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ion, we solve for a simple reduced-form gravity equation revealing a transparent
theoretical relationship among bilateral trade flows, incomes, and trade costs, based upon the model in
Anderson and van Wincoop [Anderson, James E., and van Wincoop, Eric. “Gravity with Gravitas: A Solution to
the Border Puzzle.” American Economic Review 93, no. 1 (March 2003): 170–192.]. Monte Carlo results
support that virtually identical coefficient estimates are obtained easily by estimating the reduced-form
gravity equation including theoretically-motivated exogenous multilateral resistance terms. We show our
methodology generalizes to many settings and delineate the economic conditions under which our approach
works well for computing comparative statics and under which it does not.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

For nearly a half century, the gravity equation has been used to
explain econometrically the ex post effects of economic integration
agreements, national borders, currency unions, immigrant stocks,
language, and other measures of “trade costs” on bilateral trade flows.
Until recently, researchers typically focused on a simple specification
akin to Newton's Law of Gravity, whereby the bilateral trade flow from
region i to region j was a multiplicative (or log-linear) function of the
two countries' gross domestic products (GDPs), their bilateral distance,
and an array of bilateral dummy variables assumed to reflect the
bilateral trade costs between that pair of regions; we denote this the
“traditional” gravity equation.
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However, the traditional gravity equation has come under scrutiny,
partly because it ignores that the volume of trade from region i to region
j should be influenced by trade costs between regions i and j relative to
those of the rest-of-the-world (ROW), and the economic sizes of the
ROW's regions (and prices of their goods) matter as well. While two
early formal theoretical foundations for the gravity equationwith trade
costs — first Anderson (1979) and later Bergstrand (1985) — addressed
the role of “multilateral prices,” Anderson and van Wincoop (2003)
refined the theoretical foundations for the gravity equation to
emphasize the importance of accounting properly for the endogeneity
of prices. Two major conclusions surfaced from the seminal Anderson
and van Wincoop (henceforth, A-vW) study, “Gravity with Gravitas.”
First, traditional cross-section empirical gravity equations have been
misspecified owing to the omission of theoretically-motivated endo-
genousmultilateral (price) resistance terms for exporting and importing
regions. Second, to estimate properly the general equilibrium compara-
tive statics of a national border or an EIA, one needs to estimate these
multilateral resistance (MR) terms for any two regionswith andwithout
a border, in a manner consistent with theory. Due to the nonlinearity of
the structural relationships, A-vW applied a custom nonlinear least
squares (NLS) program to account for the endogeneity of prices and
estimate the general equilibrium comparative statics.

Another— and computationally less taxing— approach to estimate
unbiased gravity equation coefficients, which also acknowledges the
influence of theoretically-motivated MR terms, is to use region-
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specific fixed effects, as noted by A-vW, Eaton and Kortum (2002), and
Feenstra (2004). An additional benefit is that this method avoids
the measurement error associated with measuring regions' “internal
distances” for the MR variables. Indeed, van Wincoop himself — and
nearly every gravity equation study since A-vW — has employed this
simpler technique of fixed effects for determining gravity-equation
parameter estimates, cf., Rose and van Wincoop (2001) and Baier and
Bergstrand (2007a). Yet, without the structural system of nonlinear
equations, one still cannot generate region- or pair-specific general
equilibrium (GE) comparative statics; fixed effects estimation pre-
cludes estimating MR terms with and without EIAs. Empirical
researchers can use fixed effects to obtain the key gravity-equation
parameter estimates, and then simply construct a system of nonlinear
equations to estimate multilateral price terms with and without the
“border.” But they don't.

Consequently, theempirical researcher faces a tradeoff. A customized
NLS approach can potentially generate consistent, efficient estimates of
gravity-equation coefficients and comparative statics, but it is compu-
tationally burdensome relative to ordinary least squares (OLS) and
subject to measurement error associated with internal distance
measures. Fixed-effects estimation uses OLS and avoids internal
distance measurement error for MR terms, but one cannot retrieve the
multilateral price terms necessary to generate quantitative compara-
tive-static effects without also employing the structural system of
equations. Is there a third way to estimate gravity equation parameters
using exogenous measures of multilateral resistance and “good old”
(“bonus vetus”) OLS and/or compute region-specific resistance terms
that can be used to approximate MR terms for comparative statics or
other purposes (to be discussed later) without using a nonlinear solver?
This paper suggests a method that may be useful.

Following some background, this paper has three major parts:
theory, estimation, and comparative statics. First, we suggest amethod
for “approximating” theMR terms based upon theory.We use a simple
first-order log-linear Taylor-series expansion of theMR terms in the A-
vW system of equations to motivate a reduced-form gravity equation
that includes theoretically-motivated exogenousMR terms that can be
estimated potentially using OLS. However — unlike fixed-effects
estimation — this method can also generate theoretically-motivated
general equilibrium comparative statics without using a system of
nonlinear equations or assuming symmetric bilateral trade costs.

Second, we show that our first-order log-linear approximation
method provides virtually identical coefficient estimates for gravity-
equation parameters to those in A-vW. For tractability, we apply our
technique first to actual trade flows using the same context and
Canadian–U.S. data sets as used by McCallum (1995), A-vW, and
Feenstra (2004). However, the insights of our paper have the potential
to be used in numerous contexts, especially estimation of the effects of
tariff reductions and free trade agreements onworld trade flows— the
most common usage of the gravity equation in trade. Using Monte
Carlo techniques, we show that the linear approximation approach
works in the context of regional (intra-continental) and world (intra-
and inter-continental) trade flows.

Third, we demonstrate the economic conditions under which our
approximation method works well to calculate comparative-static
effects of key trade-cost variables… and when it does not. We
compare the comparative statics generated using our approach versus
those using A-vW's approach both for the Canadian–U.S. context and
for world trade flows using Monte Carlo simulations. We find that the
largest comparative static changes in multilateral price terms (and
largest approximation errors) tend to be among— not just small GDP-
sized economies (and consequently those with large trading partners)
as emphasized in A-vW— but small countries that are physically close.
Using a fixed-point iterative matrix manipulation, the approximation
errors can be eliminated using an N×Nmatrix of GDP shares relative to
bilateral distances, that is, measures of economic “density.” Since our
approximation method can generate MR terms evenwhen trade costs
are bilaterally asymmetric, our method can yield lower average
absolute biases of comparative statics than the A-vW method (which
only addresses average border barriers under asymmetry).

The remainder of the paper is as follows. Section 2 reviews the
A-vW analysis. Section 3 uses a first-order log-linear Taylor-series
expansion to motivate a simple reduced-form gravity equation. In
Section 4, we apply our estimation technique to theMcCallum–A-vW–

Feenstra data set and compare our coefficient estimates to these
papers' findings. Section 5 examines the economic conditions under
which our approach approximates the comparative statics of trade-
cost changes well and under which it does not. Section 6 concludes.

2. Background: the gravity equation and prices

2.1. The A-vW theoretical model

To understand the context, we initially describe a set of assumptions
to derive a gravity equation; for analytical details, seeA-vW(2003). First,
assume aworld endowment economywithN regions andN (aggregate)
goods, each good differentiated by origin. Second, assume consumers in
each region j have identical constant-elasticity-of-substitution (CES)
preferences. Maximizing utility subject to a budget constraint yields a
set of first-order conditions that can be solved for the demand for the
nominal bilateral trade flow from i to j (Xij):

Xij =
pitij
Pj

� �1−σ

Yj ð1Þ

where pi is the exporter's price of region i's good, tij is the gross trade
cost (one plus the ad valorem trade cost) associated with exports from
i to j, Yj is GDP of country j, and Pj is the CES price index given by:

Pj = ∑
N

i = 1
pitij
� �1−σ� �1= 1−σð Þ

: ð2Þ

A third assumption of market-clearing and some algebraic
manipulation yields:

Xij =
YiYj
YT

� �
tij

ΠiPj

� �1−σ

ð3Þ

where

Πi = ∑
N

j = 1
θj=tσ−1

ij

� 	
Pσ−1
j

" #1= 1−σð Þ
ð4Þ

Pj = ∑
N

i = 1
θi=tσ−1

ij

� 	
Πσ−1

i

� �1= 1−σð Þ
ð5Þ

YT denotes total income of all regions, which is constant across region
pairs, and θi (θj) denotes Yi /YT (Yj /YT). It will be useful now to define
the term “economic density.” For i, the bilateral “economic density” of
a trading partner j is the amount of economic activity in j relative to
the cost of trade between i and j, or θj / tijσ−1.

To solve this system of equations, A-vW employed a strong fourth
assumption: trade costs are symmetric bilaterally, implying tij= tji.
Under this fourth assumption, their model simplifies to a system of N2

equations in N(N−1) endogenous trade flows and N endogenous price
terms (P).

2.2. The A-vW econometric model

As is common to this literature, for an econometricmodelwe assume
the log of the observed trade flow (lnXij) is equal to the log of the true
trade flow (lnXij) plus a log-normally distributed error term (εij). Yi can
feasibly be represented empirically by observable GDPi. However, the
world is not so generous as to provide observable measures of bilateral
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trade costs tij. Following the literature, a fifth assumption is that the
gross trade cost factor is a log-linear function of (boldfaced) observable
variables, such as bilateral distance (DISij) and dummy variable e−αEIAij:

tijuDISρ
ije

−αEIA ij ð6Þ

where equals e−αEIAij equals e−α (b1) if the two regions are in an
economic integration agreement (assuming αN0). One could also
include a language dummy, an adjacency dummy, etc.; for brevity, we
ignore these.

In theMcCallum–A-vW–Feenstra context of Canadian provinces and
U.S. states, EIAij=1if the two regions are in the same country, and 0
otherwise. A-vW describe one customized nonlinear procedure for
estimating Eqs. (3)–(6) to generate unbiased estimates in a two-country
world with 10 Canadian provinces, 30 U.S. states and an aggregate rest-
of-U.S. (the other 20 states plus the District of Columbia), or 41 regions
total. A-vW also estimate a multicountry model; we discuss that later.
This procedure minimized the sum-of-squared residuals of:

ln Xij= GDPiGDPj
� �
 �

= a0 + a1 lnDISij + a2EIAij− ln P1−σ
i − ln P1−σ

j + eij ð7Þ

subject to the 41 market-equilibrium conditions ( j=1,…, 41):

P1−σ
j = ∑

41

k = 1
Pσ−1
k GDPk=GDPT� �

ea1 lnDISkj + a2EIAkj ð8Þ

to estimate a0, a1, and a2 where a0=−lnGDPT, a1=−ρ(σ−1), a2=−α(σ−1),
and trade costs are bilaterally symmetric.

2.3. Estimating comparative-static effects

MR terms Pi1−σ and Pj
1−σ are “critical” to understanding the impact

of border barriers on bilateral trade. Once estimates of a0, a1, and a2 are
obtained, one can retrieve estimates of Pj1 −σ for all j=1,…, 41 regions in
the presence and absence of a national border. Let Pi

1−σ (P⁎i1−σ) denote
the estimate of the MR region i with (without) an EIA following NLS
estimation of Eqs. (7) and (8). A-vW and Feenstra (2004) both show
that the ratio of bilateral trade between any two regions with an
EIA (Xij) and without an EIA (Xj) is given by:

Xij=X4
ij = e

a2EIAij P41−σ
i =P1−σ

i

� 	
P41−σ
j =P1−σ

j

� 	
: ð9Þ

However, while fixed effects can determine gravity equation
parameters consistently, as A-vW note, estimation of country-specific
border effects still requires construction of the structural system of
nonlinear price equations to distinguish MR terms with and without
borders. Moreover, the procedure works only under the case of
bilaterally symmetric trade costs. We demonstrate in this paper a
simple technique that yields virtually identical estimates of gravity-
equation parameters and (in many instances) the comparative statics
by applying a Taylor-series expansion to the theory, allowing
asymmetric bilateral trade costs (tij≠ tji).

3. Theory

In this section, we apply a first-order log-linear Taylor-series
expansion to the system of price equations∏i and Pj in Eqs. (4) and (5)
above to generate a reduced-form gravity equation — including
theoretically-motivated exogenous multilateral resistance (MR)
terms — that can be estimated using OLS. A first-order Taylor-series
expansion of any function f(xi), centered at x, is given by f (xi)= f (x)+
[ f′(x)](xi−x).2 Since the solution to a Taylor-series expansion is sensi-
2 We find using a Monte Carlo robustness analysis that a first-order Taylor series
works well for estimating gravity equation coefficients. Higher-order terms are largely
unnecessary for estimation. However, such terms are relevant for subsequent
comparative statics; we address this later in Section 5.
tive to how it is centered, we use in our static trade context the natural
choice of an expansion “centered” around a world with symmetric
trade frictions (tij= t).3 However, we note that our method will yield
approximations of ∏i and Pj as functions of asymmetric GDP shares
and asymmetric bilateral trade costs.

We begin with N Eq. (4) from Section 2.1. It will be useful to divide
both sides of Eq. (4) by a constant t1/2, yielding:

Πi=t1=2 = ∑
N

j = 1
θj tij=t1=2
� 	1−σ

=P1−σ
j

" #1= 1−σð Þ

= ∑
N

j = 1
θj tij=t
� �1−σ

= Pj=t
1=2

� 	1−σ
" #1= 1−σð Þ

:

ð10Þ

Define ∏̃i=∏i / t1/2, P̃ j=Pj / t1/2 and t̃ ij= tij / t. Substituting these
expressions into Eq. (10) yields:

Π̃i = ∑
N

j = 1
θj t̃ij= P̃j

� 	1−σ
" #1= 1−σð Þ

ð11Þ

for i=1,…, N. It will be useful for later to rewrite Eq. (11) as:

e 1−σð Þ ln ˜Πi = ∑
N

j = 1
elnθ j e σ−1ð Þ ln P̃ j e 1−σð Þ ln t̃ i j ð12Þ

where e is the natural logarithm operator. In a world with symmetric
trade costs (tN0), tij= t, implying t̃ ij=1. In this world, the latter implies:

Π̃
1−σ

i = ∑
N

j = 1
θj P̃

σ−1

j ð13Þ

for all i=1,…, N. Multiplying both sides of Eq. (13) by ∏̃i
σ−1 yields:

1 = ∑
N

j = 1
θj Π̃i P̃j

� 	σ−1
: ð14Þ

As noted in Feenstra (2004, p. 158, footnote 11), the solution to
Eq. (14) is ∏̃i= P̃ j= P̃ j=1. Hence, under symmetric trade costs (tij=t),
t̃ ij=∏̃i= P̃ j=1 and it follows that ∏i=Pj=t1/2.

A first-order log-linear Taylor-series expansion of Eq. (12) and its
analogue for P̃ j, centered at t̃ =∏̃ = P̃ =1 (and ln t̃ =ln ∏̃ =ln P̃ =0)
yields 2N equations:

lnΠi = − ∑
N

j = 1
θj ln Pj + ∑

N

j = 1
θj ln tij ð15Þ

and

ln Pj = − ∑
N

i = 1
θi lnΠi + ∑

N

i = 1
θi ln tij ð16Þ

using d[e(1-σ)ln x̃]/ d(ln x̃)=(1-σ)e(1-σ)ln x̃ and some algebraic manipu-
lation (which generates an expression using the original “pre-trans-
formed” variables). A solution to this system of equations (normalizing
P1=1) is:

lnΠi = ∑
N

j = 1
θj ln tij + ∑

N

k = 1
θk ln tk1− ∑

N

k = 1
∑
N

m = 1
θkθm ln tkm; i = 2; N ;N

ð17Þ

ln Pj = ∑
N

i = 1
θi ln tij− ∑

N

k = 1
θk ln tk1; j = 2; N ;N: ð18Þ

See Appendix A for derivations.
Eqs. (17) and (18) are critical to understanding this analysis; they

are clearly “multilateral resistance” terms. Consider first Eq. (18). The
3 We are grateful to a referee that suggested this center that collapsed two cases into
one more general case.



4 We ignore here the possibility of “zero” trade flows. Such issues have been dealt
with by various means; see, for example, Felbermayer and Kohler (2006) and Santos
Silva and Tenreyro (2006).

5 Note that since the second RHS terms in Eqs. (17)–(20) (and the third RHS term in
Eq. (18)) are constants in estimation, the MR approximation terms are effectively
identical under symmetric or asymmetric bilateral trade costs.

6 It will be useful now to distinguish “regions” from “countries.” We assume that a
country is composed of regions (which, for empirical purposes later, can be considered
states or provinces). We will assume N regions in the world and n countries, with NNn.
Our theoretical model applies to a two-country or multi-country (nN2) world. We will
assume n≥2. A “border” separates countries. Also, we use BORDER rather than EIA so
that the coefficient estimates for DIS and BORDER are both negative and therefore are
consistent with A-vW (2003) and Feenstra (2004). The model is isomorphic to being
recast in a monopolistically-competitive framework.
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first term on the RHS is a GDP-share-weighted (geometric) average of
the gross trade costs facing importer j across all exporters i. The
higher this average, the greater overall multilateral resistance in
importer j. Holding constant bilateral determinants of trade, the larger
is j's multilateral resistance, the lower are bilateral trade costs relative
to multilateral trade costs. Hence, the larger the bilateral trade flow
from i to j will be. The second term on the RHS (which is constant
across all Pj, j=2,…, N) scales each Pj to account for normalizing
country 1's “inward” multilateral price, P1=1.

Consider now Eq. (17). The first term on the RHS is a GDP-share-
weighted (geometric) average of the gross trade costs facing exporter i
across all importers j. The higher this average, the greater overall
multilateral resistance facing exporter i. Holding constant bilateral
determinants of trade, the larger is i's multilateral resistance, the
lower are bilateral trade costs relative to multilateral trade costs.
Hence, the larger the bilateral trade flow from i to jwill be. The second
term on the RHS scales each ∏i to account for country 1's inward
multilateral resistance term being normalized, as for Eq. (17). The
third term on the RHS of “outward” multilateral resistance Eq. (17)
(which is also constant across all ∏i, i=2,…, N) scales each ∏i to
account for the normalization applying to an “inward” price, P. While
the second and third and the second terms on the RHS of Eqs. (17) and
(18), respectively, are constant in estimation, under asymmetry
comparative statics will be sensitive to the choice of numeraire.

Under the assumption of bilaterally symmetric trade costs, a
solution to Eqs. (15) and (16) is easier to derive. Under symmetry, the
solution is:

ln Pi = ∑
N

j = 1
θj lntij− 1=2ð Þ ∑

N

k = 1
∑
N

m = 1
θkθm ln tkm

" #
ð19Þ

and:

ln Pj = ∑
N

i = 1
θi lntij− 1=2ð Þ ∑

N

k = 1
∑
N

m = 1
θkθm ln tkm

� �
ð20Þ

where the multilateral prices are normalized by (the square root of)
GDP-weighted average trade costs, cf., Baier and Bergstrand (2006,
2007b).

In the remainder of this paper, we focus on coefficient estimation
and comparative statics under the case of bilaterally symmetric trade
costs, which implies ∏i=Pi. In the context of the theory just discussed
and bilaterally symmetric trade costs, we can obtain consistent esti-
mates of the gravity equations' coefficients — accounting for the
endogenous multilateral price variables — by estimating using OLS
reduced form:

lnXij = βV0 + lnGDPi + lnGDPj− σ−1ð Þ ln tij

+ σ−1ð Þ ∑
N

k = 1
θk ln tik

� �
−
1
2

∑
N

k = 1
∑
N

m = 1
θkθm ln tkm

� �� �

+ σ−1ð Þ ∑
N

k = 1
θk ln tkj

� �
−
1
2

∑
N

k = 1
∑
N

m = 1
θkθm ln tkm

� �� �

ð21Þ

where β0′=− lnYT is a constant across country pairs, as is ∑
N

k = 1
∑
N

m = 1
θkθm

ln tkm: Thus, in the context of the theoretical model, the influence of
the endogenous multilateral price variables can be accounted for —

once we have measures of tij — using these theoretically-motivated
exogenous multilateral resistance variables.

We close this section noting that it is useful to exponentiate
Eq. (21). After some algebra, this yields:

Xij

YiYj=YT =
tij

ti θð Þtj θð Þ=tT θð Þ
� �− σ−1ð Þ

ð22Þ

where ti(θ)=∏k=1
N tik

θk, tj(θ)=∏k=1
N tkj

θk, tT(θ)=∏k = 1
N ∏m=1

N tkm
θkθm and recall θi=

Yi /YT and tij= tji (by assumption). Our use of the Taylor-series
expansion simplifies further the “significantly simplified” gravity
equation implied by A-vW's Eqs. (7)–(9), cf., A-vW (2003, p. 176).
Eq. (22) is a simple reduced-form equation capturing the theoretical
influences of bilateral and multilateral trade costs on bilateral trade
(relative to GDPs). Given data on bilateral trade flows, national
incomes, and bilateral trade costs, Eq. (21) can be estimated by “good
old” OLS, noting the possible endogeneity bias introduced by GDP-
share weights in RHS variables.4

4. Estimation

The goal of this section is to show that one can generate virtually
identical gravity equation coefficient estimates (“partial” effects) to
those generated using the technique in A-vW but using instead OLS
with exogenous multilateral-resistance terms suggested in the
previous section. While the approach should work in numerous
contexts, we apply it first empirically in Section 4.1 toMcCallum's U.S.–
Canadian case, a popular context. In Section 4.2, to avoidmeasurement
and specification biases, we provide Monte Carlo analyses for two
contexts: Canadian–U.S. flows and world trade flows among 88
countries. In both cases, we assume symmetric bilateral trade costs;
we discuss another case of asymmetry later.5

Before implementing Eq. (21) econometrically, one issue needs to
be addressed. We need to replace the unobservable theoretical trade-
cost variable tij in Eq. (21) with an observable variable. Eq. (6) earlier
suggests two typical observable variables likely influencing unobser-
vable tij — bilateral distance (DISij) and a dummy representing the
presence or absence of an economic integration agreement (EIAij). We
define a dummy variable, BORDERij, which assumes a value of 1 if
regions i and j are not in the same nation; hence, EIAij≡1−BORDERij.6

Taking the logarithms of both sides of Eq. (6) and then substituting the
resulting equation for ln tij into Eq. (21) yields:

lnxij = βV0−ρ σ−1ð Þ lnDISij−α σ−1ð ÞBORDERij + ρ σ−1ð ÞMRDISij

+ α σ−1ð ÞMRBORDERij + eij

ð23Þ

where

MRDISij = ∑
N

k = 1
θk lnDISik

� �
+ ∑

N

m = 1
θm lnDISmj

� ��

− ∑
N

k = 1
∑
N

m = 1
θkθm lnDISkm

� ��
;

MRBORDERij = ∑
N

k = 1
θkBORDERik

� �
+ ∑

N

m = 1
θmBORDERmj

� ��

− ∑
N

k = 1
∑
N

m = 1
θkθmBORDERkm

� ��
;

and xij≡Xij /GDPiGDPj. To conform to our theory, coefficient estimates
for lnDIS (BORDER) and MRDIS (MRBORDER) are restricted to have
identical but oppositely-signed coefficient values.

As readily apparent, Eq. (23) can be estimated using OLS, once data
on trade flows, GDPs, bilateral distances, and borders are provided.We



Table 1
Estimation results: Canada–U.S

Parameters (1)
OLS w/o
MR terms

(2)
A-vW
NLS-2

(3)
A-vW
NLS-3

(4)
OLS with
MR terms

(5)
Fixed
effects

(6)
A-vW
NLS-2-a

(7)
OLS with
MR terms-a

−ρ(σ−1) for
distance

−1.06
(0.04)

−0.79
(0.03)

−0.82
(0.03)

−0.82
(0.04)

−1.25
(0.04)

−0.92
(0.03)

−1.02
(0.03)

−α (σ−1) for
border

−0.71
(0.06)

−1.65
(0.08)

−1.59
(0.08)

−1.11
(0.07)

−1.54
(0.06)

−1.65
(0.07)

−1.24
(0.07)

Avg. error terms
US–US −0.21 0.06 0.06 0.39 0.00 0.05 0.27
CA–CA 1.95 −0.17 −0.02 −0.34 0.00 −0.22 −0.23
US–CA 0.00 −0.05 −0.04 −0.50 0.00 −0.04 −0.35
R2 0.42 n.a. n.a. 0.36 0.66 n.a. 0.60
No. of obs. 1511 1511 1511 1511 1511 1511 1511

Numbers in parentheses are standard errors of the estimates. n.a. denotes not applicable.
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note that the inclusion of these additional MR terms appears reminis-
cent of early attempts to include — what A-vW term — “atheoretical
remoteness” variables, typically GDP-weighted averages of each
country's distance from all of its trading partners. However, there
are two important differences here. First, our additional (the last two)
terms are motivated by theory. Second, previous atheoretical remote-
ness measures included only multilateral distance, ignoring other
multilateral “border” variables (such as adjacency, language, etc.).

4.1. Estimation using the McCallum–A-vW–Feenstra data set for actual
Canadian–U.S. trade flows

We follow the A-vW procedure (for the two-country model) of
estimating the gravity equation for trade flows among 10 Canadian
provinces and 30 U.S. states. As in A-vW, we do not include trade flows
internal to a state or province. We calculate the distance between
the aggregate U.S. region and the other regions in the samemanner as
A-vW. We also compute and use the internal distances as described in
A-vW forMRDIS. Some trade flows are zero and, as in A-vW, these are
omitted. As in A-vW and Feenstra (2004), we have 1511 observations
for trade flows from year 1993 from Robert Feenstra's website.

Table 1 provides the results. For purposes of comparison, column
(1) of Table 1 provides the benchmark model (McCallum) results
estimating Eq. (23) except omitting MRDIS and MRBORDER. Columns
(2) and (3) provide the model estimated using NLS as in A-vW for the
two-country and multi-country cases, respectively. Column (4)
provides the results from estimating Eq. (23). For completeness,
column (5) provides the results from estimating Eq. (23), but using
region-specific fixed effects instead of MRDIS and MRBORDER.

Column (1)'s coefficient estimates for the basic McCallum regres-
sion, ignoring multilateral resistance terms, are biased, as expected.
This specification can be compared with Feenstra (2004, Table 5.2,
column 3), since it uses US–US, CA–CA, and US–CA data for 1993. Note,
however, that Feenstra did not constrain the GDP elasticities to be
unity and we report the border dummy's coefficient estimate
(“Indicator border”) whereas Feenstra reports instead the implied
“Country Indicator” estimates.7 Columns (2) and (3) in Table 1 report
the estimates (using GAUSS) of the A-vW benchmark coefficient
estimates; these correspond exactly to those in A-vW's Table 2 and
(for the two-country case) Feenstra's Table 5.2, column (4). The
coefficient estimates from our OLS specification (23) are reported in
column (4) of Table 1. Both our coefficient estimates in column (4) and
the NLS estimates in columns (2) and (3) differ from the estimates
7 In Feenstra's Table 5.2, column 3, he does not report the actual dummy variable's
coefficient estimate (comparable to our estimate of 0.71). Instead, he reports only the
implied “Indicator Canada” and “Indicator US” estimates of 2.75 and 0.40, respectively.
The implied Indicator Canada and Indicator US estimates from our regression are 2.66
and 0.48, respectively; the difference is that we restrict the GDP elasticities to unity.
When we relax the constraints on GDP elasticities, our estimates match those in
Feenstra's Table 5.2, column 3 and A-vW's Table 1 exactly.
using fixed effects in column (5). Recall that — as both A-vW and
Feenstra note — fixed effects should provide unbiased coefficient
estimates of the bilateral distance and bilateral border effects,
accounting fully for multilateral-resistance influences in estimation.
Our column (5) estimates match exactly those in A-vW and Feenstra
(2004).8

We now address the difference between coefficient estimates in
columns (2)–(5). As A-vW (2003, p. 188) note, the bilateral distance
coefficient estimate using their NLS program is quite sensitive to the
calculation of “internal distances.” In their sensitivity analysis, they
provide alternative coefficient estimates when the internal distance
variable values are doubled (or, 0.5 minimum capitals' distance).
These are reported in column (6) of our Table 1; note that the absolute
value of the distance coefficient increases. These results confirm A-
vW's suspicion that the NLS estimation technique is sensitive to
measurement error in internal distances.

However, adjustment for internal distance measurement error
cannot explain entirely the difference between coefficient estimates in
columns (2) and (3) and those in column (5). As A-vW (2003, p. 180)
note, potential specification error can also bias the coefficient
estimates in columns (2)–(4). In particular the trade-cost function
from Eq. (6) may be misspecified. Classic omitted variables bias may
exist. As noted above, with GDPs on both the LHS and RHS of Eq. (23),
endogeneity bias may arise. When GDP coefficients are not con-
strained to unity, the coefficient estimates in all the specifications
change; column (7) reports the estimates just for the distance and
border coefficients using our Eq. (23) allowing unconstrained GDP
elasticities.

The differences between the coefficient estimates in Table 1 sug-
gest that an alternative approach is needed to compare the consis-
tency of estimates using A-vW's method, our approach, and fixed
effects. Is there a way to compare the estimation results of A-vW and
our approach excluding mis-measurement and specification biases?

4.2. Monte Carlo analyses

In this section, we employ aMonte Carlo approach to show that our
OLS method yields estimates of border and distance coefficient esti-
mates that are virtually identical to those using A-vW's NLS method
when we know the “true” model. To do this, in Section 4.2.1 we
construct the “true” bilateral international trade flows among 41
regions using the theoretical model of A-vW described in Section 2.
We assume the world is described precisely by Eqs. (7) and (8),
assuming various arbitrary values for α, ρ, and σ. Using Canadian–U.S.
province and state data on GDPs and bilateral distances and dummy
variables for borders, we can compute the “true” bilateral trade flows
and “true” multilateral resistance terms associated with these
economic characteristics for given values of parameters α, ρ, and σ.
We then assume that there exists a log-normally distributed error
term for each trade flow equation.Wemake 1000 draws for each trade
equation and run various regression specifications 1000 times.9 We
use GAUSS in all estimates. In Section 4.2.2, to show that this approach
works in themore traditional context of world trade flows, we employ
the same Monte Carlo approach and provide the results.

4.2.1. Monte Carlo analysis #1: Canada–U.S.
We consider five specifications. Specification (1) is the basic gravity

model ignoring multilateral resistance terms, as used by McCallum. In
8 The coefficient estimates from the fixed-effects regression in A-vW's Table 6,
column (viii) are not reported. However, they were generously provided by Eric van
Wincoop in e-mail correspondence, along with the other coefficient estimates
associated with their Table 6. A-vW's Distance (Border) coefficient estimate using
fixed effects was − 1.25 (− 1.54).

9 The error terms' distribution is such that the R2 (and standard error of the
estimate) from a regression of trade on GDP, distance, and borders using a standard
gravity equation is similar to that typically found (an R2 of 0.7 to 0.8).



11 Naturally, we could also introduce in this exercise an array of other typical bilateral

Table 2
Monte Carlo simulations: Canada–U.S

Specification Coefficient
estimate
average

Standard
deviation

Fraction within 2
standard errors
of true value

(1) McCallum
Border −0.799 0.054 0.000
Distance −0.569 0.036 0.000

(2) OLS with atheoretical remoteness terms
Border −1.139 0.057 0.000
Distance −0.958 0.042 0.042

(3) A-vW
Border −1.648 0.061 0.955
Distance −0.791 0.028 0.954

(4) Fixed effects
Border −1.648 0.069 0.953
Distance −0.793 0.045 0.937

(5) OLS with MR approximations
Border −1.639 0.069 0.962
Distance −0.850 0.042 0.744

True border coefficient=−1.65.
True distance coefficient=−0.79.
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the context of the theory, we should get biased estimates of the true
parameters since we intentionally omit the true multilateral price
terms or fixed effects. Specification (2) is the basic gravity model
augmented with “atheoretical remoteness” terms (REMOTEi and
REMOTEj), as in McCallum (1995) and Helliwell (1998). Eq. (7)
would include REMOTEi and REMOTEj, instead of Pi and Pj, where
REMOTEi=lnΣj

N(DISij /GDPj) and analogously for REMOTEj. In the
context of the theory, we should get biased estimates of the true
parameters since we are using atheoretical measures of remoteness.
This specification also ignores other multilateral trade costs. For
Specification (3), we take the system of equations described in Eq. (8)
to generate the “true” multilateral resistance terms associated with
given values of −ρ(σ−1) and − (σ−1).We then estimate the regression
(7) using the true values of the multilateral resistance terms. In the
presence of the true MR terms, we expect the coefficient estimates to
be virtually identical to the true parameters. Specification (4) uses
region-specific fixed effects. As discussed earlier, region-specific fixed
effects should also generate unbiased estimates of the coefficients.
Specification (5) is our OLS Eq. (23). If our hypothesis is correct, these
parameter estimates should be virtually identical to those estimated
using Specifications 3 and 4.

We run these five specifications for values for a1=−ρ(σ−1)=−0.79
and a2=α (σ−1)=−1.65 (the values obtained empirically in A-vW
using NLS). We report three statistics in Table 2. First, we report the
average coefficient estimates for a1 and a2 from the 1000 regressions
for each specification. Second, we report the standard deviation of
these 1000 estimates. In the last column, we report the fraction of
times (from the 1000 regressions) that the coefficient estimate for a
variable was within two standard errors of the true coefficient
estimate.10

Table 2 reports the estimated values for the five specifications
under this scenario in columns (2)–(4). There are two major results
worth noting. First, the first two specifications provide biased esti-
mates of the border and distance coefficient estimates, as expected.
Second, both fixed effects and our approximation method provide
estimates very close to those using Specification 3, as expected. While
10 Note that the standard deviation refers to the square root of the variance of all the
coefficient estimates for a specification. We also calculated the standard errors of each
coefficient estimate. The last column in each table refers to the fraction of the 1000
regressions that the estimated coefficient is within two standard errors of the true
value.
the approximation method's average coefficient estimates depart
slightly from the average A-vW estimates, 96 (74) percent of the
border (distance) coefficient estimates in Specification 5 are within
two standard errors of true values.

4.2.2. Monte Carlo analysis #2: gravity equations for world trade flows
Of course, the gravity equation has been used over the past four

decades to analyze economic and political determinants of a wide
range of aggregate “flows.” However, the most common usage of the
gravity equation has been for explaining world (intra- and inter-
continental) bilateral trade flows. The issues raised in A-vW (2003)
and in this paper have potential relevance for estimating effects of
EIAs and of tariff rates on world trade flows.

We constructed a set of “artificial” aggregate bilateral world trade
flows among 88 countries for which data on the exogenous RHS
variables discussed above were readily available. Three exogenous
RHS variables that typically explain world trade flows are countries'
GDPs, their bilateral distances, and a dummy representing the
presence (0) or absence (1) of a common land border (“NoAdjacency”).
We then estimate the relationship among bilateral trade flows,
national incomes, bilateral distances and NoAdjacency among 88
countries using our OLSmethod.We simply redo Section 4.2.1's Monte
Carlo simulations.11 In short, the main finding is that the estimation
biases for coefficients remain small; results are omitted for brevity.

A full multi-country empirical analysis of world trade flows using
our approach is beyond the space constraints of this paper. However,
two recent empirical gravity equation studies examining determi-
nants of world trade flows have found that the coefficients estimated
using our approach are virtually identical to the respective coefficient
estimates using fixed effects, cf., Adam and Cobham (2007) and
Dolman (2008).

5. Comparative statics

In this section, we examine the potential usefulness of our ap-
proximation approach for conducting comparative statics.12 In Section
5.1, our linearizationmethod implies we can compute the comparative
statics analytically and provide intuition for why the approach
provides a “good approximation” of the comparative-static (overall)
country effects for Canada and the United States provided in A-vW
(2003), but a poor one of region-pair-specific (such as Alberta–
Alabama) comparative statics. In Section 5.2, we move to the most
common context — gravity equations of international trade flows
among large numbers of countries with symmetric bilateral trade
costs— to examine under what conditions the approximation method
works well for comparative statics — and when it does not. We find
that the approximation method works best the smaller is the
comparative-static effect, as would be expected from any linear
Taylor-series expansion of a nonlinear equation. However, extending
A-vW, the effects of trade costs on multilateral price terms are not
simply the greatest for economically small countries (with conse-
quently large trading partners), but for small countries that are close
in distance. Using the concept of economic “density,” or θj / tijσ−1
dummies, such as common language, common EIA, etc. However, this would have no
bearing on the generality of our results.
12 Other potential uses exist also. For instance, recent analyses of the effects of free
trade agreements (FTAs) on trade using nonparametric (matching) econometric
techniques require theory-based indexes of multilateral resistance, cf., Egger et al.
(2008) and Baier and Bergstrand (2009); an approach such as ours is needed. Also,
recent estimation of economic and political determinants of EIAs between country
pairs using probit models of the likelihoods of FTAs requires theory-based (exogenous)
measures of multilateral resistance, cf., Mansfield and Reinhardt (2003), Baier and
Bergstrand (2004), and Mansfield et al. (2008).
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from Eqs. (4) and (5), we show that a simple fixed-point iterative
matrix manipulation can eliminate the approximation errors of our
multilateral resistance approximations.13 Finally, since our approx-
imation method was derived allowing bilaterally asymmetric
trade costs, our approach may generate lower biases in comparative
statics (relative to “true” values) than the A-vW method under
bilaterally asymmetric trade costs, as the latter method only addresses
“average” border effects (cf., A-vW, 2003, Footnote 12), and we discuss
one implementation of our approach under bilateral asymmetry in
Section 5.3.

5.1. Analytical estimates of country-specific comparative statics using the
approximation approach

Our procedure allows one to estimate the country-specific border
effects without employing the nonlinear system of equations. Recall
Eq. (9) to calculate (region-specific) border effects for xij, using its log-
linear form:

BBij = lnxij− lnx4
ij = a2− lnP1−σ

i + lnP41−σ
i − lnP1−σ

j + lnP41−σ
j ð24Þ

where xij=Xij /YiYj, a2 is the estimate of −α(σ−1), and a2b0. We
substitute Eq. (6) into Eqs. (19) and (20) to find the MR terms with and
without national borders. Substituting these results into Eq. (24)
yields:

BBij = lnxij− lnx4
ij = a2f 1− ∑

N

k = 1
θkBORDERik

� �
− ∑

N

m = 1
θmBORDERmj

� ��

+ ∑
N

k = 1
∑
N

m = 1
θkθmBORDERkm

� ���
ð25Þ

where BORDERij=1 if regions i and j are not in the same nation and 0
otherwise (distance components cancel out).14

For the simple Canadian–U.S. case, Eq. (25) can be calculated
analytically once we have data on Canadian province and U.S. state
GDPs and an estimate of a2; we use a2=−1.65. Given the definition of
BORDERij, it turns out that the second term in the large brackets on
the RHS in Eq. (25) is simply Canada's share of Canadian and U.S. GDPs
(0.08) and the third term in the brackets is simply the U.S. share of
Canadian and U.S. GDPs (0.92). Consequently, the sum of these terms
cancels out the 1 and the effect is −1.65 times the last term in the
brackets; the last term simplifies to 2×0.08×0.92, or 0.147. Hence, the
general equilibrium comparative static effect of the national border on
the trade between a Canadian province and U.S. state, using our linear
approximation method, is −1.65×0.147=−0.243, implying that the
ratio of trade with the barrier (BB) to trade without the barrier (NB) is
0.78 (=e−0.243). This is larger than the A-vW multi-country (two-
country) estimate of 0.56 (0.41).

While our approximation method can generate border-effect
estimates similar to those reported in the recent “border-puzzle”
debate, a more demanding test of the method is to evaluate the
comparative statics for specific pairs of regions. In this particular
context, our method provides only a crude approximation, since
Canada's share and the U.S. share of the two countries' joint GDP are
identical for every region-pair. Consequently, the “country-wide”
border effects are identical to the region-pair border effects. However,
using A-vW's NLS system, the region-pair border effects vary from
0.32 to 0.49 with an average of 0.41 (using the A-vW two-country
13 Economic density refers, in general, to the amount of economic activity for a given
physical area; a large literature exists on its measurement, cf., Ciccone and Hall (1996).
In the trade context, a country's multilateral economic density is high when there is a
strong negative correlation between partners' sizes and bilateral distances. For
instance, Switzerland has a very high multilateral economic density; its largest trading
partners are quite close.
14 In reality, GDP shares will change also. However, as in A-vW, such changes are very
small. Consequently, these GDP changes are ignored here.
technique). Consequently, for particular pairs of Canadian provinces
and U.S. states, our method cannot capture the aspect of A-vW that
regions within smaller countries face larger multilateral resistance
than regions within larger countries.

5.2. Comparative statics using world trade flows and symmetric bilateral
trade costs

A-vW motivated the importance of estimating appropriate
comparative statics in the context of one specific case: McCallum's
Canadian–U.S. “border puzzle.” However, for nearly half a century, the
gravity equation in international trade has been used most commonly
to analyze bilateral aggregate international trade flows and — in
particular— the effects of free trade agreements (FTAs) on such flows.

In this section we use the same Monte Carlo approach used earlier
for our 88-country world (see Section 4.2). We calculated the “true”
trade flows using the A-vW NLS specification including real GDPs,
bilateral distance, an adjacency dummy, a language dummy, and a
dummy variable representing the presence or absence of an EIA. To
keep the approach similar to the literature, we define “NoEEA” as one
if the two countries are not members of the European Economic Area
(EEA), and zero if they are; the ratios calculated are then interpreted
similar to the effects of “border barriers” discussed earlier. We
calculated the comparative statics by pairs of countries of NoEEA
using A-vW. We then calculated the same comparative statics using
our (GDP-share-weighted) approximation method.

5.2.1. The European economic area
The most important economic integration agreement in post-

WWII history has been European economic integration. Conse-
quently, an important context to evaluate the approximation
method's accuracy is measuring the trade-cost effects of removing
the “European Economic Area,” or “NoEEA.” Among our 88 countries,
the potential number of country-pairs that are directly affected by
EEA include 165 of the 3872 country-pairs in our sample. Reporting
the results for all 165 pairs — much less the other 3707 pairs is
prohibitive in terms of space. Consequently, we can only summarize
the results.

The most notable result from this Monte Carlo experiment is that
74% of the comparative statics using the approximation method are
within 5% of the “true” (here, A-vW-method-determined) compara-
tive statics. Another 9% of the comparative statics using the
approximation method have biases between 5 and 10% of the A-vW
values. Ninety two percent of the approximation-method comparative
statics are within 20% of the A-vW values. As expected using a Taylor
approximation, the largest biases are for country pairs with the largest
changes in their MR terms (and hence in the comparative statics).

Eight percent of the approximation-method comparative statics
differ from the A-vWvalues bymore than 20%. The largest error is 38%.
Yet, every single one of the country-pairs with a bias greater than 20%
includes either Austria, Belgium, Denmark, Ireland, or Switzerland in
the pair. Moreover, every single pair where the approximationmethod
performs poorly involves economically small EEA countries that are
close to one another (and to large trading partners), that is, where
countries' multilateral economic densities (θj / tijσ−1) are large, cf.,
Footnote 13.15

We find in our general setting of world trade flows that our
approximation method for computing pair-specific general equili-
brium comparative statics is accurate within 10% of the A-vW values
in 83% of our 3872 country pairings. This result — demanding only
OLS — is clearly an improvement over simply using the coefficient
estimate (or “partial” effect) of an FTA dummy variable, as is typically
done.
15 Since Switzerland is in EFTA, which has an FTA with the EU, it is considered in the
EEA here.
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5.2.2. A method to eliminate the approximation errors
The Monte Carlo analysis above indicated that the largest MR term

changes (from trade costs) were not just for the economically small
countries (with consequently large trading partners) as A-vW
emphasized, but for small countries that are physically close.16 We
discuss a simple fixed-point iteration procedure that eliminates the
approximation errors without using NLS estimation or a higher-order
Taylor expansion (which, as for modern dynamic macroeconomic
models, is very difficult and outside the paper's scope). A simple
“fixed-point” iteration on a matrix equation can generate precise
estimates of the A-vWMR terms. The key matrix in the equation is an
N×N matrix of GDPs scaled by bilateral trade costs, θj / tijσ−1, that is, a
measure of multilateral economic “densities.”17 We summarize the
process briefly, referring the reader to a technical appendix for details
(available on request). First, calculate initial estimates of every Pi

1−σ

(P i⁎
1−σ) using OLS, denoted P i

1 −σ
0 (P i⁎

1−σ
0), for every region (i=1,…,

N); ⁎ denotes “without borders.” Denote the N×1 vector of these MR
terms V0 (V0⁎) and the N×1 vector of the inverses of each of these MR
terms V0

− (V0
−⁎). Second, define an N×N matrix of GDP-share-weighted

trade costs, B, where each element, bij, equals θj / tijσ−1. Third, compute
Vk+1 (with borders) according to:

Vk + 1 = zBV−
k + 1−zð ÞVk ð26Þ

starting at k=0 until successive approximations are less than a
predetermined value of ε (say, 1×10−9), where e = max jVk + 1−Vkj and
z is a dampening factor with z∈ (0,1), and analogously for Vk⁎

(without borders). Given the initial estimates of Pi1 −σ (Pi⁎1−σ) using
OLS (i=1,…, N), this fixed-point iteration process will converge to
the set of multilateral price terms identical to those generated using
A-vW's NLS quasi-Newton program (which uses a second-order Taylor
series).18 We have run this set of matrix calculations and the cor-
relation coefficient between our MR terms (using fixed-point itera-
tion) and A-vW's MR terms (using NLS) is 1.0 (reported to seven
decimal places) in both the Canadian–U.S. context and the 88-country
context.

5.3. Comparative statics using world trade flows and asymmetric
bilateral trade costs

Finally, even though previous cases assume bilaterally symmetric
trade costs, our MR approximations were derived under the more
general case of bilaterally asymmetric trade costs. In reality, many
trade costs are bilaterally asymmetric, such as tariff rates (cf.,
Bergstrand et al., 2007) and preferential trade agreements (such as
the Generalized System of Preferences). As A-vW (2003, Footnote 12)
note, in the case of bilaterally asymmetric trade costs, one must
interpret the border barriers in their approach as an average of the
barriers in both directions. Consequently, comparative static compu-
tations will reflect this constraint.

Since our MR approximations were derived allowing for bilaterally
asymmetric trade costs, it is possible that general equilibrium
comparative static estimates using our approach could be more
accurate than those computed using A-vW's technique under the case
of bilateral asymmetry. There is a trade-off: while our method is a
first-order approximation of theMR terms, the average absolute errors
16 A-vW's emphasis on relative size of trading partners (θj), of course, is not
inconsistent with our emphasis on θj / tijσ − 1.
17 One advantage of the fixed-point method is that it is computationally much less
resource-intensive than used by A-vW, as it does not require computation of the
Jacobian of the system of equations, nor does it even require that the inverse of the
Jacobian exists.
18 We use Eq. (6) to measure tij

σ − 1 using bilateral distance and a coefficient estimate.
The results are robust to alternative initial values of Pi1 − σ (Pi⁎1 − σ).
in estimates may be lower than those generated using A-vW's method
because the latter approach constrains the barrier to be an average of
bilaterally asymmetric barriers.

Space constraints prevent a full Monte Carlo analysis of this issue.
However, in a separate Monte Carlo study, Bergstrand et al. (2007,
Table 2) computed similar comparative statics in a setting with
asymmetric bilateral trade costs using our method alongside the A-
vW method (assuming either symmetry or asymmetry). In their
analysis, the “true” values were computed from a fully-specified
general equilibrium model. That analysis confirms that the average
absolute errors from the “true” values using our approximation
method are lower than those using the A-vW method (assuming
symmetry or asymmetry). Thus, while A-vW's technique outperforms
our approach for computing comparative statics under bilaterally
symmetric trade costs, one context in which our method can generate
lower average absolute errors is under bilaterally asymmetric trade
costs.

6. Conclusions

Six years ago, theoretical foundations for the gravity equation in
international trade were enhanced to recognize the systematic bias in
coefficient estimates of bilateral trade-cost variables from omitting
theoretically-motivated endogenous “multilateral (price) resistance”
(MR) terms. This paper has attempted to make four potential con-
tributions. First, we have demonstrated that a first-order log-linear
Taylor series expansion of the system of nonlinear price equations
suggests an alternative OLS log-linear specification that introduces
theoretically-motivated exogenous MR terms. Second, Monte Carlo
simulations suggest that the method yields virtually identical
coefficient estimates to fixed effects and NLS estimation. Third, we
have shown using Monte Carlo simulations that — in the case of
symmetric bilateral trade costs — the comparative statics associated
with our approximationmethod have a bias of nomore than 5% in 74%
of the 3872 country pairings of 88 countries examined; moreover, we
identified the size of countries relative to their bilateral trade costs as
the key economic variable explaining the approximation errors.
Finally, in the case of asymmetric bilateral trade costs, the linear
approximation method can actually have lower average absolute
comparative-static errors (compared to the “true” values) than the A-
vWmethod, when the latter assumes either symmetric or asymmetric
bilateral trade costs.

Appendix A

Because of the complexity of allowing asymmetric bilateral trade
costs and the matrix inversion needed, we assume a three-country
world (i=1, 2, 3). In such a world, the system of 2N Eqs. (15) and (16)
simplifies to:

θ1 θ2 θ3 1 0 0
θ1 θ2 θ3 0 1 0
θ1 θ2 θ3 0 0 1
1 0 0 θ1 θ2 θ3
0 1 0 θ1 θ2 θ3
0 0 1 θ1 θ2 θ3

2
6666664

3
7777775

lnP1
lnP2
lnP3
lnΠ1
lnΠ2
lnΠ3

2
6666664

3
7777775
=

ext1
ext2
ext3
imt1
imt2
imt3

2
6666664

3
7777775

ðA1Þ

where we define exti≡Σj=1
N θj lntij and imtj≡Σi =1

N θi lntij. To solve the
system of equations for ln P1, ln P2, ln P3, ln ∏1, ln ∏2 and ln ∏3, we
need to invert the LHS 6×6 matrix. However, the determinant of this
matrix is zero, implying a redundant equation (because θ1+θ2+θ3=1
is imposed). We set P1 (=1) as the numeraire and also eliminate one
equation, θ1 ln P1+θ2 ln P2+θ3 ln P3+ ln ∏1=ext1 leaving a system of 5
equations in 5 unknowns. Since the determinant of the LHS 5×5
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matrix is nonzero (and equal to θ1), we can invert this matrix.
Consequently, we find:

lnP2
lnP3
lnΠ1
lnΠ2
lnΠ3

2
66664

3
77775 =

0 0 −1 1 0
0 0 −1 0 1

−θ2=θ1 −θ3=θ1 2−θ1 θ2 θ2 + θ3ð Þ=θ1 θ3 θ2 + θ3ð Þ=θ1
1 0 θ2 + θ3 −θ2 −θ3
0 1 θ2 + θ3 −θ2 −θ3

2
66664

3
77775

ext2
ext3
imt1
imt2
imt3

2
66664

3
77775:

ðA2Þ

Since good 1 is the numeraire, we ignore ln P1 and ln ∏1. Focusing
on countries 2 and 3, we have:

ln P2 = imt2−imt1 = ∑
3

i = 1
θi lnti2− ∑

3

i = 1
θi lnti1 ðA3Þ

ln P3 = imt3−imt1 = ∑
3

i = 1
θi lnti3− ∑

3

i = 1
θi lnti1 ðA4Þ

lnΠ2 = ext2 + θ2 imt1−imt2ð Þ + θ3 imt1−imt3ð Þ
= ∑

3

j = 1
θj lnt2j + ∑

3

i = 1
θi lnti1− ∑

3

i = 1
∑
3

j = 1
θiθj lntij

ðA5Þ

lnΠ3 = ext3 + θ2 imt1−imt2ð Þ + θ3 imt1−imt3ð Þ
= ∑

3

j = 1
θj lnt3j + ∑

3

i = 1
θi lnti1− ∑

3

i = 1
∑
3

j = 1
θiθj lntij:

ðA6Þ

It is clear that this will generalize to N countries, such that for any
two countries i and j (i, j≠1):

lnΠi = ∑
N

j = 1
θj ln tij + ∑

N

k = 1
θk ln tk1− ∑

N

k = 1
∑
N

m = 1
θkθm ln tkm; i = 2; N ;N

ð17Þ

ln Pj = ∑
N

i = 1
θi ln tij− ∑

N

k = 1
θk ln tk1; j = 2; N ;N ð18Þ

where tij need not equal tji, and the second and third RHS terms in Eq.
(17) and second RHS term in Eq. (18) are constant across the N
countries.
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