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Abstract—Over the past few years, an incredible diversity of
consumer-grade wearables has emerged with tremendous breadth
in capabilities, form factor, and cost. These wearable devices show
significant promise for researchers to conduct expansive research
studies in terms of scale, scope, and duration. Unfortunately,
there is limited public data shared with respect to the data
quality, device longevity, and scaling issues that emerge when
trying to execute such studies. To that end, we share real-world
results with respect to data quality, participant compliance, and
device efficacy on a large scale, longitudinal study involving over
seven hundred and fifty working professionals over the period
of an entire year. In this paper, we present analyses with respect
to the different types of data being collected including sleep,
heart rate, physical activity, and stress. Furthermore, we explore
participants behavior regarding charging frequency, and device
robustness to further aid researchers considering large scale
wearable studies.

Index Terms—Wearables; User Studies; Sleep; Heart Rate,
Data Quality

I. INTRODUCTION

Over the past few years, the quality and sophistication of
wearable devices have improved dramatically. Wearables have
evolved into complex devices that can connect to smartphones
and provide notifications, alerts, physical activity, sleep recog-
nition, real time heart rate monitoring, and more. Accompanied
by a steady increase in the adoption of these devices [1], the
possibilities for their use seem endless, making wearables a
veritable treasure trove of opportunities for researchers.

The widespread adoption of these sensor rich consumer
grade (oriented) devices means that one can now conduct
research at a larger scale in both the size and duration of
studies to explore numerous aspects of the human condition.
Unfortunately, despite the fact that wearables have become
more affordable, it is still expensive to conduct large studies.
Furthermore, trying to conduct large studies becomes harder
when going beyond the college campus. Various studies [2]–
[5] have tackled individual study deficiencies with respect to
time, size, and representative populations but, to the best of
our knowledge, there are limited studies that have tried to
look more broadly with a sizable population of real world
professionals over an extended period of time.

As the community tries to embark on larger studies, how
much data can we collect and what is the quality and con-
sistency of that data? To that end, we share in this paper our
experiences and analysis on data quality with using wearables

in conducting such large study. The contributions of this paper
are as follows:

• Analysis of large-scale data consistency: We examine
the wearable data as recorded from 757 working pro-
fessionals who wore a study-provided Garmin vivoSmart
3 ranging from nine months to a year. We were able
to gather meaningful data roughly 73.5% of the time
inclusive of any wearable sub-streams with data either
largely being recorded in its entirety (heart rate, steps,
stress, etc.) or not at all. Compliance peaked at 90% data
peaked before 30 days post-enrollment before stabilizing
closer to 70% after 190 days in the study.

• Analysis of data gaps, replacements, and wearable energy
levels: We examine data gaps and find that 77.2% of
missing data happen in gaps of greater than 24 hours with
week-long gaps accounting for 70.8% of all missing data
for individuals who did not drop out of the study.

• Analysis of wearable accuracy: we compare wearable
heart rate data for 31 participants with a Zephyr Bio-
harness in different time windows. We find a fair ICC
(.44), MAE of at least 8.4 bpm and MAPE of at least
10.4% between the two measurements.

II. RELATED WORK

In the ubiquitous computing community, there has been
considerable interest in monitoring nearly all aspects of human
behavior through the use of smartphones [6], wearables [2]–
[5], social media [7], and numerous other sensing modalities
[8], [9]. Indeed, each year seems to bring new advances and
opportunities for sensing offering researchers a myriad of
options when designing a study. However, the focus of this
paper is strictly on the issue of wearables and in particular,
the underlying data consistency, the overarching user wearable
compliance, and various behavioral patterns of participants
during longitudinal studies involving wearables for which
there is a relative dearth of information available as studies
focus more often on the end results rather than on the
underlying data quality.

The most common type of communication for sharing
experiences tend to be ‘lessons learned’ papers which share
hard-earned experiences dealing with the quirks of devices,
study management, and scale in terms of study size and
duration [10], [11]. The diversity in terms of such studies is
often quite significant ranging from the order of less than a



hundred participants over a semester such as with StudentLife
[4], [6] to studies approaching hundreds [12] if not nearly
one thousand [3] participants. Notably, studies such as [12]
and this paper stand out by focusing on working professionals
whereas the vast majority of work tends to utilize students and
nearby family populations for convenience.

From a data quality perspective, the work by Jeong et. al [2]
stands out as the work exclusively focused on the data quality
from a population of 50 student participants using Apple
Watches over 200 days. In contrast to works that have tried
to explore issues associated with longitudinal studies [4], to
predict compliance [11], or to increase study compliance [10],
the work in [2] focused on the question we are most interested
in, namely how much data will one be able to collect, how
accurate is the wearable, how does data collection vary across
the day, and how do aspects such as wearable energy levels
interplay to impact data collection. It is this question of the
‘goodness’ of practical wearable data that leads us to dive into
the wearable data performance that we observed in our large
scale longitudinal study of working professionals and to share
our observations with the research community.

III. STUDY OVERVIEW

The focus of our overarching study dubbed Tesserae [13]
was to explore the extent to which various widely available
sensing streams could be used to better characterize various
aspects of daily life with a particular focus on individuals in
knowledge-based professions. Our study was constructed to
leverage a variety of sensing streams including a wearable as
in [3], a smartphone sensing agent inspired by [6], Bluetooth
LE beacons inspired by [9], and social media analyses [7]. At
the close of enrollment which concluded during the Summer
of 2018, a total of 757 participants were enrolled in the
study,590 of them coming from four major organizations
and the rest coming from nearby organizations around the
communities of the major organizations. Participants were
provided with a Garmin vivoSmart 3 wearable, a phone
agent, beacons, and were asked to complete daily surveys.
Participants were also asked to provide read-only access to
social media, although this last step was not required for
participation. In turn, participants were compensated through
stipends and / or lottery draws subject to the preference of the
employer. Participants were instructed to maintain a minimum
compliance level (80%) on average to warrant eligibility for
monetary remuneration. Other study details not included here
can be found in [13] published shortly after the study started.
Data enrollment and collection began in January 2018 and
continued through April 2019 with a median data collection
time of 336 days for participants.

A. Infrastructure - Wearable Data

For each sensing sub-stream (phone agent, wearable, bea-
cons, social media), a specific software stack was developed
for the purpose of gathering data through the sensors. In
particular, we focus on the software stack associated with the
wearable for the participants, namely the Garmin vivoSmart

3. Notably, we selected the Garmin vivoSmart 3 as it was
the only wearable at the time that offered: (1) a reasonable
battery duration between full charges (4 to 5 days); (2)
a reasonable charge time (charging during showering was
typically sufficient); (3) amenability to capturing sleep due
to battery duration and built-in capabilities; and (4) the ability
to compute heart rate variability (HRV) through beat-to-beat
intervals (BBI). As BBI streaming does require a separate
license and is not available through the normal Garmin Health
API, we only explore data consistency from the Health API
callbacks as might be observed with a Fitbit Charge HR [3]
or other similar consumer-grade device, which do not include
BBI data.

During enrollment, participants needed to install the Garmin
Connect app on their phones. Once users had successfully
installed the Garmin Connect app and paired the wearable
with their smartphone, users were directed to share data access
to the study through our study portal website with a link to
provide us access to their Garmin cloud data as shown in Fig.
1.

While the procedure was relatively straightforward, there
were several issues that emerged. First, users with multiple
Garmin Connect accounts could sometimes login and autho-
rize the account that was not linked to their app. Second, users
would confuse which account to login via the Garmin Connect
authorization, trying to login with their GMail account and
password. Third, as many of the users were enrolled remotely,
several did not follow all instructions and simply skipped over
the authorization step. These resulted in syncs that did not
generate callbacks to the backend. For these cases, researchers
queried the HealthAPI to recover past data.

Although the vivoSmart 3 itself could store data locally for
several days before it needed to sync with the phone, users
sometimes would close the Garmin Connect app to save power
and / or data. As a result, during our study, we sent emails
every Monday to participants that had not synced data for four
days to prevent this issue. Typically, there were 120 to 150
participants (15%) who needed a synchronization reminder
with those users tending often to repeat.

Data was stored in a PostgreSQL database , with the entirety

Fig. 1: Sync and authorization procedure to receive data from the smartwatch
through the cloud.



TABLE I: Statistics of unique samples of data and number of days with samples for participants in the study by type of data.

Type of Data Participants Participants W/ Data (# of samples) Participants W/ Data (# of
days W/ samples)

W/ Data W/o Data Total 25th Median 75th Max Std Median Mean Max Std
Activities (I) 543 - 71.7% 214 40,182 2 12 87 1165 137 9 46 362 69

Activities (M) 202 - 26.7% 555 3,434 2 4 15 194 32 4 14 165 28
BodyComps 509 - 67.2% 248 13,743 1 3 24 645 61 3 23 281 46

Dailies 724 - 95.6% 33 207,064 263 319 358 365 96 319 286 365 96
Epochs of Activity 724 - 95.6% 33 19,070,884 23,477 29,521 33,399 35,181 9,285 319 286 365 96

Sleep 711 - 93.9% 46 342,702 343 525 642 1398 233 263 232 362 98
UserMetrics 710 - 93.8% 47 73,130 47 92 157 344 70 92 103 344 70

of the dataset containing approximately 20 million rows taking
up 16GB of disk space. In Table I we present the statistics
of the summaries, epochs of activity, and user characteristics
gathered. A breakdown of what each type of data is follows.

B. Types of Data Collected

For the wearable, the Garmin Health API offered three main
types of data: Epochs (heart rate, stress, activity), Summaries
(activity, daily, sleep), and User Characteristics.

1) Activities: The Garmin Health API provides inferred
user activity summaries as well as manually entered activi-
ties. Inferred user activities overlap with motion coefficients
submitted in epochs and with daily summaries of activity.
This data type is an attempt from the cloud to provide
high level data about activities such as statistics on speed,
distance traveled, heart rate, and intensity. These activities can
be updated by participants using the Garmin Connect app.
Manually entered activities are the ones that are created by the
user and were not detected by the smartwatch, i.e., the cloud
could not infer there was an activity from the data submitted.
This feature was only utilized by 202 participants. However,
we do not have ground truth that would let us estimate how
many samples of activities we should have collected.

2) Body Composition: This refers to a summary containing
body weight, muscle mass, bone mass, body water percentage,
and body mass index. This data is not collected by the smart-
watch automatically. It can be collected in three ways: entering
it through the Garmin Connect app; through the MyFitnessPal
app; or through a Garmin Index body composition scale. This
last option was used by 52 participants a total of 5098 times.

3) Daily Summaries: These data contain summary statistics
on daily stress, calories, distance, heart rate, and steps.

4) Epochs: Heart rate and stress score epochs provide one
value for each sample and one offset over an initial timestamp
to determine to which epoch the sample belongs. When there
is data present, each heart rate sample represents 15 seconds
in time, while each stress sample represents 3 minutes in
time. Gaps in the data are represented by a value of −1 and
the length of the gap may exceed 15 seconds. We gathered
approximately 1 billion samples of heart rate and 178 million
samples of Garmin’s stress score throughout the study.

Epochs of activity break down the physical activity of
participants into 15 minute epochs. However, if a participant
has carried on multiple activities such as walking, sitting,
and running during those 15 minutes, one sample for each

will be received at the backend, each one having a duration
of 15 minutes with their reported active time adding up
to 15 minutes. Each activity sample will report: an active
time; active Kilocalories burnt; distance traveled in meters;
Metabolic Equivalent of Task [14]; mean and max motion
intensity; steps; the result of classifying the activity as one of
walking, sedentary, running, sleep, generic, or unmonitored;
and a classification of motion intensity into sedentary, active,
or highly active.

5) Sleep: Sleep summaries contain the duration of the
sleep, a distribution of the periods of light sleep, deep sleep,
REM sleep, awake time, and unmeasured time during the
sample of sleep. Unmeasured time may or may not correspond
with off-wrist time according to documentation.

6) User Metrics: Garmin infers user metrics from the
activities performed by participants while wearing the Vivos-
mart 3. This includes an estimate of maximal metabolic rate
(VO2max) and a “fitness age”. To obtain a fitness age, Garmin
compares internal fitness metrics with similar participants by
age and gender. An age of X for a participant of gender Y,
means that the fitness level is comparable to the average user
of age X and gender Y.

IV. RESULTS

In our study we defined wearable compliance to be an
estimate of the percentage of time that participants were
wearing the watch. Therefore, we study compliance and use
this term interchangeably with wearing time.

A. Computing Wearable Compliance

As reported in [2], sometimes a watch may not have a
sample of heart rate for a specific period of time because
of the lack of accuracy of the watch to determine one. As
a consequence, a lack of an HR sample is not sufficient to
determine that the user is not wearing the watch. In our study,
however, the risk of falsely determining that the participant is
wearing the watch is low with respect to other smartwatches
like the original Apple Watch, because the vivoSmart 3 will
go into a deep sleep mode if it is not on a wearer’s wrist,
mitigating one of the concerns presented by [2].

We defined wearable compliance in a given day as the ratio
of the number of 30-minute windows in the day that had at
least one data point, to the total number of windows in a day,
regardless of the type of sample that the window contained
Given that other measures aside from heart rate were being



Fig. 2: CDF of the mean difference of compliance between using 15 min, 5
min, 1 min, 30 min heart rate only, or 1 min heart rate only time windows,
versus 30 min all data types time windows

sampled at a slower and unpredictable rate, we intuitively
chose a large window to minimize the impact of missing
heart rate data on participants’ compliance while the watch
was being worn, even if it meant overestimating the time that
the participant had been wearing the watch.

For the purpose of this work, we computed compliance in
shorter time windows of 1 minute, 5 minutes, 10 minutes,
and 15 minutes to determine if we overestimated compliance
by a wide margin. Additionally, we computed compliance
using only heart rate data to compare the results. For the vast
majority of participants, the use of a shorter time window
to calculate compliance resulted in a difference of less than
4%, as presented in Fig. 2. Given the lack of ground truth
regarding watch takeoff events, we could not determine if
missing data when calculating compliance with a higher
resolution meant that the watch was not being worn at the time.
Despite this, we looked at the greatest differences in mean
compliance, which were between 1 minute and 30 minute time
windows: M=71.82% SD=24.91 using 1 minute windows,
while M=73.33% SD=27.63 when using 30 minute windows.
We consider this overestimation of 1.51% to be a reasonable
trade-off given that calculating compliance with a longer time
window has the benefit of having less data to store per user
and in our case it reduced the computation time.

We arrived to similar results when calculating compliance
using only heart rate data, instead of all types, and as shown
in Fig. 2. Compliance using only heart rate samples was
M=71.77% SD=27.39% when using 1 minute time windows
and M=73.28%, SD=27.64% when using 30 minute windows.
There is a negligible difference of 0.05% between using all
types of data and using only heart rate. This means that it is
unlikely that the watch captures any sample of any data type
if it is not capturing HR at the same time.

B. Compliance Results

Our compliance distribution in Fig. 3a shows that most of
our participants were compliant, with more than 50% of the
users having worn the Garmin watch for more than 80% of
the time. Our average compliance was 73.5% and our median
was 97.9%. Averaging across the average of each participant,
thus ignoring differences in how many days the participants
were in the study, results in a mean compliance of 70.0%,

Fig. 3: (a) Compliance distribution in the study. (b) Compliance distribution
in weekends vs weekdays (right)

Fig. 4: Mean Participant Compliance (MPC) and Median Participant Compli-
ance by participants’ day in the study

and a median of 85.0%. If we remove participants that never
submitted any data (i.e., compliance = 0), then the mean
would be 73.3% and the median would be 85.9%.

1) Gaps in the Data: A gap in the data is a period of one
or more windows of time where we did not receive a sample
from the wearable of a participant. Short gaps in the data are
bound to happen because, at the very least, the vivoSmart 3
cannot be charged while it is being worn. The study of the
gaps in our data revealed that 91.1% of the gaps lasted less
than a day, 50.1% less than 3 hours, and the average number
of gaps per day was 1.14. Nevertheless, gaps longer than 24
hours account for 77.2% of all data missed. If we focus on
gaps in participants that did not drop out of the study we
find that 70.8% of their missing data happened in periods of
time longer than 24 hours and 45.1% in periods longer than
a week. The latter affected 311 participants or 47.4% of the
participants in the study. Even though we can see in Fig. 6a
that some participants had these gaps multiple times, we think
that breakages are behind the majority of the cases where these
gaps occur.

2) Compliance versus duration in study: The minimum
amount of time that a participant that did not drop out of the
study was in the study was 257 days. Therefore, if we look
at compliance for participants that have been in the study for
at least 257 days as in Fig. 4, we see that their compliance
from the moment they joined the study grows in the beginning
and then decreases the longer the participants stay in the study
before settling around 70%. Likewise, if we remove dropouts
from consideration, then the compliance follows a similar



Fig. 5: Compliance by hour of day for participants grouped by quantiles in
the compliance distribution: 0 to 25%, 25% to 50%, 50% to 75%, and 75%
to 100%

trend although it settles close to 75%. We can see that the
median participant compliance remained stable and close to
100% throughout the entire study.

C. Temporal Patterns of Wearing Behavior

We studied compliance within the week and compliance
within the day. There was a slight difference in the compliance
between weekdays and weekends as noted in Fig. 3b. While
[2] found that the difference in compliance between weekdays
and weekends was 10.7%, in our data there was a mean
difference of only 2.4% (Weekdays: M=69.9%, SD=41.4%;
t(268559)=13.67, p<0.001).

1) Compliance by hour of the day: We can see in Fig. 5
that there is usually lower compliance overnight than there is
throughout the day. The pattern is more obvious in participants
with low compliance and is consistent with having some
participants taking off their devices at night on occasion. Some
participants reported in communications with researchers not
wearing the device at night but as Fig. 5 shows, it was not
a widespread issue with even the lower quartile seeing no
more than 10% difference on average between nighttime and
daytime.

D. Charging the Wearable

During month 10 in the study, a Garmin Battery Level
stream was added to the iOS phone agent used in the study.
This allowed us to collect charging data for 245 iOS partici-
pants. By analyzing the cumulative distribution function of the
charging events from the study, we found that participants did
not fully charge and discharge the watch on most occasions.
The majority of the participants, on average, charged their de-
vice more frequently than once every 4 to 5 days as evidenced
in Fig. 6b. Intuitively, we would expect a priori a correlation
between the time that the device was not being charged and
how compliant a participant was. For the device to capture
data it needs to be on the wrist and the vivoSmart 3 cannot be
charged while it is being worn. However, a Pearson correlation
revealed an R squared of 2.89%, p<0.001 between the average
charging time and the average compliance. This correlation
suggests that charging could only account for 2.89% of the
variance in compliance. This finding and the fact that most
data got missed in long gaps at a time, point to other behaviors

(a) (b)

Fig. 6: (a) Percentage of users affected by gaps longer than a week by number
of times that they were affected (b) CDF of time between charging events:
mean time per user, 75th percentile per user, 90th percentile per user.

(a) (b)

Fig. 7: (a) Charging events started per hour of the day. (b) Battery level before
charging

or issues outside of the participants’ control such as breakages,
explaining the variance in compliance.

E. Accuracy of the Wearable

During enrollment, 136 participants volunteered to wear
a Zephyr Bioharness 3 during 30-60 minutes. From those
participants, 31 had overlapping heart rate (HR) samples from
the wearable, covering 13.7 minutes on average per participant.
The vivoSmart’s sampling frequency was of 1/15Hz. The
bioharness’ sampling frequency was 1Hz. To compare the
measurements, we used two windowing methods. First, we
averaged the bioharness’ samples across 15s fixed windows
such that it would match the rate of the watch. Second, we
used 5-minute sliding windows, sliding 1 minute at a time,
because that is the way that the data was ultimately used for
data analysis in the study.

In the case of 15s windows, the results show a fair ICC
(0.44; 95% CI 0.27 to 0.56), an MAE of 10.4 bpm and
a MAPE of 13.1%. Although the agreement is not high, it
matches the findings in [15]. In the case of 5-minute windows,
the results show a similar ICC (0.43; 95% CI 0.27 to 0.55),
although a slightly better MAE of 8.4 bpm and MAPE of
10.5%.

F. Study maintenance

Because of the scale and duration of our study we expected
devices to break or be lost. We share our experience and
break down the issues that forced us to replace 325 devices
or chargers:

• 209 were replaced due to the watch strap breaking.



• 66 were reported to not hold charge, not charge despite
being connected to the charger, not sync data, report
unusually high or low numbers of steps or floors climbed,
or inability to connect to the phone.

• 17 were replaced due to the loss or problems with the
charger.

• 10 were replaced due to having issues with the screen
such as the display not working correctly or the screen
cracking.

• 22 were replaced due to losing the wearable.
• 1 participant reported an allergic reaction to the nickel in

the buckle.
We believe breakages, more than user charging behaviors,

were responsible for the long gaps of missing data that we
found in our time series.

V. CONCLUSION

We have studied the wearing behavior of participants using
our calculation of compliance as an estimate of the wearing
time of participants. Participants did not show a large differ-
ence in compliance by hour of the day as in [2]. Participants
wore their smartwatches 73.5% of the time in the study, more
time than in our previous study involving students [3]. The
majority of the time that participants were not wearing the
watch was found to be in contiguous stretches of several days
and weeks at a time, consistent with a likely cause being the
325 breakages that we suffered during the study. The majority
of within day gaps were shorter than an hour. Analysis of
charging behavior found that only half of the time users waited
for battery capacity to reach 15% or less before charging,
and in the other half capacity was distributed uniformly.
Compliance during the week showed a slight difference of 2%
in weekends vs weekdays. Finally, compliance for participants
that did not drop from the study decreased steadily from the
peak of 90% that happened during the first month before
stabilizing at over 70% close to day 190. Although sometimes
inaccurate in their measurements as we found, inexpensive
smartwatches remain convenient for capturing physical data in
the real world without incurring in a high time demand from
busy workers allowing researchers to get reasonable quality
longitudinal data.

Our findings can help guide future study design in the
estimation of participants, budget, and running time needed
to achieve a certain level of data collection. Our experience
indicates that fitness bands can achieve high percentages of
data collection and reducing missing data further would likely
involve a greater logistic effort to replace devices faster. Future
work will focus on providing a multi-variable model based on
the previously mentioned traits and factors included in the
ground truth instruments of the study to predict compliance
and attrition at the beginning of a study with the goal of
maximizing data collection in future studies.
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