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Abstract

Missing data points is a common problem associated with

data collected from wearables. This problem is particularly

compounded if different subjects have different aspects of

missingness associated with them – that is varying degrees

of compliance behavior of individuals (participants) with re-

spect to wearables as well as personal changes in lifestyle and

health impacting heart rate. Moreover, despite the varying

degree of compliance behavior, the wearable in itself might

have glitches that lead to observations being dropped. Thus,

any missing value imputation in such data has to not only

generalize to the wearable behavior but also to the partic-

ipant behavior. In this paper, we present a deep learning

based approach for imputing missing values in heart rate

time series data collected from a participant’s wearable. In

particular, for each participant, we first leverage his/her his-

torical heart rate records as a reference set to extract the un-

derlying personalized characteristics, and then impute the

missing heart rate values by considering both contextual

information of the current observations and the user’s fea-

tures learned from previous records. Adversarial training is

applied to guide the learning process, which imputed more

reasonable heart rate series with the consideration of human

health conditions, e.g., heart rate fluctuations. Extensive

experiments are conducted on two real-world data to show

the superiority of our proposed method over state-of-the-art

baselines.

1 Introduction

The availability of such daily activities data, such as
heart rate data at a fine granularity, from wearables
brings in an unprecedented opportunity to understand
and model the patterns of human behavior. There is
an especially compelling opportunity to model physio-
logical response, as measured by heart rate, for a wide
spectrum of applications, such as human activity identi-
fication [11], emotion detection [4], fitness recommenda-
tion [23] and user demographics inference [29]. However,
there are several challenges that stem from the missing-
ness of data, as the entire stream of heart rate data may
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not be available for a variety of reasons. This can be due
to sensor errors (e.g., wearable malfunction) and incon-
sistent data collection periods (e.g., wearing behavior
and compliance varies by person) [3]. Such incomplete
heart rate data not only affects real-time monitoring of
a physiologica condition, but also degrades the perfor-
mance of inference and forecasting tasks that may rely
complete heart rate observations.

Time series analysis has drawn progressive atten-
tion to impute missing data. In general, this can be
achieved by characterizing various temporal patterns of
time-ordered sequences [15]. For example, in time series
community, averaging [19] or regression [1] strategies
are commonly adopted to conduct linear imputations,
but might misss the non-linearities in the data. With
the advent of deep learning techniques in modeling se-
quential data, deep neural network models (e.g., LSTM
and GRU) have been utilized as an alternative option
to fill missing values in time series, which preserve the
non-linear temporal correlation structures [6, 18]. Fur-
thermore, a handful of recent extensions leverage hybrid
architecture of generative adversarial networks and re-
current neural networks [5] to improve imputation.

Despite their prevalence, we argue that these meth-
ods are far from sufficient to capture the complicated se-
quential transitions and cannot generalize well for heart
rate time series imputation. The key reason is that the
incomplete heart rate time series data contains many
large gaps. Simply filling missing values with semantic
information limits the power of most existing methods,
especially those relying on recurrent networks. In this
work, we ask the question of filling in missing values in
heart rate time series, while addressing the challenges
of varying reasons of missingness stemming from wear-
able behavior to human behavior. We posit that a good
imputation method is expected to address the following
challenges.

• Capability of coping with time series data with
arbitrary missing gaps. Individuals may wear and
take off the heart rate sensors (wearables) at any time.
It follows that day-long heart rate records may con-
tain multiple gaps with various lengths. These gaps,
if not dealt with properly, may convey misleading in-
formation during encoding. For example, when ap-
plying convolutional operations to conduct encoding,
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if the missing samples are treated equally as other
valid inputs, the generated features may be improp-
erly encoded and these improper features can further
propagate incorrect information to remaining parts of
the network.

• Imputation with preserving personal charac-
teristics. Heart rate analysis is very sensitive to
small fluctuations in time series data. Cardiovascu-
lar disease diagnosis, for example, relies on the mon-
itoring of peaks in heart rate records. Simply se-
mantically inferring missing values with the contex-
tual information does not recover the personal charac-
teristics of the individual and may jeopardize down-
stream analysis. Thus, an imputation method with
the awareness of personal features is required.

To address the above challenges, we propose a heart
rate imputation framework, called HeartImp, to fill
in missing values in day-long heart rate time series.
HeartImp first encodes each day-long time series seg-
ments by a convolutional encoder. In this component,
HeartImp uses a gating mechanism by re-weighting each
feature element after convolution to overcome the chal-
lenge of arbitrary locations and lengths of missing gaps.
Then, to resolve the second challenge, HeartImp uses
imputation with a reference set module, which takes the
incomplete day-long time series and a reference set(we
will provide the definition later) as the input and gen-
erates the imputed values through comprehensive in-
formation fusion of inputs. In the training objective,
HeartImp contains reconstruction loss for imputation
correctness and adversarial loss to encourage the co-
herency between generated and existing heart rate data
points.

In summary, the main contributions of this paper,
as part of the HeartImpframework, are as follows:

• We introduce a gating mechanism to learn a dynamic
feature selection strategy after convolution, improv-
ing the encoding performance with arbitrary length
and location of missing period.

• To fill high-accurate values, we propose using multiple
days collected from same person as reference sets to
impute. It also captures the personal characteristics
and enables discovering the long-distance correlations
without increasing convolutional layers.

• We use two real-world datasets of different cohorts
to demonstrate that HeartImpE significantly outper-
forms state-of-the-art models, under different scenar-
ios.

2 Problem Formulation

In this section, we introduce preliminary definitions and
formalize the problem of heart rate imputation.

Wearable-sensory time series data is generally col-
lected from a set of participants over different time pe-
riods. Here, we use U = {u1, ..., ui, ..., uI} to denote the
participant population in the data collection, where I is
the number of participants.

Definition 1. Day-long Wearable-Sensory Time
Series. We define day-long wearable-sensory time se-
ries as the measurements collected on one day that
started from 12:00 AM to 11:59 PM. Since the wear-
able sensory data of each participant is collected at dif-
ferent start and end date, the collected data may vary
with different duration. We define the collected dates
as a vector ti = {t1i , ..., t

j
i , ..., t

Ji
i } in a chronological or-

der, where tji denotes the date collected from participant
ui on j-th day and Ji is the total number of collected
days. The time series collected on tji is presented as

xji = {x(j,1)i , ..., x
(j,τ)
i , ..., x

(j,T )
i } (xji ∈ RT ). Each mea-

surement x
(j,k)
i is associated with a timestamp informa-

tion.

Definition 2. Target time series: We define target
time series as the day-long wearable-sensory time series
that we aim to fill the missing values.

Definition 3. Reference time series set: We de-
fine a reference set as a set of day-long wearable-sensory
time series before target time series, which is collected
from the same participant/source as the target time se-
ries. Formally, it can be presented as a matrix Rj

i =

{x1
i , ...,x

j−1
i } given target time series xji .

Problem Statement. Given the target time series
and reference time series set of a user, the objective of
this work is to learn an imputation function that could
automatically impute missing values in the target time
series. It can be formally defined as follows:

(2.1) M · xji = f((1−M) · xji ,R
j
i )

where M is a binary mask corresponding to missing
areas with value 1 and observed areas with value 0. f is
the function we aim to learn. Note that we do not have
any restrictions on the completeness of time series in a
reference set.

3 Methodology: HeartImp

In this section, we present the HeartImp model that
imputes missing parts of time series data based on the
contextual information. We first introduce the general
framework of HeartImp to elaborate the overall flow and
then present details in the following subsections. Figure
1 depicts the key components of HeartImp.
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Figure 1: The framework of HeartImp.

3.1 General Framework Considering that heart
rate data is in variable lengths and human behaviors
strongly exhibit daily periodic patterns, we first parti-
tion the heart rate data of each individual into a set of
day-long time series. For missing observations, we set
their corresponding values to zeros by default and these
zeros serve as placeholders in time series and differenti-
ate the missing data points from the observed ones with
different ranges.

After that, for each day-long time series with miss-
ing regions, we leverage an encoder-decoder architecture
to impute values in the missing region. Instead of fill-
ing values merely based on the observed measurements
on the same day, we also introduce a reference set se-
lected from the rest day-long time series of the same
collected source/person as a second source to assist the
imputation task. Daily heart rates of the same person
may exhibit repeat but slightly different patterns across
different days. For example, when imputing the time
period during sleeping, the effective reference informa-
tion could be the sleeping duration on other day-long
time series. Here, HeartImp learns how to incorporate
this reference data as a semantic guide with contextual
information around the missing period. Consequently,
the decoder takes the fused feature representation as an
input and generates the imputed target time series.

In the training phase, HeartImp utilizes a recon-
struction loss to minimize the difference between filled
values and ground truth. In addition, we leverage an
adversarial loss to make the filled heart rate time se-
ries look as real as possible and further encourage the
coherence with regards to its contexts.

3.2 Gated Convolutional Module In the encoder-
decoder framework of HeartImp, we propose a
gated convolutional module to handle the incomplete
wearable-sensory time series data with missing data at
arbitrary positions. This module is a multi-layer con-
volutional network which aims to extract dependency
patterns in the time dimension of daily series in a hier-
archical way.

3.2.1 Temporal Dependency Modeling In our
constructed convolutional network, we stack the 1-
dimensional convolutional layers with increasing the
receptive fields for long-range dependence modeling. In
particular, for l-th convolution layer in our model, we
employ ci filters w ∈ RK×c0 to perform the 1-dim
convolution operation on the K × ci matrices, where
K and co are hyperparameters that indicate kernel size
and output channel size, respectively. Formally, the
convolution operator is given as follows:

V l
i,j = f

(
wlj · V

l−1
[i− kl−1

2 :i+ kl−1

2 ,1:ci]

)
(3.2)

where V l
i,j denotes the features in the l-th layer, ·

represents the dot product operation, i and j are the
index of time and channel dimension, respectively. f(·)
is the activation function. For simplicity, we do not
show the bias term in the above equation.

3.2.2 Channel-Wise Recalibration Mechanism
However, the generated intermediate features are neg-
atively affected by the zero paddings in missing data
points since convolution operations treat padding and
observing values equally. To address this issue, we
propose a channel-wise gating mechanism to dynami-
cally re-weight the features and to reduce the impact
of features generated via padding values or the mixed
padding and observing values. Inspired by squeeze and
excitement network[16] to recalibrate the information
distribution of channel-wise feature responses, we intro-
duce the feature importance vectors among all elements
across channels as:

(3.3) zcri,j = Sigmoid(wcr2 · ReLU(wcr1 · Vi,j))

where zcri,j ∈ Rci is the feature importance vectors with
each element for each channel. wcr1 and wcr2 are the
learned parameters of two fully-connected neural layers.
As such, the final channel-wise feature is given by:

(3.4) Ṽi,j = Vi,j � zcri,j

where � is the element-wise product operation.

3.2.3 Encoder-Decoder Configuration In sum-
mary, our gated convolutional module consists of five
convolutional layers followed by channel-wise recalibra-
tion mechanism layers. In the encoder, the five layers
are set as the one-dimensional kernel with {5, 3, 3, 3, 3}
and filter sizes with {16, 32, 48, 64, 128}, respectively.
Accordingly, the structure of the decoder is symmetric
to that of the encoder.
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3.3 Fusion between Reference Set and Target
Time Series To exploit the contextual information
around the missing intervals, we further incorporate the
knowledge from reference sets in our model. Given the
reference set Rj

i for target time series xji , we assume
that it may involve extra heart rate features to assist
the missing part imputation in the target time series.
As the reference data could be incomplete, we also apply
a gated convolutional encoder to these reference series
to alleviate the effect of missing values during feature
encoding. To distill effective information from both the
target time series and its corresponding reference set, we
propose an aggregation mechanism to fuse them. More
specifically, we first concatenate the feature responses
learned from both reference set and target series, and
then we apply dilated convolutions on the concatenated
feature responses along both the temporal dimension
and the concatenation dimension. In this way, the
dilated convolutions yield a conclusive vector, which
aggregates the information from both the target and
reference sides. The conclusive vector is further fed
into an imputation net (decoder). The decoder aims
to decode the aggregated information encoded in the
conclusive vector and recover the time series information
in the target series. In a nutshell, the encoder allows
us to utilize knowledge from related time series in
the reference set on top of the information distilled
from the target series and form aggregated time series
representations. The decoder aims to recover the target
series based on the aggregated representations. In this
way, the target series is reconstructed based on not only
its original signals but also reference time series which
are highly related.

3.4 Loss Function We train our model by learning
the joint loss function of two individual parts. One is
the reconstruction loss Lrec from the encode-decoder
module. It is to model the temporal structure of the
missing area in target time series and to capture the
contextual knowledge and internal coherence with the
reference series. The other is the adversarial loss Ladv,
which guides the imputation process to generate as
real series as possible. We use the l1-norm distance
between the ground truth and the imputed data as the
reconstruction loss function as:

(3.5) Lrec = ||M � (I(E(xji �M,Rj
i ))− xj

i )||1

where the binary mask M takes the value 1 for missing
points and 0 for the observed points. The I(·) and
E(·) represent the imputation net(decoder) and encoder
functions, respectively.

The adversarial loss Ladv, on the other hand,
is based on Wasserstein Generative Adversarial Net-

work(WGAN), which has shown better performance
than existing GAN for various applications [12, 31].
WGAN jointly learns a discriminator and a generator.
The learning process is the discriminator trying to dis-
tinguish the real sample from the generated one from
the generator while the generator learns to predict the
more confusing sample for the discriminator. We adopt
this method by modeling the generator as the encoder
and the imputation net. Then the objective function is
given by:

Ladv = min
I,E

max
D

Ex∈χ(log(D(x))

+ log(1−D(I(E(x�M,R)))))(3.6)

+ γE(||Ox′D(x′)||2 − 1)2

where D(·) is the discriminator function, E(·) if the
expectation function, γ is set as 1 and others are con-
sistent with the above statements. The last term in the
function is the gradient penalty term, where x′ is sam-
pled from the straight line between points from distribu-
tion of generated data and that of real data. Therefore,
the final objective function L is the combination of these
two loss function: min

I,E
max
D

(Lrec + λLadv), where λ is a

coefficient to control the importance of regularization
term.

4 Experiments

In this section, we demonstrate the effectiveness of the
proposed HeartImp on two real-world datasets collected
from two different wearable sensors for two different
population groups. We perform extensive experiments
on the gap imputation task with the aim to answer the
following research questions:

• RQ1: Does HeartImp consistently outperform the
state-of-the-art temporal data imputation models
with respect to different time periods?

• RQ2: How does HeartImp perform compared to
other algorithms across various gap sizes?

• RQ3: How do the different key hyper-parameters
impact the model performance?

• RQ4: How do the different components(i.e. the
Generative Adversarial Training, the Gated Con-
volution and the reference infusion) of HeartImp
contribute to the model performance ?

4.1 Experiment Settings

4.1.1 Data In our evaluation, we conduct experi-
ments on the heart rate time series data from two real-
world datasets. These two datasets are collected from
two different subject pools and based on two types of
wearable sensors. Accordingly, we further notate them
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by their sensor types: Garmin data and Fitbit data,
respectively.
Garmin data [21]: This dataset spanning from Jan-
uary 2018 to September 2018 is collected from 574 par-
ticipants (male: 334, female: 240) in a research study
of workplace performance, where they record physical
activities(e. g. heart rate and steps) of employees via
Garmin bands in several companies across the United
States.
Fitbit data [10]: This dataset contains wearable
sensory data via Fitbit Charge bands from 623 stu-
dents(male:306, female: 317) in a University. The sen-
sor bands were gradually deployed to all the participants
from the Fall semester of 2015. In our experiments, we
consider the heart rate data from January 2016 to Oc-
tober 2017.

4.1.2 Comparison Baselines To justify the efficacy
of HeartImp, we compare it with the following baselines
from multiple research lines: i) conventional time series
imputation methods (i.e. linear interpolation, exponen-
tially weighted moving averaging, K-nearest neighbor,
Kalman smoothing and Last Observation Carried For-
ward); ii) deep learning techniques for time series im-
putation(i.e. Denoising Autoencoder and bi-direction
RNN); iii)neural network models for image and video
inpainting(i.e. context encoders and spatial-temporal
video completion network).

• Linear Interpolation(LIP) [17]: LIP fits a line
polynomials for the given endpoints of the gap and
further utilizes the linear formula to compute the
missing values.

• Exponentially Weighted Moving Average(EWMA)
[14]: EWMA estimates the missing values as a
weighted average of the history data points, where
the weighting factors decrease exponentially for
each timestamp.

• k-Nearest Neighbor(kNNimp) [27]: kNNimp first
find the k nearest neighbors and impute the missing
points with the weighted average of these neighbor
points. The k is a hyperparameter to be tuned in
the experiments.

• Kalman Smoothing(Kalman) [25]: This approach
is to apply sequentially the Kalman Filter[2] for
missing calculation. The underlying model is linear
and the distributions are assumed as Gaussian.

• Last Observation Carried Forward(LOCF) [13]: It
fills each missing value by the most recent historic
data point.

• Denoising Autoencoder(DAE) [8]: DAE is a multi-
layer encoder-decoder algorithm, which minimizes
the reconstruction error of missing values and thus
recovers the complete data.

• bi-directional RNN(bRNN) [30]: bRNN is a deep
learning architecture based on bi-directional recur-
rent neural networks. It imputes the missing values
from the hidden states of both forward and back-
ward directions.

• Context Encoders(CE) [24]: This method proposes
a context encoder to generate the contents of an
arbitrary image region conditioned on its surround-
ings. The loss function is defined by jointly opti-
mizing square loss on reconstruction areas and ad-
versarial loss to discriminate the predictions and
ground truth.

• Spatial-Temporal Completion Network for Video
Inpainting(ST-Comp) [28]: It combines a 3d convo-
lutional based neural network to explore the tem-
poral consistency and a 2d one to restore the spatial
details for each frame of the video.

To apply image-based methods to the time series
imputation application, we replace the 2d convolutional
operation with 1d convolutional operation and 3d con-
volutional operation with 2d convolutional operations
in their frameworks. All neural network methods(i.e.
DAE, bRNN, CE, ST-Comp and HeartImp) are trained
by Adam optimizer. LIP, EWMA, Kalman and LOCF
are implemented based on the imputeTS library[22] and
kNNimp is built from the fancyimpute package1. We
also optimize the parameter settings of all baselines in
the validation set and report the performance in the
testing set.

4.1.3 Evaluation Protocol We conduct experi-
ments on gap imputation on all methods. To gener-
ate the data with missing intervals, we first split the
wearable-sensory time series every 24 hours. Follow-
ing the setting of missing interval generation in [9], we
separately apply four gap sizes as mean values of a
normal distribution generator to randomly select the
length of missing intervals in these daily series: two
hours, four hours, six hours and eight hours. And
the missing starting locations are sampled uniformly
from [0, 24 − gap size]. Then, we split the sets of these
daily series chronologically. We use 10.5 months, 0.5
months and 1 month for training, validation, and test-
ing. The training and validation time periods are be-
fore the start date of testing time period. The testing
periods for Garmin data are June, July, August and
September 2018, and those for Fitbit data are July, Au-
gust, September and October 2017. We use the valida-
tion set to tune the hyper-parameters and testing set to
report the performance. All experiments are evaluated
across the consecutive days in the testing set and the
average performance is reported.

1https://github.com/iskandr/fancyimpute

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited



Table 1: Missing imputation performance across different time periods in terms of RMSE, MAE and MAPE
scores, given the gap size of 8.

Data Garmin Data

Month June July August September

Method RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

LIP 20.57 15.26 0.1912 20.18 14.99 0.1872 20.20 14.98 0.1881 20.22 15.01 0.1888
EWMA 20.23 14.98 0.1875 19.98 14.8 0.1846 19.97 14.79 0.1856 20.05 14.84 0.1864
Kalman 23.63 15.92 0.1989 21.59 16.43 0.2051 23.36 15.73 0.197 23.85 15.95 0.1999
LOCF 20.57 15.25 0.1912 20.17 14.99 0.1870 20.17 14.96 0.1879 20.19 15.00 0.1885
kNNimp 17.36 12.6 0.1564 17.55 12.69 0.1572 17.94 12.86 0.1594 17.50 12.65 0.1581

bRNN 15.49 11.54 0.1414 15.62 11.65 0.1433 15.71 11.66 0.1417 15.67 11.67 0.1431
DAE 16.86 13.00 0.1642 17.02 13.01 0.1621 17.35 13.35 0.1689 17.09 12.96 0.1587

ST-Comp 15.55 11.57 0.1412 16.00 12.03 0.1488 15.93 11.95 0.1461 15.96 11.85 0.1434
CE 17.11 13.21 0.1663 17.27 13.25 0.1661 17.15 13.32 0.1700 17.16 13.07 0.1603

HeartImp 14.82 11.18 0.1399 15.25 11.16 0.1350 15.25 11.17 0.1348 15.05 11.04 0.1339

Data Fitbit Data

Month July August September October

Method RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

LIP 21.46 15.34 0.2021 21.67 15.64 0.2027 22.29 15.95 0.1985 21.80 15.68 0.1971
EWMA 21.44 15.27 0.2011 21.58 15.55 0.2016 22.30 15.91 0.1979 21.75 15.59 0.1959
Kalman 27.06 16.19 0.2130 23.80 16.88 0.2181 23.41 17.31 0.2156 24.67 16.67 0.2094
LOCF 21.43 15.32 0.2020 21.68 15.63 0.2022 22.24 15.93 0.1981 21.78 15.66 0.1969
kNNimp 19.84 14.00 0.1838 20.66 14.42 0.1838 19.54 14.21 0.1752 19.4 14.11 0.1768

bRNN 17.19 12.23 0.1553 16.88 11.79 0.1453 16.69 12.45 0.1540 16.86 12.31 0.1475
DAE 18.13 13.38 0.1719 18.55 13.41 0.1655 19.22 14.24 0.1693 18.66 14.15 0.1725

ST-Comp 17.01 12.21 0.1551 16.48 12.46 0.1682 16.73 12.57 0.1566 17.39 12.78 0.1521
CE 17.29 12.42 0.1573 17.21 12.90 0.1716 16.94 12.44 0.1521 17.17 12.30 0.1442

HeartImp 16.12 11.15 0.1388 15.42 10.83 0.1373 16.46 11.95 0.1449 16.81 12.17 0.1441

We measure the imputation accuracy of all com-
pared methods by using three metrics: Root Mean
Square Error (RMSE), Mean Absolute Error (MAE)
and Mean Absolute Percentage Error (MAPE), which
are widely used in time series imputation tasks. Note
that a smaller RMSE, MAE and MAPE value indicates
better performance.

4.1.4 Reproducibility We implement the proposed
HeartImp and its variants using Tensorflow. And
they are trained and tested on a server with 4 GPU
accelerators. We summarize the key parameter settings
of HeartImp in Table 2. And the software will be
publicly available at the time of publication.

Table 2: Parameter Settings

Parameter Value

Size of Reference set: 6
Loss regularization λ: 0.001
Learning Rate: 0.0001
Batch Size: 32

4.2 Performance Comparison (RQ1,RQ2)

4.2.1 Overall Performance In our experiments, we
evaluate the performance of all compared methods over
different settings of testing time periods and gap sizes
on the two datasets. Table 1 shows the imputation
performances of all approaches across various time pe-

riods in terms of RMSE, MAE and MAPE metrics,
while the corresponding performances for different gap
sizes are summarized in Table 3. From both tables, we
have the following key observations: i. The proposed
HeartImp consistently achieves the best performance
over other methods in all cases. For example, the im-
provements of HeartImp over different baselines range
from 4.1% to 58.5% for Garmin data in September and
those from 6.9% to 54.3% for Fitbit Data in August in
term of RMSE scores. We believe the benefits are cred-
ited to the joint modeling of temporal dependency and
reference sets. ii. Among all compared methods, neural
network-based models(i.e. HeartImp, CE, ST-Comp,
DAE and RNN) are significantly better than different
types of conventional time series imputation techniques.
This further sheds light on the advantages of complex
neural structures for missing interval imputation. iii.
We also notice that the performance of HeartImp is fol-
lowed by two baselines, RNN and ST-Comp, which both
consider and model the temporal consistency of the se-
ries. It also indicates the important positive effects of
capturing temporal contextual relations in gap imputa-
tion.

4.2.2 Performance v.s. Time Period We per-
formed experiments of all methods across different train-
ing and testing time periods on two datasets while fix-
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ing the corresponding gap size. From Table 1, we can
observe that our HeartImp performs better than other
compared methods for different time periods. And we
also note that these improvements are relatively stable
across time. It further implies the robust efficacy of
HeartImp in gap imputations.

4.2.3 Performance v.s. Gap Size In addition, we
investigate the effectiveness of our model for imputation
of missing intervals with various lengths(i.e gap sizes).
Table 3 summarizes the results of all methods for gap
sizes of 2,4,6,8 hours, respectively. From the table,
HeartImp outperforms other methods for all gap sizes.
Moreover, another observation is that the performance
of our model is more stable than others when gap
size increases. This further reflects the robustness of
our model for various gap sizes. Similar results were
achieved when we evaluated the performance across
different combined settings of time periods and gap
sizes. This last analysis was not included here due to
space limitations.
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(a) Garmin data, June, gap size 2

RMSE

MAE
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(b)Fitbit Data, July, gap size 2
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MAE

Figure 2: Hyperparameter Studies in terms of RMSE
and MAE.

4.3 Model Analysis(RQ3,RQ4)

4.3.1 Parameter Study(RQ3) We also conducted
experiments to study the impact of the key parameter,
i.e. the size of reference sets. Except for the param-
eter being tested, all other parameters are set as the
default values in Table 2. Figure 2 shows the impu-
tation accuracy of on two datasets as functions of the
parameter when others are controlled for. We notice
that the HeartImp achieves the best results when r is
around 6 for two datasets. Additionally, we can see the
hyper-parameters have a relatively low influence on the
performance of our model across two datasets. It also
demonstrates the stable performance of our HeartImp.

4.3.2 Model Ablation(RQ4) To better under-
stand HeartImp, we evaluate its key components. We
consider three variants of the proposed method corre-
sponding to different analytical aspects: (i) Effect of
Generative Adversarial Training (HeartImp-a): A sim-
plified version of HeartImp without generative adversar-
ial training, i.e. only consider Lrec in the loss function;
(ii) Effect of Gate Convolutional Module (HeartImp-c):

A simplified version of HeartImp which excludes gate
convolutional module to capture the temporal depen-
dency; (iii) Effect of Reference Infusion (HeartImp-r):
A simplified version of HeartImp without fusing refer-
ence sets.

The results are reported in Figure 3. We can
summarize that:(i) HeartImp succeeds in gap impu-
tation when compared to the variant HeartImp-a,
which justifies the positive effects of adopting ad-
versarial training to capture the distribution of time
series; (ii) HeartImp outperforms HeartImp-c in all
cases. Thus, the gate convolutional module is effi-
cient to capture the temporal dependency among series;
(iii) HeartImp achieves better results than the variant
HeartImp-r. We suspect the reason is the important
roles of reference set fusion on modeling the personal
characteristics. Therefore, these observations suggest
the full version of HeartImpjointly provide the promis-
ing and effective performance for filling missing intervals
in sensory time series.

Figure 3: Effects of key components on Garmin data.

5 Related Work

Time Series Imputation There has been an increas-
ing interest and progressive achievements in time se-
ries imputation. The conventional methods like the
averaging[14] and forecasting from regression model of
the time sequence[17], either make linear assumptions
on the data or can cause error propagation on the large
gap imputations. More recently, many deep learning
techniques have been developed to solve this problem[6,
18]. However, they carry their own limitations on mod-
eling individual characteristics, which play an important
role on health-related analysis. HeartImp is proposed to
fill the large gaps while learning and retaining the indi-
vidual characteristics.
Deep Learning in Healthcare Application With
the development of deep learning techniques, introduc-
ing deep neural network structure to health-related ap-
plications has gained a lot of attention in the past
decades[4, 7, 26, 20]. For instance, Cao et.al. propose
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Table 3: Missing imputation performance across different missing gap size in terms of RMSE, MAE and MAPE
scores, given the fixed time period.

Data Garmin Data, June

Gap Size 2 4 6 8

Method RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

LIP 16.05 11.74 0.145 17.22 12.6 0.1508 17.72 12.85 0.1513 20.57 15.26 0.1912
EWMA 17.3 12.44 0.1532 18.47 13.4 0.1602 18.85 13.7 0.1618 20.23 14.98 0.1875
Kalman 17.94 12.05 0.1491 19.88 13.12 0.1569 21.42 13.81 0.1622 23.63 15.92 0.1989
LOCF 18.72 13.51 0.1627 20.37 14.9 0.1756 20.5 15.13 0.1806 20.57 15.25 0.1912
kNNimp 16.15 12.15 0.1493 16.9 12.68 0.1529 16.82 12.62 0.1529 17.36 12.6 0.1564

bRNN 15.37 11.29 0.1335 15.55 11.59 0.1369 15.2 11.43 0.1379 15.49 11.54 0.1414
DAE 15.68 11.64 0.1387 16.68 12.59 0.1492 16.71 12.53 0.1481 16.86 13 0.1642

ST-Comp 14.97 11.1 0.132 15.51 11.59 0.1371 15.53 11.4 0.1334 15.55 11.57 0.1412
CE 16.29 12.27 0.1488 17.11 13.11 0.1579 16.71 12.77 0.1547 17.11 13.21 0.1663

HeartImp 14.37 10.58 0.1258 15.49 11.49 0.1359 15.11 11.05 0.13 14.82 11.18 0.1399

Data Fitbit Data, July

Gap Size 2 4 6 8

Method RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

LIP 16.19 11.09 0.1393 17.71 12.2 0.1515 17.95 12.43 0.1532 21.46 15.34 0.2021
EWMA 17.65 11.79 0.1477 19.19 13.04 0.1618 19.47 13.46 0.1662 21.44 15.27 0.2011
Kalman 18.06 11.72 0.1483 19.9 12.83 0.1593 20.6 13.21 0.1625 27.06 16.19 0.213
LOCF 19.85 13.49 0.167 21.22 14.83 0.1833 21.29 15.13 0.19 21.43 15.32 0.202
kNNimp 17.78 12.83 0.1627 18.35 13.21 0.1661 18.15 13.01 0.1643 19.84 14 0.1838

bRNN 17.29 11.53 0.1378 18.1 12.18 0.1434 17.2 11.82 0.1427 17.19 12.23 0.1553
DAE 16.73 11.53 0.1416 18.4 13.05 0.1579 17.62 12.75 0.158 18.13 13.38 0.1719

ST-Comp 16.38 11.04 0.1329 17.13 11.64 0.1404 16.82 11.66 0.1413 17.01 12.21 0.1551
CE 16.35 11.33 0.1396 17.56 12.65 0.1576 17.23 12.22 0.1508 17.29 12.42 0.1573

HeartImp 15.56 10.18 0.1215 17.03 11.64 0.1398 16.62 11.4 0.1386 16.12 11.15 0.1388

a end-to-end deep architecture to model the multi-view
sensory data for human mood prediction[4], while Choi
et.al. explored the feature learning of medical concepts
with deep neural models[7]. Our work further investi-
gates this direction to deal with the missing in tempo-
ral sensory data, which is also essential to much sensory
data analysis work.

6 Conclusion

In this paper, we presented HeartImp, a deep learning
model for gap imputation in wearable sensory time se-
ries. It addresses several limitations of the current state-
of-art methods, including dealing with missing intervals
of variable sizes and arbitrary locations and modeling
intra-sensor/individual variability. HeartImp first in-
troduces the historical time series as the reference set
to extract personal characteristics. And then the model
imputes the missing gaps based on the context infor-
mation of the missing area and the learned personal
features. Adversarial learning was adopted to guide the
learning process. Extensive experiments demonstrate
that HeartImp outperforms the conventional and con-
temporary approaches.
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