John Parkhill The University of Notre Dame

Heidelberg Summer School Applications: Extended Systems

John Parkhill The University of Notre Dame

July 9, 2015

John Parkhill The University of Notre Dame

Introduction

Periodic

Crystal Structur

Predicti

Dispersio

Fragmentat

Many Body Quantus Approaches To

Disordere

Water

Extended Electroni

tatistics and Quantum

Extended Systems: What do I mean?

Macromolecules or molecular aggregates.

- Extended ≈ Extensive.
- Statistical fluctuations are often non-negligible, temperatures are important.
- Sometimes only qualitative accuracy is feasible

John Parkhill The University of Notre Dame

Introduction

The Toolbox

Periodic Calculatio

Calculatio

Structur

Predictio

Di...........

1

Approaches

Many Body Quantu Approaches To

Disordere

Extended

Electronic

Stationian

Statistics and Quantu Mechanics

Outline

- Survey of tools
- A nibble of theory
- 3 Case studies (Crystals, Water)
- 4 Terra Incognita

John Parkhill The University of Notre Dame

The Toolbox

Periodic

Calculatio

Structure

Prediction

Dispersio

Approaches

Many Body Quantur Approaches To Dispersion

Disordere Systems

vvater

Electron

Statistics and Quantu

Extended Systems Toolbox

- Linear scaling Gaussian SCF to break bonds
- Linear scaling Plane-Wave DFT cheap, infinite systems
- Ab-Initio Force Fields high accuracy for MD
- Fragment Approaches high accuracy for geometries
- Ab-initio Molecular Dynamics and Car-Parinello MD reactive trajectories, disorder
- The Leftovers: Bethe-Salpeter, Density Matrix Renormalization Group, Quantum Monte Carlo for tough stuff.

Crystal

Structur

Predictio

Dispersi

Approaches

Many Body Out

Many Body Quantum Approaches To Dispersion

Disorder Systems

Wate

Extended Electroni

Statistics and Quantu Mechanics

Free Tools for Your Reference

Free Extended Codes:

- Linear scaling Gaussian Basis SCF: Firefly, NWCHEM
- Linear scaling Plane-Wave DFT: ESPRESSO, NWCHEM, CP2K...
- · Ab-Initio Force Fields: ForceBalance
- AIMD: CP2K, CPMD
- Excited States: YAMBO, BerkeleyGW

John Parkhill The University of Notre Dame

The Toolbox

Linear Scaling SCF

SCF (6-31g*) optimized proteins are similar to AMBER when the protein has disorder... sometimes worse but is RHF better than $\omega PBEh$? 1

¹Ab Initio Quantum Chemistry for Protein Structures, Heather J. Kulik Nathan Luehr, Ivan S. Ufimtsev, and Todd J. Martinez 2012.

John Parkhill The University of Notre Dame

The Toolbox

Destruite

Calculation

Structur

Prediction

Dispersion

Approaches

Many Body Or

Many Body Quantur Approaches To Dispersion

Disordere

Water

Extended Electronic

Statistics and Quantu Mechanics

Correlation is not clearly the bottleneck

TABLE II. Wall times and scaling behavior with respect to the number of basis functions for SOS-RI-AO-MP2 calculations on linear alkanes in a def2-SVP and def2-TZVP basis on a computing node with two latel Xeon ES-2620 processors (12 CPU cores) and four Nvidia GeForce GTX Titan GPUs. Timings and scaling exponents (O(N**)) are given for the whole calculation as well as selected steps of the algorithm defined in Table I.

def2 - SVP system	# Basis functions	Total		Transformation (5)		Contraction (6) on GPU		Steps (1)-(4), (7), (8)	
		time [s]	$\mathcal{O}(N^x)$	time [s]	$\mathcal{O}(N^x)$	time (s)	$\mathcal{O}(N^z)$	time [s]	$\mathcal{O}(N^x)$
C20H42	490	98	444	51	2011	39	666	8	111
C40H82	970	575	2.59	374	2.92	171	2.16	30	1.94
C ₈₀ H ₁₆₂	1930	2248	1.98	1051	1.50	1048	2.64	149	2.33
C ₁₈₀ H ₃₂₂	3850	14 134	2.66	6206	2.57	7127	2.78	801	2.44
C320H642	7690	95 765	2.77	33 881	2.45	56 358	2.99	5526	2.79
def2 - TZVP	# Basis	To	tal	Transform	nation (5)	Contraction	(6) on GPU	Steps (1)-	(4), (7), (8)
system	functions	time [s]	O(N*)	time [s]	O(N*)	time [s]	$\mathcal{O}(N^s)$	time [s]	O(N*)
C20H42	872	406		261	944	120	***	25	104
CaoHao	1732	1831	2.19	932	1.85	784	2.74	115	2.22
C ₈₀ H ₁₆₂	3452	11800	2.70	5790	2.65	5445	2.81	565	2.31

article is copyrighted as indicated in the article. Heuse of AIP content is subject to the terms at: http://scotesion.elp.org/termscanditions. Downteaded to 147,142,52.56 On: Ten, 07 Jul 2015 07:15:57

051106-3 Maurer, Kussmann, and Ochsenfeld

J. Chem. Phys. 141, 051106 (2014)

John Parkhill The University of Notre Dame

Introducti

The Toolbox

Periodic Calculation

Crysta

Predictio

Dienerei

Fragmentati

Many Body Quantu

Disordered Systems

Extended

Statistics and Quantum

Linear Scaling SCF

The main advantages of Gaussian basis SCF are core electrons, accuracy and exchange. However it is very difficult to parallelize and reach linear scaling, which only occurs with roughly more than 60 atoms. Plane wave DFT is linear scaling on small clusters.²

John Parkhill The University of Notre Dame

The Toolbox

Linear Scaling SCF

Where these plots end, the parallel efficiency is lower than 50 percent, ie: these are max parallelizations you can get in 2015. Larger cells parallelize better. ³

³Peter Larsson's blog

Periodic Calculatio

Crystal Structure

Prediction

Dispersi

Approaches

Many Body Quantur Approaches To Dispersion

Disordere Systems

Water

Extended Electroni

Statistics and Quantu

2015 Limitations.

Very rough qualitative expectations:

What can be done:

- ~500 atoms (total or unit cell) and you can run SCF several times qualitatively in a few weeks with PWSCF and many nodes
- For less than 200 atoms, a fast gaussian code may be a better option on one or two nodes.

John Parkhill The University of Notre Dame

Introduction

Periodic Calculations

Crystal

Structure Predictio

Dimenia

Fragmenta

Many Body Quantus Approaches To

Disordere Systems

Wate

Extended Electroni

tatistics and Quantum

Basic Periodic DFT: Bravais Lattices and Unit Cells.

- *Bravais lattice* A set of points spread over space by discrete translations.
- $p_i = n_a \vec{a} + n_b \vec{b} + n_c \vec{c}$. Where n_i is an integer.
- The vectors are the edges of distorted cubes 'unit cells' that divide space.
- In 3d there are seven lattice systems with different symmetries, for applications purposes you only need to understand that these lattices have symbols and can be determined by crystallography.

John Parkhill The University of Notre Dame

Introduction

The Toolbox

Periodic Calculations

Crystal Structure

Prediction

Dispersio

Approaches

Many Body Quantur Approaches To Dispersion

Disordere Systems

Water

Extended Electronic States

atistics and Quantu

Basic Periodic DFT: Bloch's theorem

- Periodic extended materials have unit cells containing one or more nuclei.
- Bloch theorem: The eigenfunctions of periodic potentials have the form: $\psi(\vec{r})_{n,k} = e^{i\vec{k}\cdot\vec{r}} \cdot u_{nk}(\vec{r})$. Where u has the translational symmetry of the unit cell:
- $u(\vec{r}) = u(\vec{r} + \vec{R})$, where \vec{R} is any integer linear combination of lattice vectors. Thus u(r) must only be known/stored within the unit cell.
- Obviously there are fewer atoms in the unit cell than the whole crystal, and so periodic DFT is efficient.
- There are also no 'edge effects' that would be caused by an aperiodic cluster model.

Periodic Calculations

Crystal Structure

Predictio

Dispersio

Fragmentati Annmaches

Many Body Quantus Approaches To

Disordere Systems

Water

Extended Electronic

Statistics and Quantu

Basic Periodic DFT: G-vectors

- Within the unit cell $u_{nk}(\vec{r})$ is written as a linear combination of plane-waves: $u_{nk}(\vec{r}) = \sum_G u_{G,k} e^{iG\vec{r}}$, with G's chosen on a regular grid.
- The G-grid's lattice is the Fourier transform of the Bravais lattice (the *reciprocal lattice*).

$$e^{i\mathbf{K}\cdot(\mathbf{r}+\mathbf{R})} = e^{i\mathbf{K}\cdot\mathbf{r}} : e^{i\mathbf{K}\cdot\mathbf{r}}e^{i\mathbf{K}\cdot\mathbf{R}} = e^{i\mathbf{K}\cdot\mathbf{r}} \Rightarrow e^{i\mathbf{K}\cdot\mathbf{R}} = 1$$
 (1)

John Parkhill The University of Notre Dame

Introductio

The Toolbo

Periodic Calculations

Structure

Prediction

Dispersio

Approaches

Many Body Quantum Approaches To Dispersion

Disordere Systems

Water

Electroni

Statistics and Quantu

Basic Periodic DFT: G-vectors

- The kinetic energy of a Bloch wave $\propto (k+G)^2$
- The magnitude of $u_{G,k}$ in a ground state decreases rapidly with energy.
- The dimension of PW basis is controlled by assuming $u_{G,k}=0$ for waves above $E_{\rm cutoff}$.
- $E_{
 m cutoff}$ implies a limit on the real-space resolution on $\psi.$
- Typically the cutoff is insufficient to resolve the shape of core orbitals.
- good cancellation of errors requires that this remain constant within a model.

John Parkhill The University of Notre Dame

Periodic Calculations

Plane Waves are Efficient

For a system larger than Taxol, Plane-Wave integrals are much faster than a Gaussian basis. Q-Chem actually uses plane-waves for large systems, but saves the density in an atomic basis...

Table 1-3. Tirnings and energies for taxol, Carlily NO14. See Table 1-1 for explanation

	6-31G(d,p)-dc (2	(BF = 1,484)	6-311G(2df,2pd)-dc (NBF = 2,860)		
Basis set	FTC	ERO	FTC	ERI	
Coulomb	39.56	255.02	127.78	3,038,50	
XC	34.42	56.04	126.19	140.85	
Matrix	6.45	5.75	41,49	27.70	
Total	90.50	317.00	295.68	3.208.27	
Energy + 2,928	~0.615108	-0.615114	-1.442401	-1.442376	

Figure 1-1. The scaling of the Coulomb time with respect to molecular size for a series of polyalanisms, s = 2-15. FTC PW means the plane wave component of the FTC calculation (diffuse densities). FTC

John Parkhill The University of Notre Dame

Introduction

Periodic

Periodic Calculations

Crystal Structure Prediction

Predictio

Dispersio

Approaches

Many Body Quantur Approaches To Dispersion

Disordere Systems

Water

Electronic

Statistics and Quantu

Periodic DFT is Efficient

- Good speedups for typical 2-4 node parallel jobs. Dozens of metal atoms can be routinely treated.
- Free Packages (PW): Quantum Espresso, CP2K, CPMD + others.
- UnFree Packages: VASP, Siesta, FHI-AIMS (both periodic/aperiodic), Crystal, + others.

John Parkhill The University of Notre Dame

Introduction

The Toolbe

Periodic Calculations

Crystal

Structure Prediction

Dispersio

Fragmentat

Many Body Quantu Approaches To

Disordere Systems

Water

Extended Electroni

Statistics and Quantum Mechanics

Periodic vs. APeriodic DFT

Nitrogen atom adsorption on metal surfaces. Even periodic calculations of aperiodic cluster models are qualitatively similar but quantitatively different. ⁵

⁵Gui-Chang Wang, Ling Jiang, Xian-Yong Pang, and Junji Nakamura, J. Phys. Chem. B 2005, 109, 17943-17950

John Parkhill The University of Notre Dame

Introductio

The Toolbox

Periodic Calculations

Crystal Structur

Predictio

Dispersio

Approaches

Many Body Quantum Approaches To Dispersion

Disordere Systems

Wate

Extended Electronic States

Statistics and Quantum

Periodic DFT: Pseudopotentials.

To converge PW grids for atoms would require intractable numbers of coefficients, so these calculations instead invoke *pseudopotentials* (PP) which replace core electrons with an effective potential.

- This results in accurate relative energies for low $E_{
 m cutoff}$.
- PP come in many flavors (Norm-Conserving are theoretically more satisfying, Ultrasoft are cheaper.)
- PP can be calculated by most periodic codes for atomic references configurations, often determining your own for your application is good due-diligence.
- To have core properties Projector Augmented Wave (PAW) code must be used (VASP, Quantum Espresso)

John Parkhill The University of Notre Dame

Introduction

Periodic

Calculations

Structure Predictio

Dispersio

Fragmentatio Annmaches

Many Body Quantu Approaches To

Disordere

Water

Extended Electronic

Statistics and Quantum Mechanics

Basic Periodic DFT: k-vectors

- Besides the Energy cutoff, several k-vectors must be sampled to obtain accurate wavefunctions.
- G-vectors represent the fine structure of the wavefunction within the cell, and k-vectors represent the slow variations between cells.
- 4x4x4 k-point sampling is a good rudimentary model for insulating systems. In metals and small unit cells many more may be required, and this number should be in-principle be converged.

John Parkhill The University of Notre Dame

Introduction

The Toolbo

Periodic Calculations

Calculatio

Structure

Predictio

Dispersion

Fragment

Many Body Quantu

Approaches To Dispersion

Disordered

Systems

VVALCE

Extended Electronic

Statistics and Quanto Mechanics

An Example PWscf (ESPRESSO) input

&control

```
calculation = 'scf',
 prefix = 'Si exc1',
&system
 ibray = 2.
 celldm(1) = 10.26,
 nat = 2.
 ntvp = 1.
 ecutwfc = 20
&electrons
 mixing beta = 0.7
ATOMIC SPECIES
Si 28.086 Si.pbe-rrkj.UPF
ATOMIC POSITIONS (alat)
Si 0.0 0.0 0.0
Si 0.25 0.25 0.25
K_POINTS (automatic)
666111
```

John Parkhill The University of Notre Dame

ntroduction

The Toolbox

Periodic Calculations

Crystal Structure

Predictio

Dispersi

Approaches

Many Body Quantu Approaches To

Disordered

Water

Extended

States

Statistics and Quantur Mechanics

Convergence of PW.

Table 1. Calculated Hartree-Fock Pseudo-Energy $E_{10}^{\rm sc}$ Per Li-H Pair in LiH Crystal as Function of Plane-Wave Cut-Off Energy $E_{\rm cut}$ and Monkhorst-Pack k-Points Grid.

E _{cut} (E _h)	k-pts	$E_{\rm HF}^{\rm ps}$ $(E_{\rm h})$		
125	$4 \times 4 \times 4$	-0.829911		
125	5 × 5 × 5	-0.829877		
125	6 × 6 × 6	-0.829873		
150	$4 \times 4 \times 4$	-0.829912		

Results are for lattice parameter $a_0 = 4.084 \text{ Å}$.

6

⁶M. J. Gillan, D. Alfe, S. De Gironcoli, F. R. Manby, High-Precision Calculation of Hartree-Fock Energy of Crystals, ICC 2008

John Parkhill The University of Notre Dame

Periodic Calculations

Convergence of PW.

Table 5. HF Pseudo-Formation Energies (Eh units) of Li-H Clusters Obtained from Molpro With Different Decontracted Dunning Basis Sets, and Values Obtained by Extrapolation to Basis-Set Limit.

Cluster	VTZ	vqz	V5Z	V∞Z	PWSCF
1 × 1 × 2	-0.038942	-0.039354	-0.039441	-0.039464	-0.03943
$1 \times 2 \times 2$	-0.162266	-0.163057	-0.163210	-0.163247	-0.16318
$1 \times 2 \times 3$	-0.271008	-0.272150	-0.272347	-0.272388	-
$1 \times 2 \times 4$	-0.384287	-0.385766	-0.386011	-0.386060	-0.38629
$1 \times 2 \times 5$	-0.495737	-0.497572	-0.497869	-0.497926	-
$1 \times 2 \times 6$	-0.608092	-0.610285	-0.610637	-0.610704	-
$1 \times 2 \times 7$	-0.719907	-0.722457	-0.722865	-0.722943	-
$1 \times 2 \times 8$	-0.832060	-0.834970	-0.835434	-0.835522	-0.83586
$1 \times 3 \times 4$	-0.607733	-0.609951	-0.610309	-0.610378	-
$1 \times 4 \times 4$	-0.848890	-0.851825	-0.852298	-0.852389	-0.85262
$2 \times 2 \times 2$	-0.413537	-0.415051	-0.415349	-0.415422	-0.41545
$2 \times 2 \times 3$	-0.653911	-0.656175	-0.656591	-0.656685	-
$2 \times 2 \times 4$	-0.896014	-0.899000	-0.899537	-0.899655	-0.89984

⁷M. J. Gillan, D. Alfe, S. De Gironcoli, F. R. Manby, High-Precision Calculation of Hartree-Fock Energy of Crystals, JCC 2008

John Parkhill The University of Notre Dame

Introductio

The Toolb

Periodic Calculation

Crystal Structure Prediction

Dispersio

Annmaches

Many Body Quantus Approaches To

Disordered Systems

Extended

Statistics and Quantum Mechanics

Crystal Structure Prediction

• Target:

$$E_{QC}$$
 + ZPVE + (Rovibrational Enthalpy and Entropy)(T)

• Stillinger⁸: The number of local geometrical minima n_s in a system of N atoms divided into M unit cells goes as:

$$n_s(N) \sim e^{\alpha N}$$
 (2)

Where α is a constant. The goal of crystal structure prediction is to predict the crystal geometry of lowest free-energy (with an accuracy $\sim k_b T \sim 0.001 \text{Hartrees}$).

⁸F. H. Stillinger, Phys. Rev. E 59, 48 (1999). < □ > < ♂ > < ≧ > < ≧ >

John Parkhill The University of Notre Dame

Crystal Structure

Prediction

Checkup

Somebody tell me...

- What is a Hybrid Functional? Which of these are?
- PBE, BLYP, B3LYP, CAMB3LYP, ωB 97, PBE0, HSE.

John Parkhill The University of Notre Dame

Introduction

Pariodic

Calculatio

Crystal Structure Prediction

Dienersi

Fragmen

Many Body Quantum Approaches To

Disordered Systems

Water

Extended

Statistics and Quantur Mechanics

Exchange in Solids

- The Hartree-Fock Exchange is much more costly than Coulomb, and also actually 'screened' in semiconducting solids.
- This cost is due to the integrable divergence of the Exchange kernel.⁹
- GGA Functionals (PBE/BLYP) are common in solids because exchange makes calculations comparable in cost to local-basis quantum chemistry. However these functionals are not as reliable as hybrids (PBE0, B3LYP,HSE)

⁹Self-consistent Hartree-Fock and screened-exchange calculations in solids: Application to silicon. F. Gygi and A. Baldereschi .Phys. Rev. B 34, 4405

John Parkhill The University of Notre Dame

Dispersion

PWDFT alone cannot predict crystal cohesion.

¹⁰Evernk and Aspuru-Guzik 2012

10

John Parkhill The University of Notre Dame

Dispersion

Beyond Periodic DFT.

- 'Bare' DFT completely misses dispersive interactions,
- Promising Extensions include: DFT-D, MBD, RPA.

¹¹Energy of graphite vs. V. - Janos G. Angyan J. Phys. Chem. A 2010, 114, 11814-11824 4 D > 4 A > 4 B > 4 B >

Periodic Calculation

Crystal Structur

Prediction

Dispersion

Approache

Many Body Quantum Approaches To

Disordere Systems

Systems

Extended Electronic States

> Statistics and Quantum Mechanics

DFT-D

 Adds MM-style dispersion energy back into the molecular energy.

•
$$E = E_{\mathrm{DFT}} - \sum_{\mathrm{Atoms}} \frac{C^{AB}}{r^6} * '\mathrm{damp'}^{12}$$

¹² Stefan Grimme, Jens Antony, Stephan Ehrlich, and Helge Krieg, The Journal Of Chemical Physics (2010)

John Parkhill The University of Notre Dame

Dispersion

Performance of DFT-D, Sulfonimide

¹³H. C. Stephen Chan, John Kendrick, and Frank J. J. Leusen, Angew. Chem. Int. Ed. 2011, 50, 2979 \(\text{\textit{Z}2981} \) 40 + 40 + 43 + 43 +

John Parkhill The University of Notre Dame

Dispersion

Performance of DFT-D, Sulfonimide

14

CSP ranking		ΔE _{DPT(A} ^[N] [k] mol ⁻¹]	Density [gcm]	$Z^{(k)}$	Space	Unit cell parameters [™]				RMSD ^{IC}	нам
DFT(d) rank	TMFF rank	,,,,,				a [Å]	P [V]	e [A]	BM	9.40	
form I ^{ff}			1.464	1	P2.jc	8.48	8.96	14.89	91,86		10
1	1	0.000	1.452	1	P2.10	8.54	9.00	14.84	92.10	0.113	10
form IIII			1.452	1	Phoe	10.62	9.32	23.06	90.00		10
2	20	0.887	1.428	1	Pbcp	10.59	9.32	23.50	90.00	0.093	10
form II ^N			1,463	2	P2.5c	12.11	10.79	17.46	97.32		2D
3	140	0.911	1,471	2	P2.50	12.11	10.78	17.41	97.96	0.091	2D
4	18	1.144	1.417	2	P2.5c	23.84	10.61	9.30	83.50		10
5	21	1.357	1,438	2	Phos	10.60	9.31	46.72	90.00		10
6	2	1.362	1,445	1	P2./c	11,70	10.61	9.24	87.45		10
7	5	1.524	1.425	2	Pbce	10.62	9.26	47.26	90.00		10
8	16	1.679	1,408	1	Phos	10.62	9.28	23.85	90.00		10
9	17	1,726	1.428	2	Phoa	10.60	9.33	46.88	90.00		10
10	111	1.820	1.436	2	P2.5c	14.17	10.98	17.79	56.45		20

¹⁴H. C. Stephen Chan, John Kendrick, and Frank J. J. Leusen, Angew. Chem. Int. Ed. 2011, 50, 2979-2981 4 日 N 4 間 N 4 団 N 4 団 N

John Parkhill The University of Notre Dame

Introduction

The Toolbo

Periodic Calculatio

Structure

Predictio

Dispersion

Approaches

Many Body Quantus Approaches To

Disordered

Water

Extended

Electronic States

Statistics and Quantu

Not all DFT-D's are created equal

 In order of decreasing accuracy: MBD (Tkatchenko) > DFT-D3 (Grimme) > TS > DFT-D

John Parkhill The University of Notre Dame

Fragmentation Approaches

Fragment Expansions

Run monomer and dimer calculations, and use the many body expansion to build up the energy of the larger system from fragment energies. You can also use this as a correction to MM energies.

$$E = E_{\text{MM}} + \sum_{i} (E_i^{\text{QM}} - E_i^{\text{MM}}) + \sum_{i} E_{ij}^{\text{QM}} - E_{ij}^{\text{MM}} + \dots$$
 (3)

15

¹⁵Shuhao Wen and Gregory J. O. Beran JCTC 2011 () () () ()

John Parkhill The University of Notre Dame

Fragmentation Approaches

DFT-D vs. Fragment MP2

Percent error in lattice constants for five organic crystals (formamide, acetamide, benzene etc.). ¹⁶

¹⁶K. D. Nanda and G. J. O. Beran, J. Chem. Phys. 137, 174106 (2012)

John Parkhill The University of Notre Dame

The Toolbo

Periodic Calculation

Crystal Structure

Predictio

Dispersi

Fragmentation Approaches

Many Body Quantum Approaches To

Disordered Systems

Water

Electroni

Statistics and Quantu

Crystal Structure Prediction: Takehome

- DFT-D can predict crystal structures pretty accurately with dispersion correction.
- Searching for the most stable structure is actually more difficult.
- Good first try is PBE+D3 or TS/4x4x4
- Other approaches also exist to calibrate these DFT calculations.

John Parkhill The University of Notre Dame

Many Body Quantum Approaches To

Dispersion

RPA and beyond.

 Corrections to Kohn-Sham DFT can be written in terms of it's response functions to density perturbations RPA is the cheapest (still expensive) method of this type.

•
$$E_c^{RPA} = \frac{1}{2\pi} \int_0^\infty du Tr\{ln(1-\chi_0(iu)v) + \chi_0(iu)v\}$$

¹⁷Xinguo Ren Patrick Rinke and Matthias Scheffler. Exploring the random phase approximation: Application to CO adsorbed on Cu(111) PRB 80, 045402 2009 4 日 N 4 間 N 4 団 N 4 団 N

John Parkhill The University of Notre Dame

Introduction

The Toolbo

Periodic Calculation

Crystal

Prediction

Dispersi

Fragmentati Approaches

Many Body Quantum Approaches To Dispersion

Disordere Systems

Wate

Extended Electroni States

Statistics and Quantum Mechanics RPA

¹⁸Xinguo Ren, Patrick Rinke, Christian Joas, and Matthias Scheffler, Random-phase approximation and its applications in computational chemistry and materials science

John Parkhill The University of Notre Dame

Many Body Quantum

Approaches To Dispersion

5 Minute Break

Human: what is the purpose of life? Machine: to serve the greater good. Human: what is the purpose of living? Machine: to live forever. Human: what is the purpose of existence? Machine: to find out what happens when we get to the planet earth. - Google Neural Network, trained on movie scripts, ArXiv 2015

The Toolbo

Periodic Calculatio

Crystal Structure

Predictio

Dispersio

Fragmenta Annmache

Many Body Quantur Approaches To Dispersion

Disordere Systems

Water

Extended Electronic

tatistics and Quantu

The structure of water

- What models can explain the properties of water (melts on compression etc.)?
- How ordered is liquid water?
- How can QC be run rapidly enough to actually simulate liquid water. We need to do many many DFT jobs to actually get a picture.
- What is the role of nuclear quantum effects.

John Parkhill The University of Notre Dame

Introduction

The Teelbe

Periodic Calculation

Crystal

Predicti

Dienersia

Fragmen

Approache

Many Body Quantu Approaches To

Disordere

Dysic

Water

Extended Electronic States

Statistics and Quantum Mechanics

RPA, HF, PBE on Ices

FIG. 3. Binding energy per water melecule versus volume for ice I_b (P6s/mmc) for PBE, EXX+RPA@PBE, and HF+RPA@PBE. The experimental volume is shown as a vertical line. The dotted lines indicate the theorem.

FIG. 4. Binding energy pet water molecule versus volume for ice VIII for PBE, EXX+RPA@PBE, and HF+RPA@PBE. The experimental volume is shown as a vertical line.

¹⁹M. Macher, J. Klimes, C. Franchini, and G. Kresse. The Journal Of Chemical Physics 140, 084502 (2014)

John Parkhill The University of Notre Dame

Water

DFT on liquid

Notice how this plot is noisy?

²⁰Robert A. DiStasio Jr and Roberto Car JCP 2014

John Parkhill The University of Notre Dame

Introduc

The Toolbo

Periodic Calculation

Crystal Structur

Predictio

Dispersio

Fragmentati

Many Body Quantum Approaches To

Disorder

Water

Extended Electroni States

Statistics and Quantum

The Car-Parinello Technique

It's often more important to sample more geometries than it is to get the SCF perfect. The Car-Parinello technique integrates the orbitals like they were classical oscillators so that the ground electronic state is followed like a statistical average, rather than converging SCF at each step.

$$M_I \ddot{\mathbf{R}}_I = -\nabla_I E\left[\{\psi_i\}, \{\mathbf{R}_J\}\right] \tag{4}$$

$$\mu \ddot{\psi}_i(\mathbf{r}, t) = -\frac{\delta E}{\delta \psi_i^*(\mathbf{r}, t)} + \sum_j \Lambda_{ij} \psi_j(\mathbf{r}, t), \tag{5}$$

Car-Parinello can exhibit artifacts and is becoming less common than Born-Oppenheimer MD (complete convergence of SCF). 21

²¹Car and Parinello PRL 1985

John Parkhill The University of Notre Dame

Introductio

The Toolbo

Periodic Calculatio

Crystal

Structur

Prediction

Dispersio

Annmaches

Many Body Quantur Approaches To

Disordere

Water

Extended Electronic

Statistics and Quantu Mechanics

Ab-Initio Force Fields.

Force fields (esp polarizable) rival QC for intermolecular interactions, but are awful for intramolecular structure. So an emerging scheme is to parameterize force fields based on dimer or trimer calculations. There are even automated programs which will do that for you.

John Parkhill The University of Notre Dame

Water

Force Fields Vs. QC

²²Babin, Medders and F Paesani Toward a Universal Water Model JPCL 2012

John Parkhill The University of Notre Dame

Water

AIFF: Affordable QC for Water

²³Babin, Medders and F Paesani Toward a Universal Water Model JPCL

John Parkhill The University of Notre Dame

Introduction

TT TT 11

Periodic Calculation

Crystal

Prediction

Dispersio

Fragmentat

Many Body Quantus Approaches To

Disordere

Water

Water

Extended Electroni

Statistics and Quantum Mechanics

AIFF: Affordable QC for Water

²⁴Babin, Medders and F Paesani Toward a Universal Water Model JPCL 2012

John Parkhill The University of Notre Dame

...

Periodic Calculation

Calculation

Structur

Predictio

Dispersio

Approaches

Many Body Quantur Approaches To Dispersion

Disordere Systems

Water

Extended Electronic States

Statistics and Quantum Mechanics

Neural Network Force Fields.

Anything that has a traditional Force-Field form will fail to make and break bonds. Nonlinear switching types of force fields like Neural Networks can model these bonding changes.

FIG. 2. (Color) Graphite-diamond coexistence line. NN results are denoted by red. LCBOP+ data by blue, and experimental data by green color, respectively.

²⁵Rustam Z. Khaliullin, Hagai Eshet, Thomas D. Kuhne, Jorg Behler, and Michele Parrinello, Phys. Rev. B 81, 100103

John Parkhill The University of Notre Dame

IIIIIoductio.

The Toolbo

Periodic Calculatio

Structur

Predictio

Dispersi

Approaches

Many Body Quantur

Many Body Quantum Approaches To Dispersion

Disordere Systems

Water

Extended Electroni States

atistics and Quantur

Disordered Systems: Takehome

- Correlated methods are limited to single point energies in extended systems.
- QC can predict the structure of liquid water and ice (PBE+Dispersion or better, RPA or an ab-initio force field)
- CCSD(T) CBS based force fields are better than PBE+D.
- The most efficient way to simulate disordered systems quantitatively is to fit a force field to ab-initio data.
- Ab-initio force fields are becoming easy if bonding doesn't change, and much harder otherwise.
- The quantum proton effect is basically that 330K simulated water behaves like 300K water.

Periodic Calculatio

Crystal Structure Prediction

Dispersion

Fragment

Many Body Quantus

Approaches To Dispersion

Systems

Extended Electronic States

Statistics and Quantum Mechanics

Extended Electronic States

Materials which have a very small but nonzero gap are hard to treat because they are usually extended systems, but also inaccurate with HF/DFT.

- $\rho(r,r') \approx e^{-|r-r'|/\text{Gap}}$.
- Insulators → Small electronic states (Fluorinated Hydrocarbons > 2eV gap)
- Semi-conductors Like Pentacene \rightarrow Extended states (1eV gap)
- Metals \rightarrow quasi-infinite electronic states. (no gap)
- Of the methods designed to model extended electronic states, you may someday use GW-BSE and DMRG.

John Parkhill The University of Notre Dame

Introduction

Periodic

Calculation

Structure

Predictio

Dispersion

Fragmentation Approaches

Many Body Quantur Approaches To

Disordere Systems

Extended Electronic States

> Statistics and Quantum Mechanics

Extended Excited Electronic States

In solids, actually an electron and a hole *are not* attracted to each other like $\frac{1}{r}$. It's something short-range and weaker. Surrounding electrons 'screen' the interaction that they experience.

$$(\varepsilon_c^{\sf QP} - \varepsilon_v^{\sf QP}) A_{vc}^S + {}_{v'c'} \langle vc|K^{eh}|v'c'\rangle A_{v'c'}^S = \Omega^S A_{vc}^S$$

- Available in YAMBO, Vasp, and BerkeleyGW. First implementation: Hybertsen and Louie.
- The method of choice for excited states in semiconducting solids.

John Parkhill The University of Notre Dame

Introduction

Periodic Calculatio

Crystal Structure

Prediction

Dispersion

Fragmenta

Many Body Quan

Approaches To Dispersion

Systems

Extended Electronic States

Statistics and Quantu Mechanics

FCI-QMC

²⁶

²⁶Booth, Gruneis, Kresse, and Alavi Science, 2012

John Parkhill The University of Notre Dame

introductio

The Toolbo

Periodic Calculatio

Crystal

Structure

Predictio

Dispersi

Fragmentat Annmaches

Many Body Quantur Approaches To

Dispersion

Systems

Extended Electronic States

Statistics and Quantu Mechanics

Density Matrix Renormalization Group (DMRG)

- The perfect correlation method for extended linear molecules.
 - $|\psi_{\text{MPS}}\rangle = M^{\circ 1}M^{\circ 2}...M^{\text{norb}}|n_1, n_2, ...\rangle$
 - Code available in Q-Chem. Good for ground state with less than 40 orbitals.
- Invented by White (92 Nobel Prize 2020?), introduced to chemistry by G. Chan.
- Drop in replacement for CASSCF for large systems.

John Parkhill The University of Notre Dame

Introduction

TL - T- -11--

Periodic Calculation

Calculati

Structur

Prediction

Dispersi

Approache

Many Body Quantus Approaches To

Disordere

Systems

Extended Electronic States

Mechanics and Quantu

Orbital Occ. vs. Size.

²⁷Hachmann and Chan JCP 2012.

John Parkhill The University of Notre Dame

Introduction

7T T 11

Periodic

Calculation

Structur

Prediction

Dispersi

Annmaches

Many Body Quantus

Approaches To Dispersion

Disordered Systems

Water

Extended Electronic States

Statistics and Quantum Mechanics

DMRG

²⁸Sharma and Chan Nat. Chem. 2013

John Parkhill The University of Notre Dame

Introductio

The Toolbo

Periodic Calculation

Structure

Predictio

Dispersio

Approaches

Many Body Quantus Approaches To

Disordere

Water

Extended Electroni

Statistics and Quantum Mechanics

Mixed States

As system size increases ignoring electronic temperate is becoming a ridiculous approximation, yet relaxing this approximation is not a solved problem. Second order perturbation theory for T>0 was wrong until *two years ago*!

THE JOURNAL OF CHEMICAL PHYSICS 138, 204112 (2013)

On the Kohn-Luttinger conundrum

So Hirata^{1,2,8)} and Xiao He^{1,8)}

Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA

CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

(Received 26 February 2013; accepted 9 May 2013; published online 30 May 2013)

Kohn and Luttinger [Phys. Rev. 118, 41 (1960)] showed that the conventional finite-temperature extension of the second-order many-body perturbation theory had the incorrect zero-temperature limit in metals and, on this basis, appead that the theory was incorrect. We show that this inconsistency arises from the noninclusion of the temperature effect in the energies of the zeroth-order eigenstates of the perturbation theory, which causes not only the Kohn-Luttinger consumfaum but also another inconsistency with the zero-temperature many-body perturbation theory, namely, the differJohn Parkhill The University of Notre Dame

Introducti

The Toolbo

Periodic Calculation

Crystal

Structure Prediction

Fredictio

Dispersio

Approaches

Many Rody Oventur

Many Body Quantum Approaches To Dispersion

Disordere Systems

Water

Electron

Statistics and Quantum Mechanics

Conclusions: Extended systems.

- Local codes + Fragmentation compete with periodic DFT as model chemistries for extended systems.
- If your system is genuinely crystalline:
 PWDFT+PBE+dispersion is the 0th order model chemistry.
- If your system is disordered and chemical bonds are not made/broken an AIFF is most attractive.
- If your system is disordered and chemical bonds are made/broken QM/MM and an area of current research.