Stiff differential equations are characterized as those whose exact solution has a term of the form \(e^{-ct} \), where \(c \) is a large positive constant.
Absolute Stability

Definition (The test equation)

\[y' = \lambda y, \quad 0 \leq t < \infty, \quad y(0) = \alpha, \quad \text{where } \lambda < 0. \]

The test equation has exact solution \(y(t) = \alpha e^{\lambda t} \), which decays to zero as \(t \to \infty \).

Definition (Absolute Stability). Let \(\{w_i\}_{i=0}^{\infty} \) be the sequence generated by a difference method applied to the test equation with a fixed step size \(h \).

a) If the limit \(\lim_{n \to \infty} w_n = 0 \), then the method with step-size \(h \) is absolute stable.

b) If the limit \(\lim_{n \to \infty} w_n \neq 0 \), then the method with step-size \(h \) is not stable.
Example 2. The initial-value problem \(y' = -30y \), \(0 \leq t < \infty \), \(y(0) = 1 \) has exact solution \(y(t) = e^{-30t} \).

Under what condition on the step size \(h \) ensures the stability of Euler method for this problem.
One-step methods for solving test equation

• The test equation:
 \[y' = \lambda y, \quad 0 \leq t < \infty, \quad y(0) = \alpha, \quad \text{where } \lambda < 0. \]

• Any one-step method for the test equation can be written as
 \[w_{j+1} = Q(h\lambda)w_j, \quad j \geq 0, \]
 where \(Q(h\lambda) \) is a function of \(h\lambda \).

Example 3.

a) Find \(Q(h\lambda) \) for Euler method

b) Find \(Q(h\lambda) \) for Taylor method of order \(n \)

c) Find \(Q(h\lambda) \) for RK4.
Region of Stability

Definition 5.25 The region \(R \) of absolute stability for a one-step method is \(R = \{ h\lambda \in C \mid |Q(h\lambda)| < 1 \} \).

Example 3.

a) Draw the stability region of the Euler method.

b) Draw the stability region of the following backward Euler method:

\[
 w_{i+1} = w_i + hf(t_{i+1}, w_{i+1})
\]

Definition A numerical method is said to be A-stable if its region \(R \) of absolute stability contains the entire left half-plane.
The A-stable (implicit) **backward Euler method**.

\[w_0 = \alpha \]

\[w_{j+1} = w_j + hf(t_{j+1}, w_{j+1}), \quad \text{for} \quad j \geq 0. \]

- Backward Euler method has \(Q(h\lambda) = \frac{1}{1-h\lambda} \).
- Stability implies \(|\frac{1}{1-h\lambda}| < 1 \).
Example 4. Show the **implicit Trapezoidal method** is A-stable.

\[w_0 = \alpha \]

\[w_{j+1} = w_j + \frac{h}{2} \left[f(t_j, w_j) + f(t_{j+1}, w_{j+1}) \right], \quad \text{for} \quad j \geq 0. \]
Multistep Method for solving test equation

Apply a multistep method to the test equation:
\[w_{i+1} = a_{m-1}w_i + a_{m-2}w_{i-1} + \cdots + a_0w_{i+1-m} \\
+ h\lambda [b_m w_{i+1} + b_{m-1}w_i + \cdots + b_0w_{i+1-m}], \]

This leads to:
\[(1 - h\lambda b_m)w_{i+1} - (a_{m-1} + h\lambda b_{m-1})w_i - \cdots - (a_0 + h\lambda b_0)w_{i+1-m} = 0 \]

Define the associated **characteristic polynomial** to this difference equation
\[Q(z, h\lambda) = (1 - h\lambda b_m)z^m - (a_{m-1} + h\lambda b_{m-1})z^{m-1} - \cdots - (a_0 + h\lambda b_0). \]
Let \(\beta_1, \beta_2, \ldots, \beta_m \) be the zeros of the characteristic polynomial to the difference equation. Then \(c_1, c_2, \ldots, c_m \) exist with

\[
w_i = \sum_{k=1}^{m} c_k (\beta_k)^i , \quad \text{for} \quad i = 0, \ldots, N
\]

and \(|\beta_k| < 1 \) is required for stability for multistep method.
Region of Stability

Definition 5.25 The region R of absolute stability for a multistep method, it is

$$R = \{ h\lambda \in C \mid |\beta_k| < 1, \text{ for all zeros } \beta_k \text{ of } Q(z, h\lambda) \}.$$

Remark: The only A-stable multistep method is the implicit Trapezoidal method (also known as the Crank-Nicolson method):

$$w_{j+1} = w_j + \frac{h}{2} [f(t_j, w_j) + f(t_{j+1}, w_{j+1})]$$