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Abstract
We address two potentially related puzzles in the international trade literature. First, two

parameters are central to several modern quantitative models of bilateral international trade
flows: the elasticity of substitution in consumption, or Armington elasticity (σ), and the inverse
index of heterogeneity of firms’ productivites (θ). However, structural parameter estimation
applications using the seminal Feenstra (1994) econometric methodology typically focus on
estimates of only the Armington elasticity (σ) and a bilateral export supply elasticity – which
we will term γ. Second, modern trade agreements are increasingly “deep,” meaning they reduce
fixed trade costs alongside variable trade costs (such as tariffs). Although Melitz models of
international trade recognize both trade costs theoretically, very little is known quantitatively
about their relative impacts on trade and welfare. In this paper, we address theoretically and
quantitatively the importance of accounting for increasing marginal costs (via γ) – alongside
firm heterogeneity – in understanding the relative impacts on trade, extensive margins, intensive
margins, and welfare of reducing fixed trade costs and variable trade costs – the two elements
common to modern trade agreements. One illustrative quantitative implication for U.S. trade
policy is that, under constant marginal costs, fixed trade costs would have to be reduced by 88
percent for a welfare-equivalent reduction in variable trade costs of 3 percent; by contrast, under
(empirically supported) increasing marginal costs, fixed trade costs would have to be reduced by
only 15 percent.
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1 Introduction, Motivation, and Literature Summary

We address two potentially related puzzles in the international trade literature. First, central to the

post-2000 modern quantitative models of international trade are two parameters. The first – and

arguably most visible – is the elasticity of substitution in consumption among differentiated products,

σ, also referred to in trade as the “Armington elasticity,” cf. Feenstra et al. (2018). Motivated in

Armington (1969), σ is the key parameter in the seminal theoretical foundation for the gravity

equation with Armington preferences in Anderson (1979) and Anderson and van Wincoop (2003), in

the seminal monopolistic competition model of intra-industry trade with Dixit-Stiglitz preferences

in Krugman (1980), in the analysis of optimal tariffs in Broda et al. (2008), Ossa (2014), and

Ossa (2016), and in a vast array of applied computable general equilibrium (CGE) models used for

trade-policy analyses, cf., Corong et al. (2017) and United States International Trade Commission

(2019). Although σ has a half-century-old presence, the last 20 years have witnessed the surfacing

of a (inverse) measure of heterogeneity of firms’ productivities, θ, as an important parameter in

trade models. Motivated by Eaton and Kortum (2002) and Melitz (2003), θ is the key parameter

in modern quantitative trade models with heterogeneous firms for capturing the infamous “trade

elasticity” (i.e., elasticity of bilateral trade with respect to ad valorem bilateral variable trade costs)

and is one of two sufficient statistics needed to measure welfare effects of trade liberalizations in a

set of quantitative trade models with certain assumptions and restrictions.

The first puzzle is that a common assumption to all these models is constant marginal costs.

Yet, by contrast, the most widely respected structural approach for estimating bilateral import

demand (Armington) elasticities – the “Feenstra method” – suggests increasing marginal costs of

exporting to foreign markets by assuming bilateral export supply prices are positive functions of the

level of exports to foreign markets. Although σ and θ play central roles now in trade theory and

calibration exercises of new quantitative trade models, this third parameter – the bilateral export

supply elasticity – has been ignored. Yet, it has been crucial for structural estimation of σ – and

potentially, in the future, of θ – using the seminal econometric methodology of Feenstra (1994),

which has been widely adopted over the past 25 years in estimation of σ by industry, cf., Broda

and Weinstein (2006) for computing numerically the gains from variety, Broda et al. (2008), Ossa

(2014), and Ossa (2016) for estimating the relationship between optimal tariffs and market power,

and Feenstra et al. (2018) for estimating upper and lower level elasticities of substitution. However,

the bilateral export supply elasticity – which we will refer to as γ – has typically been incorporated

in these econometric analyses in an ad hoc manner. For instance, in Feenstra (1994) and Broda

and Weinstein (2006), positively-sloped bilateral export supply curves were assumed even though

the underlying theoretical Krugman model features horizontal supply curves. Moreover, in a recent

study allowing firm heterogeneity based upon a standard Melitz model with constant marginal

costs, Feenstra et al. (2018) introduce an equation that “plays the role of a supply curve” (p. 140).

We will address this first puzzle by incorporating increasing marginal costs into a standard Melitz

model of trade, which will generate extensive and intensive trade-margin elasticities with respect to
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variable and fixed trade costs that are functions of σ, θ, and γ; moreover, we will use the theoretical

model to motivate bilateral import demand and export supply functions that are estimable using

the Feenstra econometric method that can potentially estimate σ, γ, and θ simultaneously.

The second puzzle is that modern international trade agreements – such as free trade agreements

(FTAs) – are increasingly “deep,” meaning that – beyond the typical reductions in ad valorem tariff

rates found in “shallow” agreements – they reduce fixed trade costs. The World Bank has recently

compiled a large data set on deep trade agreements, summarized comprehensively in Hofmann et al.

(2017). The database documents the extensive growth in deep provisions over the past twenty years.

A notable economic difference concerning these deep provisions is that they relate to regulatory

convergences and administrative liberalizations that are unrelated to the quantity of goods exported

(i.e., the intensive margin) and are more readily interpreted as reducing fixed trade costs. For

instance, the most popular non-tariff measures included in modern trade agreements are customs

administration (often referred to as trade facilitation measures), competition policy, sanitary and

photosanitary (SPS) regulations, and technical barriers to trade (TBT) regulations. Furthermore,

recent empirical work using gravity equations indicates economically and statistically significant

effects of such provisions on trade flows, cf., Egger and Nigai (2015), Baier and Regmi (2020),

Breinlich et al. (2020), Crowley et al. (2020), Fontagne et al. (2020), and Lee et al. (2019).

By contrast, there has been a dearth in numerical analyses of variable versus fixed bilateral trade

costs in either standard CGE models (such as GTAP) or in the new quantitative trade models. Zhai

(2008) is one of earliest – and rare – studies to introduce a standard Melitz model into a global CGE

model of world trade and to contrast the trade and welfare effects of a 5 percent variable trade cost

reduction relative to a 50 percent fixed trade cost reduction.1 In the model in Zhai (2008), it would

take approximately a 40 percent reduction in bilateral fixed trade costs to achieve the equivalent

gain in welfare as a 5 percent reduction in ad valorem variable trade costs. Such estimates suggest

the welfare gains from trade liberalization are more readily attained via tariff-rate reductions. If so,

why have countries increasingly pursued deep trade agreements? In the context of our Melitz model,

we will show, based upon the empirical results from our novel econometric technique controlling

for firm heterogeneity, that allowing for empirically-justified increasing marginal costs alters the

ad valorem variable-trade-cost elasticity relative to the fixed-trade-cost elasticity, such that much

smaller reductions in fixed trade costs lead to equivalent increases in welfare as small changes in

variable trade costs. Thus, even though Arkolakis et al. (2012) clarify that – for several modern

quantitative trade models – only two statistics (the ad valorem trade elasticity from a gravity

equation and changes in the domestic output share of expenditures) are sufficient to quantify the

overall welfare gains from trade liberalization, precise and unbiased estimates of σ, γ, and θ remain

important for conducting policy choices in a world with variable and fixed trade costs and deep

trade agreements.2

1We will discuss Balistreri et al. (2011) and Dixon et al. (2016) later.
2Also, Adao et al. (2020) showed recently that, in the absence of imposition of a distributional form for heterogeneous

firm productivities, one of three sufficient statistics to conduct numerical comparative statics is values of the Armington
elasticity, also emphasizing the importance of precise and unbiased estimates of σ.
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We summarize four tangible goals of this paper to address these two related puzzles. First, we

generalize methodologically the seminal Feenstra-Broda-Weinstein econometric framework to allow

potentially for simultaneous estimation of the three key parameters just discussed: the elasticity of

substitution in consumption (σ), the bilateral export supply elasticity (γ), and the inverse measure

of heterogeneity of firms’ productivities (θ). Second, in order to incorporate γ in a systematic, non ad

hoc manner, we generalize a standard Melitz model of international trade to allow for the possibility

of increasing marginal costs to supply destination output. Third, to illustrate our methodology (but

constrained by availability of high-quality data), we use our augmented Feenstra-Broda-Weinstein

approach to estimation adapted to allow for increasing marginal costs and firm heterogeneity to

generate new estimates of σ and γ – accounting explicitly for firm heterogeneity. Specifically, we

can control for firm heterogeneity, but data limitations preclude credible estimation of θ. Fourth,

combining the first three contributions, we provide two numerical calibrations to illustrate the

importance and relevance of our first three contributions and relate these insights to understanding

the increasing importance of deep trade agreements in the world.

Because our sole modification of the Melitz model is to allow for the (empirically-motivated)

possibility of increasing marginal costs in serving foreign markets, we illustrate first the role of

positively-sloped bilateral export supply curves in the simplest (Armington or Krugman) trade model

focusing only on the intensive margin. Adapting slightly Figure 18.1 from Hillberry and Hummels

(2013), Figure 1 illustrates the attenuation of the intensive margin elasticity in the presence of a

positively-sloped bilateral export supply curve, consistent with increasing marginal costs (IMC).

In the standard case of constant marginal costs (CMC), a one percent increase in ad valorem

variable trade costs, ∆ ln τij = AD, lowers bilateral imports from country i to country j (IMij) by

∆ ln IMij = (1− σ)∆ ln τij = AB, where σ is the elasticity of substitution in consumption. However,

with increasing marginal costs, the same one percent increase in ad valorem variable trade costs

lowers bilateral imports by less, ∆ ln IMij = AC < AB. This figure illustrates clearly that – under

constant marginal costs (i.e., horizontal firm-supply curves) – the trade elasticity is a function solely

of the elasticity of substitution. However, under increasing marginal costs, the trade elasticity is a

function of the elasticity of substitution in consumption and an index of the shape of the supply

curve. In econometric specifications to estimate Armington elasticities, Feenstra (1994), Broda and

Weinstein (2006), and Soderbery (2015) all allow for the possibility of positively-sloped bilateral

export supply curves; in a domestic setting, Hottman et al. (2016) explicitly allow for increasing

marginal costs in supplying products. In all the trade studies, evidence surfaces that bilateral export

supply curves are positively sloped; in fact, in Hottman et al. (2016), the median marginal cost

elasticity of output has a value of 0.16, implying a supply elasticity of 6 – which is far less than ∞.3

We now summarize our paper’s contributions chronologically. Motivated by the preceding

discussion, our paper’s first potential contribution is theoretical. We allow for increasing marginal

3Interestingly, the last column in Table 3.1 in Head and Mayer (2014) does acknowledge the assumption of
increasing marginal cost curves in the Armington and Krugman models in Bergstrand (1985) and Baier and Bergstrand
(2001); those papers derived a trade (intensive margin) elasticity that was a function of the elasticity of substitution
and the bilateral export supply elasticity. We return to this issue later.
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Figure 1: Increasing Marginal Costs vs. Constant Marginal Costs

costs in an otherwise standard Melitz model of international trade; specifically, we extend Chaney

(2008) and Redding (2011) to allow increasing (as well as constant) marginal costs with an unknown

shape parameter, denoted by γ (γ > 0), where henceforth 1/γ denotes the firm’s elasticity of

marginal costs with respect to destination output.4 We generate three novel theoretical findings.

First, we derive a gravity equation that is very similar to the ones in Chaney (2008), Redding

(2011), and Arkolakis et al. (2012), except that the extensive margin elasticity – and the “trade

elasticity” – with respect to variable trade costs are magnified. The magnification results from given

changes in ad valorem variable trade costs having larger impacts on export cutoff productivities

under increasing marginal costs (IMC) relative to constant marginal costs (CMC), causing larger

increases in the number of exporting firms and aggregate trade flows. Yet, the variable-trade-cost

intensive margin elasticity is diminished (and a function of γ and σ), which is consistent with Figure

1. An important implication of this is that trade-policy liberalizations with increasing marginal

costs will have more firm entry and exit and labor reallocations than under constant marginal costs.

Thus, our paper contributes to understanding better the empirical evidence on the dominant role of

the extensive margin in response to variable-trade-cost changes.

Second, by accounting for increasing marginal costs, our export-fixed-cost trade elasticity is

magnified relative to that in Chaney (2008), Redding (2011), and Arkolakis et al. (2012). The

intuition is straightforward. The export-fixed-cost elasticity in the earlier papers is θ/(σ − 1)− 1,

which is a function of the extensive-margin variable-trade-cost elasticity (θ) relative to the intensive-

margin variable-trade-cost elasticity (σ − 1). With increasing marginal costs, the magnification of

the variable-trade-cost extensive-margin elasticity and the attenuation of the variable-trade-cost

intensive-margin elasticity causes the export-fixed-cost trade elasticity to increase. Thus, the export-

4For our purposes, a Melitz (2003) model is preferable to an Eaton and Kortum (2002) framework for two reasons.
First, the Melitz model has both an intensive and extensive margin, whereas the Eaton-Kortum model features only
an extensive margin. Second, the Melitz model allows examination of fixed-trade-cost effects. By contrast, selection in
the Eaton-Kortum model is driven exclusively by random productivity shocks.

5



fixed-cost trade elasticity is larger (in absolute terms) and a function of all three parameters: σ, θ,

and γ.5 Moreover, a further result that the fixed-trade-cost elasticity is also magnified relative to

the variable-trade-cost elasticity will be important later in understanding the welfare-equivalent

impacts of fixed-trade-cost liberalizations relative to variable-trade-cost liberalizations in deep trade

agreements.

Third, in our framework, the trade elasticity is θ scaled by 1 + 1/γ, that is, by one plus the

marginal cost elasticity of output. Consequently, allowing for increasing marginal costs diminishes

the welfare effect of a given change in the domestic trade share (for a given θ). The intuition is that

real wage gains from a trade liberalization can be traced to changes in average productivity. In

the Melitz model, changes in average productivity are proportionate to changes in output of the

zero-cutoff-profit (ZCP) productivity firm. In the CMC case, the latter are directly proportionate to

productivity changes of the ZCP firm. However, with increasing marginal costs (γ <∞), output

of the ZCP firm rises less than proportionately to the change in the ZCP firm’s productivity. The

gains to average productivity are diminished at a rate of 1 + 1/γ.6

Our second contribution of this paper is methodological. The seminal study articulating a

structural approach (without instrumental variables) to estimating elasticities of substitution in

consumption using disaggregate international trade flow data and prices (unit values) is Feenstra

(1994). Broda and Weinstein (2006) extended Feenstra’s approach to account for the introduction of

completely new product categories.7 Importantly, both studies assume the existence of positively-

sloped bilateral export supply curves to a destination market by assuming that the price of the

product-variety sold by the exporter to a particular importing country (the United States) is a log-

linear function of the bilateral quantity supplied. Moreover, drawing off of the Krugman (1980) trade

model using representative (homogenous) firms, the estimation of the Armington elasticities and

bilateral export supply elasticities using disaggregated industry-level trade flow and unit value data

5An important implication is that we address an outstanding empirical finding noted in Feenstra (2016) (page 168)
that empirical estimates of the Pareto curvature parameter, θ, tend to fall below empirical estimates of the elasticity
of substitution minus unity, σ − 1. In the context of the Melitz-Redding models, the former must exceed the latter to
solve the Melitz-Redding model. However, with increasing marginal costs, θ can be less than σ − 1 as long as θ is
larger than (σ − 1) γ

σ+γ
, where 0 < γ

σ+γ
< 1.

6Moreover, in a standard Melitz model, the transformation curve between the “mass” of domestic varieties and
that of exported varieties is linear. However, as addressed in Feenstra (2010a) and Feenstra (2010b), this result does
not provide information about the transformation curve between the economy’s output-adjusted masses of varieties,
“since we also need to take into account the quantity produced of each variety” (Feenstra (2010b), p. 46). Feenstra
(2010a) and Feenstra (2010b) demonstrate in a two-country model that the transformation curve between domestic and
exported output-adjusted varieties is a concave constant-elasticity-of-transformation (CET) function. In our paper, we
derive the exact linear functional relationship between the marginal cost elasticity of output and the CET parameter
discussed in Feenstra (2010a) and Feenstra (2010b), we explain the production-side intuition behind this welfare
“diminution effect,” and we relate these findings back to Bergstrand (1985).

7Soderbery (2015) extends the Feenstra (1994) and Broda and Weinstein (2006) methodologies by implementing a
novel limited information maximum likelihood technique. As discussed comprehensively in Hillberry and Hummels
(2013), there are alternative approaches to estimating Armington elasticities (each with drawbacks). Hillberry and
Hummels (2013) categorize these approaches into four topics: early time-series estimates of import demand functions
using incomes and prices (which suffer from simultaneity), instrumental variables approach to estimating import
demand and export supply, more recent cross-sectional and panel estimates using ad valorem trade-cost measures and
using fixed effects for export supply variation, and the Feenstra-Broda-Weinstein method to estimate bilateral import
demand and export supply functions. See that survey’s section 18.3 for discussion of each.
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in Broda and Weinstein (2006) ignores the heterogeneity of firms’ productivities. Although Feenstra

et al. (2018) estimated Armington (micro) elasticities in the context of a Melitz model, that paper’s

theoretical foundation assumed constant marginal costs as in a standard Melitz model, providing an

equation (18) that “plays the role of a supply curve” (p. 140). Accordingly, their resulting estimation

technique for (micro) Armington elasticities and bilateral export supply elasticities involves only

two right-hand-side (RHS) variables, analogous to the standard Feenstra-Broda-Weinstein approach

(see their equations (19) and (20)).8 In our paper, motivated by our Melitz model with increasing

marginal costs, we show that the Feenstra-Broda-Weinstein structural estimation framework can

be generalized to include a micro-founded bilateral export supply elasticity (the inverse marginal

cost elasticity with respect to destination output) and to account explicitly for firm heterogeneity.

Unlike these previous studies, our approach distinctly recognizes the importance of how the mass

of exporting firms depends not just on the exporting country’s labor-force size but also on its

zero-cutoff-profit productivity threshold. In the context of the heterogeneous-firm models, one must

account for both new import varieties from trade liberalizations as well as declining numbers of

domestic varieties. Our extension of the Feenstra-Broda-Weinstein technique motivates the inclusion

of 20 independent variables to appropriately estimate σ, γ, and θ simultaneously.

Our third contribution is empirical. Credible estimation of σ, γ, and θ in our extended, theory-

motivated econometric specification requires detailed industry-level data on six variables in order to

construct the 20 independent variables (including interaction terms). Unfortunately, at this time,

reliable data is not available for all six variables. Specifically, for the first category of variables –

trade flows and unit values – reliable data (as in Broda and Weinstein (2006) and Feenstra et al.

(2018)) exists. For a second category of variables novel to our approach – industry-level employment,

wage rates, variable trade costs, and fixed trade costs – we can control for these variables and their

interactions using proxies. Consequently, our empirical implementation will allow us to accurately

estimate σ and γ controlling explicitly for firm heterogeneity; however, data limitations preclude

simultaneous estimation of θ at this time. Importantly, using our new econometric approach we

find that increasing marginal costs exist, with the (across-industry) median inverse marginal cost

elasticity (γ) estimate ranging – across various specifications – between 5.74 and 6.31, implying

marginal cost elasticities ranging between 0.16 and 0.17. Moreover, our marginal cost elasticity

estimate of 0.16 is precisely the same median estimate in Hottman et al. (2016) using firm-level U.S.

barcode data. An inverse elasticity of marginal costs to output of 6 is far below ∞, the latter used

in the trade literature’s benchmark model of constant marginal costs.

Finally, our fourth contribution is to illustrate the impact of recognizing increasing marginal

costs on the estimated effects of deep trade agreements in the world. Goldberg and Pavcnik (2016)

recently emphasized that trade economists have not paid sufficient attention to the study of the

effects of trade-policy changes other than ad valorem tariff-rate changes. As noted earlier, one of

the most notable events concerning international trade since 1990 is the proliferation of economic

8The focus of Feenstra et al. (2018), however, is estimating separately the (macro) elasticity of substitution
between domestic and imported goods from the (micro) elasticity of substitution between imported varieties. In this
fuller specification, the regression equation has five RHS variables.
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integration agreements (EIAs), such as bilateral and plurilateral free trade agreements (FTAs). With

most countries’ Most-Favored-Nation tariff rates at 5 percent or less, increasingly such agreements

have introduced liberalizations in the form of reductions of border and behind-the-border barriers

that reduce fixed trade costs. Prominent examples are the proposed Transatlantic Trade and

Investment Partnership (TTIP) agreement between the European Union and the United States and

the replacement in 2020 of NAFTA with the United States-Mexico-Canada Agreement (USMCA).

While a major point in Goldberg and Pavcnik (2016) is the need for better measurement of such

barriers and the changes in them, Goldberg and Pavcnik (2016) make clear that trade economists

need to focus more on understanding the effects of reduced fixed trade costs on international trade

and economic welfare. In this spirit, we conduct two numerical analyses. In the first exercise, we

show that – similar to Feenstra (2010b) – the welfare “gains from trade” for an economy can be

captured by a function of an economy’s current intra-national trade share and the “trade elasticity.”

However, in the presence of increasing marginal costs, the trade elasticity is higher (in absolute

terms) and consequently the welfare gains lower, owing to a “welfare diminution effect” attributable

to diminishing marginal returns. Yet, this result is fully consistent with the main conclusion in

Arkolakis et al. (2012) that the trade elasticity (independent of its structural interpretation) and

the intra-national trade share are sufficient statistics to measure the welfare effect of a change in

bilateral variable or fixed trade costs (τij or fij , respectively). So, in a second exercise, we examine

the relative impacts of variable-trade-cost changes and fixed-trade-cost changes. We show that,

for typical values of σ and θ, under constant marginal costs (γ =∞) the degree of liberalization

of fixed trade costs needed to generate an equivalent increase in welfare is very large relative to

the degree of liberalization of variable trade costs, questioning the increasing effort toward deep

trade agreements. By contrast, under (empirically-justified) increasing marginal costs (γ <∞), the

degree of liberalization of fixed trade costs needed to generate an equivalent increase in welfare

is dramatically reduced relative to the degree of liberalization of variable trade costs, which helps

explain the attractiveness of deep trade agreements. For instance, in the case of the United States,

we show that, under (empirically-unsupported) constant marginal costs, fixed trade costs would

have to be reduced by 88 percent to provide the same increase in welfare as a reduction in variable

trade costs of 3 percent. By contrast, under (empirically-justified) increasing marginal costs, it

would take only a 15 percent reduction in fixed trade costs to increase welfare by the same amount

as a 3 percent reduction in variable trade costs!

Before proceeding, we discuss briefly some recent trade studies that are related to this paper.

First, and related to our theoretical framework, Arkolakis (2010) extended the Melitz model to

explain – among other findings – the observation of “many small exporters in each exporting

market” (p. 1151). To do this, he introduced two components to export fixed costs. The first was

increasing returns to scale; per consumer export fixed costs fall with destination population size.

The second, “increasing marginal (market-penetration) costs,” implied that per consumer export

fixed costs increase with additional numbers of destination consumers. Because his framework

introduces in a particular manner increasing marginal costs into the fixed-trade-cost term, the
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optimal pricing decision of firms corresponds to the traditional CMC case (cf., his equation (7)). As

noted in Anderson (2011), the marketing concept in Arkolakis (2010) effectively has a fixed-cost

component and a variable-cost component subject to diminishing returns to the output supplied to

each destination. In our Melitz model, we simply incorporate the diminishing returns marketing

element into our variable-cost component instead. Doing so yields a positively-sloped bilateral export

supply curve consistent with Figure 1 and the bilateral trade Feenstra-Broda-Weinstein econometric

specifications. One of the benefits of the assumption in Arkolakis (2010) that increasing marginal

penetration costs are embedded in the export fixed cost terms is that – for his calibrations – he

avoids having to specify “as many [export] fixed costs as destinations” (p. 1164). However, as noted

in Anderson (2011), the introduction to his model of numerous additional parameters is useful for

simulations, but “is not econometrically tractable” (p. 140). By contrast, our paper introduces

only one new parameter – the elasticity of marginal costs with respect to destination output –

to capture analogously “increasing marginal (market-penetration) costs” in an econometrically

tractable manner consistent with the Feenstra-Broda-Weinstein approach.

Second, as noted above and related to our methodological approach, our paper is close in spirit to

Feenstra et al. (2018). This paper premised the “micro-level” dimension on a standard Melitz model

of international trade with constant marginal costs. Within that context, Feenstra et al. (2018)

simply assumed a “linear projection of the relative import unit values on the demand shocks pooled

over all import sources” to generate their equation (18), which they “interpret as a supply curve” (p.

140). By contrast, motivated by Arkolakis (2010)’s increasing marginal (market-penetration) costs

intuition, we introduce increasing marginal costs to supplying destination output at the firm level

to motivate a (potentially) positively-sloped export supply curve. Our theoretical model suggests a

Feenstra-like specification that allows potentially – conditioned upon availability of high-quality

data – estimation simultaneously of the elasticity of substitution in consumption between imported

varieties (σ), the marginal cost elasticity of destination output (γ), and the inverse index of firm

heterogeneity (θ).

Third, Soderbery (2015) and Soderbery (2018) re-examine estimation of bilateral import demand

and export supply elasticities using the Feenstra method. Soderbery (2015) augments the Feenstra-

Broda-Weinstein econometric method using a hybrid estimator, although the basic specifications

remain the same. The hybrid estimator provides estimates of the Armington and bilateral export

supply elasticities that suggest previous methods may have over-estimated these elasticities. In

Soderbery (2018), the author provides a method to allow heterogenous bilateral import demand and

export supply elasticities, where the bilateral import demand (export supply) elasticities are allowed

to be heterogeneous by importer (country-pair). However, like previous papers using the Feenstra

method, the author “assume(s) that (bilateral) export supply curves are upward sloping” (p. 47).9

9Soderbery (2018) notes further “An upward sloping constant elasticity (bilateral) export supply curve of this nature
was championed by Feenstra (1994), and has become standard with Broda and Weinstein (2006) and Broda et al. (2008)
for structurally estimating (bilateral) import demand and export supply elasticities. Additionally, recent deviations
from Feenstra (1994) by Feenstra and Weinstein (2017) and Hottman et al. (2016) model a tighter link between
exporter cost functions and export supply, but effectively assume that (bilateral) export supply is isoelastic and upward
sloping” (p. 47; italics added). More recently, Farrokhi and Soderbery (2020) move away from exogenous bilateral
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The remainder of this paper is as follows. In section 2, we introduce and solve our Melitz model

with increasing marginal costs, asymmetric countries, and a Pareto distribution of productivities.

In section 3, we solve for our gravity equation and trade elasticity, derive the variable and fixed

trade-cost elasticities of extensive and (for variable trade costs) intensive margins, discuss welfare

implications, and provide the intuition behind our “welfare diminution effect.” Section 4 provides

empirical estimates of the elasticity of substitution and bilateral export supply elasticity using our

novel econometric approach. Section 5 provides numerical estimates of a counterfactual analysis of the

impact of introducing increasing marginal costs on the welfare effects from a trade liberalization and

another counterfactual analysis demonstrating the importance of recognizing empirically-justified

increasing marginal costs toward evaluating the quantitative significance of liberalizations of fixed

trade costs relative to those of variable trade costs, two components of (modern) deep trade

agreements. Section 6 concludes.

2 Theory

Our theoretical framework builds on the workhorse Melitz (2003) heterogeneous firms model of

international trade. In each country, firms produce differentiated varieties of a product. To enter

the industry, firms must pay a fixed entry cost. Upon entry, a level of productivity is randomly

assigned to each firm according to a stochastic distribution. After learning their productivity, firms

can choose to exit the industry or stay in the industry and produce. If they stay, they decide which

markets to serve and how much to produce. In equilibrium, there is a partitioning of firms based on

productivity because firms must pay a fixed cost to sell in each market they choose to serve. Firms

with high productivity generate enough variable profits to cover the fixed costs in several markets.

We depart from Melitz (2003) in two ways. First, as in Chaney (2008), Redding (2011), and

numerous other papers, we allow for differences in countries’ labor endowments and bilateral trade

barriers and assume a Pareto distribution for productivity draws. The cross-country asymmetry

and asymmetric trade barriers provide a more realistic framework for estimating the structural

parameters of the model in disaggregated bilateral trade data. The Pareto distribution yields closed-

form solutions that we can use to obtain clear theoretical predictions and to develop an empirical

approach for the estimation. Second, as noted in the introduction, we allow for the possibility of

increasing marginal costs of providing output to any market. Because our model allows for constant

or increasing marginal costs of providing output, it is reasonable intuitively to study a “more general”

model – especially one that motivates the econometrically tractable structural bilateral import

demand and export supply functions in Feenstra (1994), Broda and Weinstein (2006), and Soderbery

(2015) – and let the data determine the slope of the bilateral export supply curve.

export supply elasticities which undergird the Feenstra-Broda-Weinstein econometric specifications to considering an
export supply elasticity in “general equilibrium,” where the general equilibrium export supply from i to n is total
supply of i’s sale of a product net of sales to all markets other than n. In this literature, export supply is disciplined
by three microeconomic channels: (1) internal and external returns to scale, (2) labor mobility across industries, and
(3) demand elasticities. However, such directions are outside the scope of this paper and are related more to another
literature on returns to “scale” external to the industry, cf., Bartelme et al. (2019).
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2.1 Preferences

We assume a world with j = 1, 2, ..., N countries. In each country, there is a mass of consumers, Lj ,

each endowed with one unit of labor. The preferences of the representative consumer in country

j are a constant-elasticity-of-substitution (CES) function of the consumption of a continuum of

differentiated varieties:

Uj =

[∫
ν∈Ωj

cj(ν)
σ−1
σ dν

] σ
σ−1

, σ > 1, (1)

where cj(ν) is the quantity consumed of variety ν, Ωj is the (endogenous) set of varieties available

for consumption in country j, and σ is the elasticity of substitution across varieties.

The representative consumer maximizes utility subject to the standard income constraint. Hence,

the optimal aggregate demand function for each variety is given by:

cj(ν) = EjP
σ−1
j pcj(ν)−σ, (2)

where Ej denotes aggregate expenditure in country j, pcj(ν) is the price of a unit of variety ν in

country j facing the consumer, and Pj defined as:

Pj =

[∫
ν∈Ωj

pcj(ν)1−σdν

] 1
1−σ

(3)

is the price index dual to the consumption index Cj ≡ Uj . Because consumers have no taste for

leisure, they always supply their unit of labor to the market at the prevailing wage rate, wj . Hence,

the equilibrium labor supply is Lj .

2.2 Technology

Production uses only one input, labor. The amount of labor required by a country-i firm with

productivity ϕ to produce qij units of output for sale to country j is given by:

lij(ϕ) = fij +
q

1+ 1
γ

ij

ϕ
, γ > 0, (4)

where fij denotes the fixed costs of each firm in i to serve market j.10 The special case of i = j

represents the demand for labor for domestic sales.11 As implied by equation (4), fixed costs are

common across firms for a given origin-destination pair, whereas marginal costs vary across firms

10In our model, we follow Bernard et al. (2011) in assuming that, for export fixed costs, domestic labor is employed.
However, it is straightforward to consider instead the cases where labor in the foreign market is used as in Redding
(2011) or labor from both countries is used as in ACR’s equation (23). Naturally, this would have the associated
implications for our results as discussed in ACR.

11As standard to this literature, for the domestic market, the fixed costs fii capture the costs of setting up a
production facility, as well as advertising and domestic distribution costs. For foreign markets (i 6= j), the fixed costs
fij represent only the additional fixed costs of selling to the foreign market (such costs associated with advertising,
distribution, and conforming to foreign regulations).
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for two reasons. First, as conventional to a Melitz model, more productive firms (with higher ϕ)

need fewer workers to produce a given level of firm output. Second, marginal costs are a function

of output such that, all else equal, larger firms face higher marginal costs to provide output to

each destination market. The parameter γ determines the marginal cost elasticity of output. For

any value of γ ∈ (0,∞), marginal costs are increasing. When γ goes to infinity, we obtain the

constant marginal cost function in Melitz (2003), Arkolakis et al. (2012, henceforth ACR), and most

workhorse trade models mentioned earlier.

A key assumption in equation (4) is that marginal costs are increasing in supplying output to

each destination market. There are three main motivations for this specific functional form. First,

Melitz (2003) cites likely sources of the export fixed costs just discussed above: exporting firms must

employ labor to inform foreign buyers about their product (e.g., marketing); labor is employed to

research foreign standards and in many cases a firm “adapts its product to ensure that it conforms

to foreign standards”; a firm may also have to use labor to “set up new distribution channels in the

foreign country and conform to all the shipping rules specified by the foreign customs agency” (page

1706). While such reasons rationalize bilaterally asymmetric fixed trade costs, they also suggest

increasing marginal costs of “penetrating” a foreign market as addressed in Arkolakis (2010), noting

“The basic idea put forward is that firms reach individual consumers rather than the market in its

entirety” (p. 1152). Each market is assumed to be composed of individual consumers for which “the

cost per consumer may differ depending on how many consumers have already been reached” (p.

1156). This assumption in his model captures the idea that “as marketing expenditures increase,

efficiency declines” (p. 1156). As noted in Anderson (2011), the marketing element in Arkolakis

(2010) effectively has a fixed-cost component and a variable-cost component subject to diminishing

returns.12

Second, this additional single parameter both allows for diminishing marginal returns with respect

to each destination’s quantity provided and provides an econometrically tractable microeconomic

foundation for our empirical work to capture the positively-sloped bilateral export supply curves

estimated using the Feenstra-Broda-Weinstein technique. This approach will allow us also to compare

our empirical estimates of this elasticity using disaggregate international trade data to those in

Hottman et al. (2016) using U.S. firm-level barcode data. At the same time, our specification in

this paper of increasing marginal costs helps move the Melitz-Chaney-Redding framework in the

direction of many small exporting countries in an empirically tractable manner.

Third, the assumption yields tractable analytical solutions compared to a model with increasing

marginal cost applied to total firm output. Extending the Melitz model to allow for cross-country

heterogeneity in size and asymmetric bilateral trade barriers increases the complexity of the model.

In that setup, the total output of a firm depends on the choices of markets it serves which, in turn,

depends on the marginal costs it faces. The interdependence of production costs and selection is

12Equation (4) is also consistent with Assumption 1 in Feenstra and Romalis (2014), “Firms produce multiple
products, one for each potential market” (p. 482). If the labor used in fij creates (fixed) physical capital to – in
Melitz (2003)’s words – “adapt its product to ensure that it conforms to foreign standards” (p. 1706), then increasing
marginal costs will be incurred in production of qij .
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too complex with asymmetric countries and trade barriers to obtain closed-form solutions we can

use in the empirical model and in calibration exercises. Nevertheless, Appendix C provides formal

derivations of analogous trade elasticities in the case of symmetric countries and trade barriers

where increasing marginal costs apply to total firm output (q).13

As standard, firms can sell their output to consumers in foreign markets, but face additional

costs of shipment. As common in this literature, we model such trade barriers using iceberg trade

costs. We assume firms in country i must ship τij ≥ 1 units of output for each one unit of output to

arrive in destination j. As typical, we assume τij > 1 for all i 6= j and τii = 1 for all i. As in Feenstra

(2010a,b), we let pij and qij denote the price received and the quantity shipped at the factory gate.

Since a firm in country i producing for and selling to market j incurs ad valorem iceberg costs τij ,

only cij = qij/τij arrives at destination j. Moreover, drawing upon section 2.1, it follows that, for

consumers in j, the unit price will be pcij = τijpij .

2.3 Firm Profitability

Firms make two decisions for each potential market (including the domestic market). First, they

must decide whether or not to enter the market. Second, for each market they enter, they must

choose the sale price of a unit of output (or, equivalently, the quantity of output to sell). We look at

each decision in turn, beginning with the pricing decision.

Firm profits in each market are given by the difference between revenue and labor costs:

πij(ϕ) = rij(ϕ)− wilij(ϕ) = pij(ϕ)qij(ϕ)− wi

[
fij +

qij(ϕ)
1+γ
γ

ϕ

]
, (5)

where the second equality uses production function (4). We note that all country-i firms with

productivity ϕ will charge the same price in destination j (and, as a result, sell the same number of

units) such that, henceforth, a consumer’s variety ν can be identified by an origin country and a

firm productivity only (i.e., pj(ν) ≡ pij(ϕ)).

Because each firm produces only one of a continuum of varieties, its pricing decision has no

impact on the price index in the destination market (Pj). In other words, the structure of the model

eliminates any strategic interactions between firms. As shown in section A.1 of Online Appendix A,

firm profit maximization yields the following optimal (factory-gate) pricing rule:

pij(ϕ) =

(
1 + γ

γ

)(
σ

σ − 1

)
wiqij(ϕ)

1
γ

ϕ
. (6)

Pricing rule (6) differs from standard Melitz models in two respects. First, the markup is no longer

only a function of the elasticity of substitution (σ), but also depends on the inverse marginal cost

elasticity of output (γ). As a result, conditional on the distribution of firm productivities, prices

will be higher higher by a factor of 1 + 1/γ when marginal costs are increasing in output compared

13Due to submission page constraints, Appendix C is “Not Intended for Publication.”
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to one where marginal costs are constant (i.e., γ →∞). Second, prices are an increasing function of

quantity (i.e., the supply curves slope upward); this provides a rationale for the upward-sloping

bilateral export supply functions in Feenstra (1994), Broda and Weinstein (2006), and Soderbery

(2015). We note that, when γ goes to infinity, the first term of the pricing rule converges to 1 and

quantity vanishes from the equation such that we obtain the constant marginal cost pricing rule

typical to a standard Melitz model and most workhorse trade models.

Next, we consider the decision to enter a market or not. As a first step, we compute firm profits.

As shown in section A.2 of Online Appendix A, we can use pricing rule (6) to express firm profits,

defined in equation (5), as:

πij(ϕ) =

(
σ + γ

1 + γ

)
rij(ϕ)

σ
− wifij (7)

where rij(ϕ) is the firm’s optimal revenue. This result is analogous to a standard Melitz model with

the exception of the first term (σ + γ)/(1 + γ), which exceeds unity because σ > 1. Our model

implies that profits are higher when marginal costs are increasing in output (i.e., 1/γ > 0). Again,

when γ goes to infinity, the benchmark result obtains.

As shown in section A.3 of Online Appendix A, we can combine the zero-cutoff-profit condition

πij(ϕ
∗
ij) = 0, the optimal pricing equation (6), and profits equation (7) to solve for the output and

the productivity of the zero-cutoff-profit firm as follows:

qij(ϕ
∗
ij) =

[
γ

σ + γ
(σ − 1)fijϕ

∗
ij

] γ
1+γ

, (8)

where ϕ∗ij is the productivity level of the zero-cutoff-profit firm defined as:

ϕ∗ij =


(

1+γ
γ

σ
σ−1wi

)σ
EjP

σ−1
j


1

γ
1+γ (σ−1) [

γ

σ + γ
(σ − 1)fij

] 1
γ

σ+γ (σ−1)

τ
1+γ
γ

ij . (9)

Because γ/(σ + γ) and γ/(1 + γ) are both positive and smaller than one, for a given ϕ∗ij the level of

output qij(ϕ
∗
ij) is smaller than in the constant marginal cost case. Equation (9) provides an explicit

link between ad valorem variable trade costs (τij) and a country-pair’s export cutoff productivity

(ϕ∗ij). Under constant marginal cost (i.e., γ =∞), these two variables are proportionate. However,

under increasing marginal cost, a one percent change in τij has a more-than-proportionate effect

on ϕ∗ij . We will show later that this implies the trade elasticity is larger under increasing marginal

cost relative to constant marginal cost. Finally, we note that when γ →∞, equations (8) and (9)

simplify to the standard result in the benchmark constant marginal cost case.

As shown in section A.4 of Online Appendix A, revenue is increasing in firm productivity, so

that profits are also increasing in firm productivity. As a result, firms in country i with productivity

above the productivity cutoff ϕ∗ij will enter market j, while those with productivity below the cutoff
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will not. From equation (9), we can write the ratio of export and domestic cutoff productivities as:

ϕ∗ij
ϕ∗ii

=

EiP
σ−1
i f

1+γ
σ+γ

ij

EjP
σ−1
j f

1+γ
σ+γ

ii


1

γ
1+γ (σ−1)

τ
1+γ
γ

ij ≡ Γij ⇒ ϕ∗ij = Γijϕ
∗
ii. (10)

As in Bernard et al. (2011), we assume that Γij > 1,∀ i 6= j (see page 1284). In that case, only the

most productive firms export, while intermediate productivity firms serve only the domestic market

and the low productivity firms exit. The assumption that there are no “pure exporters” is consistent

with the empirical literature on firms in international trade.14

2.4 Free Entry

There is an unbounded set of potential entrants in the industry. To enter the industry, firms must

incur a fixed entry cost of fe units of labor. That sunk entry cost provides the firm with a blue

print for a unique variety and also reveals the firm’s productivity, ϕ, a random draw from a common

distribution G(ϕ). Once the fixed entry cost is paid, firms can begin production.

The value of a successful entrant with productivity ϕ is equal to the discounted sum of lifetime

profits. Following Melitz (2003), we assume that each period there is a probability δ ∈ (0, 1) that an

incumbent firm will be hit by an adverse shock and be forced to exit the industry. In that case, the

value of a successful entrant in the industry can be expressed as:

Vi(ϕ) =
∞∑
t=1

(1− δ)tπit(ϕ) =
πi(ϕ)

δ
, (11)

where the second equality follows from the fact that profits are constant throughout the lifetime of

the firm, i.e., πit(ϕ) = πi(ϕ). Therefore, the value of entry as a function of productivity is given by:

Vi(ϕ) = max

{
0,
πi(ϕ)

δ

}
. (12)

Firms with productivity above the domestic cutoff, ϕ∗ii, will generate enough variable profits to

cover the fixed costs. As a result, they stay in the industry and earn a lifetime profit proportional to

their per-period profits. Firms with productivity lower than the domestic cutoff would earn negative

profits if they remain in the industry. Hence, they prefer to exit the industry and get a null return.

In a free entry equilibrium, the expected value of entry, V e
i , must be equal to the cost of entry

such that:

V e
i = [1−G(ϕ∗ii)]

πi
δ

= wif
e. (13)

The expected value of entry is defined as the product of the probability of successful entry, 1−G(ϕ∗ii),

and the lifetime profits of the average incumbent firm, πi/δ. The cost of entry is defined as the

product of the wage rate, wi, and the fixed entry cost, fe, defined in units of labor.

14The findings in Lu (2010) to the contrary are explained in Dai et al. (2016) as processing trade.
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By definition, the average profit of an incumbent firm is the sum of the average profits from

sales to each market (including the domestic market) multiplied by the probability of entering each

market conditional on producing for the domestic market:

πi =
N∑
j=1

[
1−G(ϕ∗ij)

1−G(ϕ∗ii)

]
πij(ϕ

∗
ij). (14)

To obtain an analytical solution, we follow the literature and assume that the productivity distribution

is Pareto, such that G(ϕ) = 1−ϕ−θ. As shown in section A.4 of Online Appendix A, we can combine

the zero-cutoff-profit condition πij(ϕ
∗
ij) = 0, the optimal pricing rule (6), and the definition of profits

in equation (7), to express average total firm profit as:

πi =

γ
σ+γ (σ − 1)

θ − γ
σ+γ (σ − 1)

N∑
j=1

(
ϕ∗ii
ϕ∗ij

)θ
wifij . (15)

Substituting this last result for average profits into equation (13), we obtain an expression for the

free-entry condition that depends only on the productivity cutoffs and parameters of the model:

V e
i =

γ
σ+γ (σ − 1)

θ − γ
σ+γ (σ − 1)

N∑
j=1

fij
(ϕ∗ij)

θ
= δfe, (16)

where the wage rates have canceled in the expression above. This result shows that the value of

entry is proportionate to fixed entry costs (fe).

2.5 Goods and Labor Markets

To complete the characterization of the model, we impose market clearing in the goods and labor

markets. First, the labor-market-clearing conditions yield the equilibrium mass of firms in each

country. The labor supply is always equal to the mass of consumers, Li, because consumers have no

taste for leisure. There are three sources of demand for labor in the model. Incumbent firms need

labor to produce output and to cover fixed costs, and new entrants need labor to pay the fixed entry

cost of fe. Letting M e
i denote the mass of new entrants, and Mij denote the mass of country-i firms

selling to country j, we can write country i’s labor-market-clearing condition as:

Li = M e
i f

e +

N∑
j=1

Mij

∫ ∞
ϕ∗ij

[
fij +

qij(ϕ)
1+γ
γ

ϕ

]
µij(ϕ)dϕ, (17)

where

µij(ϕ) =


g(ϕ)

1−G(ϕ∗ij)
= θ(ϕ∗ij)

θϕ−θ−1, ϕ ≥ ϕ∗ij

0 otherwise
(18)

is the distribution of firm productivity conditional on the cutoff productivities, ϕ∗ij .
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In section A.5 of Online Appendix A, we solve for all the components of equation (17). We use

our results to express, respectively, the mass of new entrants and the mass of incumbent firms in

each country i as:

M e
i =

(
γ

1 + γ

)(
σ − 1

σ

)
Li
θfe

(19)

Mii =

(
γ

1 + γ

)(
σ − 1

σ

)
Li

δθfe(ϕ∗ii)
θ
. (20)

We can multiply the mass of incumbent firms in each country by the probability of exporting to

each destination conditional on producing to obtain the mass of country i firms that export to each

destination j as follows:

Mij =

(
γ

1 + γ

)(
σ − 1

σ

)
Li

δθfe(ϕ∗ij)
θ
. (21)

In the case of γ =∞, M e
i , Mii and Mij simplify to the respective terms in a standard Melitz-Redding

model, such as in Redding (2011).

We now determine aggregate revenue in equilibrium. First, total payments to production workers,

which we denote Lpi , must be equal to the difference between aggregate revenue and aggregate profit

such that wiL
p
i = Ri−Πi, where Πi ≡Miiπi. Second, in equilibrium, the mass of successful entrants

must be equal to the mass of firms forced to exit the industry. This aggregate stability condition

requires that [1−G(ϕ∗ij)]M
e
i = δMii. Combining this last result with the free entry condition (13)

implies that total payments to labor used in entry equal total profits: wiL
e
i = wiM

e
i f

e = Πi. It

follows that aggregate revenue, which is the sum of total payments to labor and profits, is equal to

payroll Ri = wiL
p
i + Πi = wiLi.

Finally, the equilibrium wage in each country can be determined from the requirement that total

revenue equals total expenditure on goods produced there (i.e., Ri = Ei). As shown in section A.7

of Online Appendix A, we can use the pricing rule (6) and the equation for the mass of firms in (21)

to express trade flows as:

Xij ≡Mij

∫ ∞
ϕ∗ij

rij(ϕ)µij(ϕ)dϕ =

[
γ

σ+γ (σ − 1)

θ − γ
σ+γ (σ − 1)

]
wiLifij
δfe(ϕ∗ij)

θ
. (22)

By definition, it follows that total expenditure in country j can be expressed as:

Ej =
N∑
k=1

Xkj =

[
γ

σ+γ (σ − 1)

θ − γ
σ+γ (σ − 1)

](
1

δfe

) N∑
k=1

wkLkfkj(ϕ
∗
kj)
−θ. (23)

Together these results imply that equilibrium wages are implicitly defined by:

Ri = Ei ⇔ wiLi =

N∑
j=1

λijwjLj , where λij ≡
Xij

Ej
=

wiLifij(ϕ
∗
ij)
−θ∑N

k=1wkLkfkj(ϕ
∗
kj)
−θ

(24)
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is the share of country j’s expenditure on goods supplied by country i.

2.6 General Equilibrium

As in Bernard et al. (2011), we determine general equilibrium using the recursive structure of the

model. As shown in section A.8 of Online Appendix A, the system of equations (24) determines a

unique equilibrium wage in each country (wi). Furthermore, the mass of entrants M e
i is determined

as a function of parameters in equation (19). With these two equilibrium components, we can solve

for all the other endogenous variables as follows. The price index Pj follows from the wage rate as

explained in section A.6 of Online Appendix A. The productivity cutoffs then follow from equation

(9), the wage rates, the price indexes, and the fact that Ei = Ri = wiLi in equilibrium. The mass of

firms in each country i serving each destination country j, Mij , follows from equation (21) and the

productivity cutoffs. Finally, the trade shares λij follow directly from equation (24), the wage rates,

and the productivity cutoffs. This completes the characterization of the general equilibrium.

3 Implications

In this section, we provide several important theoretical implications from the model described

in Section 2. In section 3.1, we use our model to derive novel ad valorem variable-trade-cost and

export-fixed-cost trade elasticities under increasing marginal costs. We show that, for a given set of

structural parameters, the trade elasticities are different under increasing marginal costs relative to

the benchmark constant marginal costs. Moreover, the variable-trade-cost elasticity changes relative

to the fixed-trade-cost elasticity, which has implications for estimating the relative welfare benefits

of fixed-trade-cost liberalizations relative to variable-trade-cost liberalizations within deep trade

agreements. In section 3.2, we demonstrate that the welfare effect of a change in trade costs is still

measured by the change in the domestic trade share raised to the (negative of the) inverse of the

(variable-trade-cost) trade elasticity, as in ACR. However, the welfare effect is diminished for a given

domestic trade share. We explain in this section the source of this “welfare diminution effect.”

3.1 Trade Elasticities

Using the definition of the productivity thresholds in equation (9) to substitute for ϕ∗ij in the

definition of λij in equation (24) yields:

Xij =

 Liw
1−θ

(
1+γ
γ

)
( σ
σ−1)

i τ
−θ

(
1+γ
γ

)
ij f

1− θ
γ

σ+γ (σ−1)

ij∑N
k=1 Lkw

1−θ
(

1+γ
γ

)
( σ
σ−1)

k τ
−θ

(
1+γ
γ

)
kj f

1− θ
γ

σ+γ (σ−1)

kj

wjLj . (25)

This analytical expression for the trade flows takes the usual gravity-equation form. It shows that

trade between countries is increasing in the size of the trading partners (wiLi and wjLj), decreasing

in the trade barriers between them (τij and fij), and a function of country j’s multilateral price term
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(the denominator of equation (25)) that captures the influence of trade costs between all country

pairs of j, including j’s intra-national trade costs. We note that when γ →∞ the benchmark result

obtains.15

As shown in section A.9 of Online Appendix A, the (positively defined) ad valorem variable-

trade-cost trade elasticity (ετ ) is given by:

ετ ≡ −
∂Xij

∂τij

τij
Xij

= −

{
∂Mij

∂τij

τij
Mij︸ ︷︷ ︸

extensive

+

∫ ∞
ϕ∗ij

∂rij(ϕ)

∂τij

τij
Xij/Mij

µij(ϕ)dϕ︸ ︷︷ ︸
intensive

+
g(ϕ∗ij)ϕ

∗
ij

1−G(ϕ∗ij)

[
1−

rij(ϕ
∗
ij)

Xij/Mij

]
∂ϕ∗ij
∂τij

τij
ϕ∗ij︸ ︷︷ ︸

compositional

}

= −

−θ
(

1 + γ

γ

)
︸ ︷︷ ︸

extensive

+ (1− σ)

(
1 + γ

σ + γ

)
︸ ︷︷ ︸

intensive

+ (σ − 1)

(
1 + γ

σ + γ

)
︸ ︷︷ ︸

compositional

 = θ

(
1 + γ

γ

)
. (26)

Following Head and Mayer (2014), we decompose this trade elasticity into an extensive margin, an

intensive margin, and a compositional margin.16 The extensive and intensive margins have the usual

interpretations. The extensive margin is caused by changes in the mass of firms serving each market.

The intensive margin is caused by changes in firm-level exports; the intensive-margin elasticity here

is consistent with that in a special case of Bergstrand (1985) with homogeneous firms, as addressed

in Appendix B.17 The compositional margin is caused by the fact that new entrants or exitors do

not have the same productivity as the existing exporters. This margin is a function of the difference

between the average shipment of the incumbent firms (Xij/Mij) and that of the marginal firm. All

three components converge to the benchmark Melitz model values as γ →∞.

In line with previous results for heterogeneous firm Melitz models, the trade elasticity is

determined entirely by the extensive-margin elasticity. At the intensive margin, lower ad valorem

trade costs increase exports of a given firm to a given country, which raise average exports per firm.

At the compositional margin, lower ad valorem trade costs induce low productivity firms to enter

the export market, which lowers average exports per firm. With a Pareto productivity distribution,

15Note that the wage-rate elasticity is equivalent to that in Bernard et al. (2011) if one assumes γ =∞, as we have
followed their assumption of export fixed costs using the exporter’s (i’s) labor. By contrast, Redding (2011) assumes
export fixed costs use the importer’s (j’s) labor. ACR’s equation (23) allows either of those two cases; our setting
is analogous to ACR in their case of µ = 1. In the case of γ =∞ and µ = 1, our wage-rate elasticity is equivalent
mathematically to ACR’s.

16We note that this composition nests other decompositions proposed in the literature. First, it nests the one
proposed by Eaton et al. (2004) and Redding (2011); in their decompositions, the intensive and compositional margins
are lumped together and labeled as the “intensive margin.” It also nests the decomposition proposed by Chaney (2008),
which is obtained by taking the sum of the extensive and the compositional margins and calling it the “extensive
margin.”

17Due to submission page constraints, Appendix B is “Not Intended for Publication.”
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the intensive-margin and compositional-margin elasticities offset one another exactly, such that the

average exports per firm do not change, cf., Feenstra (2010a,b).

In contrast to the benchmark (Eaton-Kortum and Melitz-Chaney-Redding) models with firm

heterogeneity – the elasticity of trade with respect to τij depends on parameters governing the

productivity distribution, θ, and the inverse marginal cost elasticity of output, γ. In the case of

γ <∞, the trade elasticity is magnified. As seen in the equation, the ad valorem trade elasticity

depends on θ, as in the benchmark, but is scaled up by the additional term 1 + 1/γ. The intuition

can be traced back to equations (9) and (21). Equation (9) reveals that, with increasing marginal

costs, a fall in τij has a magnified effect of 1 + 1/γ on lowering the country-pair’s export cutoff

productivity. In light of equation (21), this lower export productivity threshold makes it profitable

for more firms to export from i to j and hence Mij increases, enlarging the aggregate trade flow

from i to j. Due to diminishing marginal returns, the trade elasticity is augmented, and now a

nonlinear function of both parameters of the productivity distribution.

As shown in section A.9 of Online Appendix A, we can also decompose the (positively defined)

elasticity of trade with respect to fixed trade costs (εf ) into three margins as follows:

εf ≡ −
∂Xij

∂fij

fij
Xij

= −

{
∂Mij

∂fij

fij
Mij︸ ︷︷ ︸

extensive

+

∫ ∞
ϕ∗ij

∂rij(ϕ)

∂fij

fij
Xij/Mij

µij(ϕ)dϕ︸ ︷︷ ︸
intensive

+
g(ϕ∗ij)ϕ

∗
ij

1−G(ϕ∗ij)

[
1−

rij(ϕ
∗
ij)

Xij/Mij

]
∂ϕ∗ij
∂fij

fij
ϕ∗ij︸ ︷︷ ︸

compositional

}

= −

− θ
γ

σ+γ (σ − 1)︸ ︷︷ ︸
extensive

+ 0︸︷︷︸
intensive

+ 1︸︷︷︸
compositional

 =
θ

γ
σ+γ (σ − 1)

− 1. (27)

All components converge to the benchmark values as γ → ∞. The fixed-trade-cost elasticity is

also scaled up compared to the CMC case where εf = θ/(σ − 1) − 1.18 An explanation for the

different elasticity under IMC also can be traced intuitively back to equations (9) and (21). Using

equation (9), with increasing marginal costs a fall in fij has a magnified effect on lowering the

country-pair’s export cutoff productivity relative to the case of CMC. In the IMC case, the scaling

down of the denominator of this elasticity by γ
σ+γ augments the reduction in the country-pair’s

export productivity cutoff. Using equation (21), this lower export productivity threshold makes it

profitable for more firms to export from i to j and hence Mij increases, enlarging the aggregate

trade flow from i to j.

18In the CMC case, the assumption that θ
σ−1

> 1 is necessary to solve the Melitz model. However, some empirical
researchers have found evidence that estimates of θ are often below estimates of σ−1, violating a necessary assumption
of this model, cf., Feenstra (2016), page 168, and Simonovska and Waugh (2014). Our results in equation (27) may
shed some light on this finding. Our Melitz model under IMC requires only that θ > γ

σ+γ
(σ − 1). Hence, θ can be less

than σ − 1 as long as θ exceeds γ
σ+γ

(σ − 1), where 0 < γ
σ+γ

< 1.
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As mentioned earlier, we also solved the model for the case of increasing marginal costs in total

firm output (instead of destination-specific output). In the case of marginal costs depending on total

firm output, we must assume symmetric countries and variable and fixed trade costs. Since overall

output is endogenous to the set of countries to which firms export, one cannot solve analytically in a

model with asymmetric country sizes and asymmetric trade costs. Yet, in the symmetric world, we

can solve for analogous trade elasticities. In fact, it is possible to show that – when the number of

countries is large – the variable-trade-cost elasticity and the fixed-trade-cost elasticity are identical

to those in equations (26) and (27), respectively. These results are presented in Online Appendix C.

We have shown that, conditional on a set of structural parameters, the elasticities of trade are

magnified under increasing marginal costs. As a result, any trade-policy liberalization or transport-

cost reduction that lowers bilateral ad valorem variable trade costs or fixed trade costs will have

a larger impact on trade flows and consequently on the domestic expenditure share than in the

constant marginal cost case.

Moreover, equations (26) and (27) reveal not only that IMC increases both elasticities in absolute

terms, but also the fixed-trade-cost elasticity increases relative to the variable-trade-cost elasticity.

This result is important for evaluating the relative trade and welfare benefits of “shallow” trade

agreements (that only lower variable trade costs) with those of “deep” trade agreements (that

also reduce fixed trade costs). To understand why with IMC fixed-trade-cost reductions have a

relatively larger effect on trade than variable-trade-cost reductions, consider equations (8) and

(9). The variable-trade-cost trade elasticity in a Melitz model is determined by extensive margin

effects solely; consistent with equation (22) trade changes due to changes exclusively in the mass of

firms exporting from i to j (as under Pareto, the intensive margin effect is offset perfectly by the

composition margin effect). Due to IMC, the trade elasticity scales up θ by 1 + 1
γ due to diminishing

marginal returns.

By contrast, the fixed-trade-cost trade elasticity is determined by the ratio of the extensive

margin elasticity to the intensive margin elasticity. Recall, under CMC, reductions in τij change

ϕ∗ij proportionately; however, reductions in fij change ϕ∗uj less than proportionately (i.e., ϕ∗ij is

proportionate to f
1/(σ−1)
ij ). The introduction of IMC causes both the variable-trade-cost elasticity to

increase from θ to θ(1 + 1
γ ), but also the intensive margin effect to decline from σ− 1 to 1+γ

σ+γ (σ− 1).

This is confirmed by rewriting equation (9) as:

ϕ∗ij =


(

1+γ
γ

σ
σ−1wi

)σ
EjP

σ−1
j


1

γ
1+γ (σ−1) [

γ

σ + γ
(σ − 1)fij

] 1+γ
γ

1+γ
σ+γ (σ−1)

τ
1+γ
γ

ij .

In the penultimate section of this paper, we will conduct a counterfactual analysis to show – based

upon median estimates of σ, γ, and θ – how much IMC increases the welfare benefit of a fixed-

trade-cost liberalization relative to a variable-trade-cost liberalization, providing insight into the

increasing prominence of deep trade agreements.
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Finally, it is straightforward to show that equation (25) and the associated variable- and fixed-

trade-cost elasticities are consistent also with a “structural gravity ” representation that is common

in the literature, cf., Head and Mayer (2014) and Baier et al. (2017). As shown in Online Appendix

A.10, substituting equation (9) for ϕ∗ij into equation (22), substituting the resulting equation into

the market-clearing condition wiLi =
∑N

j=1Xij , and then solving yields:

Xij = B

(
Ri
Πi

)(
Ej
Φj

)
φij (28)

where B is a nonlinear function of parameters σ, γ, θ, δ, and fe,

φij = τ−ετij f
−εf
ij (29)

captures the impact of trade barriers on trade flows,

Πi =
N∑
j=1

φijEj
Φj

(30)

represents “outward multilateral resistance,” and

Φj =
N∑
i=1

φijRi
Πi

(31)

represents “inward multilateral resistance.” Because our model satisfies structural gravity, the

method developed in Head and Mayer (2014) to estimate the general equilibrium trade impacts

(GETI) of changes in trade barriers remains applicable.

3.2 Welfare

In this section, we show two results related to welfare effects under IMC relative to CMC. First, we

show that, under IMC, a main result in ACR holds; two sufficient statistics to measure the welfare

effects of international trade-cost shocks remain the domestic trade (or expenditure) share (i.e., the

share of domestic expenditure on domestic output, or the “intra-national” trade share) and the

“trade elasticity” (i.e., the elasticity of trade with respect to ad valorem variable trade costs, τij).

Second, we explain intuitively, and in the context of our model, why the “trade elasticity” under

IMC is “magnified” relative to that under CMC.

First, in section A.11 of Online Appendix A, we show that the change in welfare of a given

“foreign“ shock (to τij or fij) that leaves unchanged country j’s labor endowment, Lj , as well as the

costs to serve its own market (τjj and fjj) can be expressed as:

Ŵj = λ̂
−1/[θ(1+ 1

γ
)]

jj = λ̂
−1/ετ
jj , (32)
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where λ̂jj ≡ λ′jj/λjj is the (gross) change in the share of domestic expenditure and Ŵj ≡W ′j/Wj is

the change in welfare. In the special case of a move from trade (λjj) to autarky (λ′jj = 1), the gains

from trade (Gj) can be expressed as:

Gj = 1− λ
1/[θ(1+ 1

γ
)]

jj = 1− λ1/ετ
jj , (33)

which is identical to equation (12) in Costinot and Rodriguez-Clare (2014). These results imply

that conditional on the trade elasticity, the impact of trade shocks on welfare are independent of

the structure of marginal costs. At the same time, it is important to note that the definition of

the trade elasticity itself is different in our model. In the presence of increasing marginal costs, the

larger trade elasticity implies (for a given λjj) a smaller welfare effect than in the constant marginal

cost case, which we will term in this paper the “welfare diminution effect.”

Second, to understand intuitively this welfare diminution effect, consider the benchmark Melitz

model with constant marginal costs. The change in welfare (Ŵj) from a reduction in variable trade

costs is directly proportionate to the change in average productivity ( ˆ̃ϕij) and the change in the

number of varieties (M̂ij), cf., Melitz (2003), equation (17). Feenstra (2010a,b) show also that the

change in welfare can be simplified further to be proportionate to the change in output of the

zero-cutoff-profit firm (qij(ϕ̂
∗
ij)), cf. Feenstra (2010a), p. 20. As seen in equation (8), under increasing

marginal costs the output of the cutoff productivity firm is proportional to the cutoff productivity

according to:

qij(ϕ
∗
ij) ∝

(
ϕ∗ij
) γ

1+γ (34)

due to diminishing marginal returns. This result shows that, in general, there is a concave relationship

between the productivity cutoff and the output. This is the result of two opposing effects. On the

one hand, the direct effect of an increase in productivity is to lower the cost of production of a given

number of units. On the other hand, the indirect effect of an increase in productivity is to increase

production and increase marginal cost. The impact of a change in cutoff on input is increasing in γ

and, in the limit, as γ approaches ∞, the relationship between qij(ϕ
∗
ij) and ϕ∗ij becomes linear, as

in the benchmark Melitz model. As a result, a given change in ϕ∗ij has a smaller effect on output

under increasing marginal costs than constant marginal costs. This is the intuition underlying the

“welfare diminution effect” from increasing marginal costs.19

4 Estimation

As shown earlier, the theoretical model depends upon three structural parameters: the elasticity of

substitution in consumption (σ), the inverse marginal cost elasticity of output (γ), and the shape

parameter of the Pareto distribution (θ). To evaluate the impact of increasing marginal costs on the

margins-of-trade elasticities, we need empirical estimates of these parameters. Current estimates of

19Section A.12 in Online Appendix A formalizes this intuition using the constant elasticity-of-transformation
approach in Feenstra (2010a,b).
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σ and γ using international trade data in Feenstra (1994), Broda and Weinstein (2006), Soderbery

(2015), and Feenstra et al. (2018) do not account for firm heterogeneity in productivities, and hence

may well be biased. Hottman et al. (2016) account for heterogeneous productivity of firms by using

firm-level data; however, their data is limited to U.S. barcode data.

In this section, we extend the Feenstra-Broda-Weinstein approaches using international dis-

aggregate industry trade data to estimate σ and γ to account explicitly for firms’ heterogeneous

productivities.20 As in Feenstra and Romalis (2014), our approach recognizes the importance of

how a country’s mass of exporting firms depends not just on that exporting country’s labor-force

size but also on the industry’s zero-cutoff-profit productivity threshold. However, they also have

endogenous quality choice. In their model, the interaction between productivity and quality is such

that all firms charge the same price in equilibrium. Instead, we rely on observed price heterogeneity

to estimate the model.

4.1 Econometric Approach

We estimate a structural demand-and-supply system of equations. Following the literature, we

implement our empirical model separately for each industry in our data.21 Although the estimation

will be done on disaggregated trade data, we omit industry subscripts to minimize notation.

Nevertheless, the empirical model developed in this section should be thought of as representing

one of many industries.

We begin by using the theoretical model to obtain equations for the (equilibrium) aggregate

bilateral import-demand and bilateral export-supply functions. Our analysis shows that observed

unit values, which are used in the standard approach of Feenstra (1994) and Broda and Weinstein

(2006), are not appropriate measures of market prices in the presence of firm heterogeneity. However,

it is still possible to extend the benchmark estimation method to account for firm heterogeneity

because, as we demonstrate, the theoretically consistent market price is proportional to observed

unit values.

Starting with demand equation (2), we can write aggregate nominal bilateral import demand for

a variety as:

xDij (ϕ) = pcij(ϕ)cij(ϕ) = Ejp
c
ij(ϕ)1−σP σ−1

j . (35)

Using equation (35), we can write average import demand as:

xDij ≡
∫ ∞
ϕ∗ij

xDij (ϕ)µij(ϕ)dϕ = EjP
σ−1
j

∫ ∞
ϕ∗ij

pcij(ϕ)1−σµij(ϕ)dϕ. (36)

20Because we need estimates of all three parameters later, we cannot use the method suggested by Caliendo and
Parro (2015), which provides only the overall trade elasticity.

21Our approach follows the empirical trade literature, such as Feenstra (1994), Broda and Weinstein (2006),
Soderbery (2015), and Feenstra et al. (2018). We could generalize our theoretical model to accommodate multiple
industries. The standard approach is to assume preferences have a Cobb-Douglas upper tier defined over industries
and CES lower tiers defined over varieties (e.g., Costinot and Rodriguez-Clare (2014)). Because the Cobb-Douglas
framework eliminates across-industry effects, the industry-level analysis remains unchanged (conditional on the amount
of input available). In this context, we can interpret our σ, γ, and θ as industry specific; this is consistent with our
econometric approach and empirical results whereby we actually estimate industry specific σ’s and γ’s.
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Hence, aggregate nominal bilateral import demand is:

XD
ij = Mijx

D
ij = MijEjP

σ−1
j p̃cij , (37)

where

p̃cij ≡
∫ ∞
ϕ∗ij

pcij(ϕ)1−σµij(ϕ)dϕ (38)

is an index of firm-level prices.

Because the price index p̃cij is not observable in the data, we cannot use equation (37) to

estimate the parameters of this model. To make progress, we express the observable average

cost-insurance-freight (or cif) import unit value pcij in terms of two unobservable price indexes as

follows:

pcij ≡
Mij

∫∞
ϕ∗ij

xDij (ϕ)µij(ϕ)dϕ

Mij

∫∞
ϕ∗ij

qij(ϕ)µij(ϕ)dϕ
=

∫∞
ϕ∗ij

pcij(ϕ)1−σµij(ϕ)dϕ∫∞
ϕ∗ij

pcij(ϕ)−σµij(ϕ)dϕ
=
p̃cij
p̀cij

(39)

where p̃cij is defined in equation (38), and

p̀cij ≡
∫ ∞
ϕ∗ij

pcij(ϕ)−σµij(ϕ)dϕ (40)

is another unobserved price index. In what follows, we use the theoretical model to obtain analytical

expressions for each of the unobserved indexes, p̃cij and p̀cij . We then show that, by combining these

two expressions, we can express aggregate nominal bilateral import demand as a function of the

observable average import price pcij .

We proceed in three steps to obtain an estimable aggregate nominal bilateral import demand

function that depends on the observable measure of bilateral import prices, pcij . The first step is to

solve for firm-level (bilateral) prices pcij(ϕ) as functions of the productivity threshold ϕ∗ij . Recalling

qij(ϕ)/τij = cij(ϕ) and pcij(ϕ) = τijpij(ϕ), we can use optimal demand equation (2) and optimal

pricing rule (6) to show:

qij(ϕ)

qij(ϕ∗ij)
=

(
ϕ

ϕ∗ij

)σ( γ
σ+γ

)
. (41)

Substituting into equation (41) using equation (8) for qij(ϕ
∗
ij) yields:

qij(ϕ) =

[(
γ

σ + γ

)
(σ − 1)fij

] γ
1+γ

(ϕ∗ij)
−
(

γ
1+γ

)(
γ

σ+γ

)
(σ−1)

ϕ
σ
(

γ
σ+γ

)
. (42)

Substituting equation (42) for qij(ϕ) into optimal pricing rule (6) yields:

pij(ϕ) =

(
1 + γ

γ

)(
σ

σ − 1

)[(
γ

σ + γ

)
(σ − 1)fij

] 1
1+γ

(ϕ∗ij)
−
(

1
1+γ

)(
γ

σ+γ

)
(σ−1)

wiϕ
− γ
σ+γ . (43)
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In the second step, we compute the two unobservable average prices p̃cij and p̀cij and show that

the observable import unit value pcij is proportional to the optimal price of the break-even exporter,

pcij(ϕ
∗
ij). Using equation (43), optimal pricing function (6), the Pareto distribution assumption, and

recalling pcij(ϕ) = τijpij(ϕ), we can solve for:

p̃cij =

[
θ(σ + γ)

θ(σ + γ)− γ(σ − 1)

]
pcij(ϕ

∗
ij)

1−σ. (44)

Using equation (40), optimal pricing function (6), and the Pareto distribution assumption, we can

solve for:

p̀cij =

[
θ(σ + γ)

θ(σ + γ)− γσ

]
pcij(ϕ

∗
ij)
−σ. (45)

Using these results and equation (39), we obtain:

pcij =

[
θ(σ + γ)− γσ

θ(σ + γ)− γ(σ − 1)

]
pcij(ϕ

∗
ij), (46)

which shows that observable pcij is proportional to the optimal price of the zero-cutoff-profit exporter.

The third and final step is straightforward. We can rewrite equation (46) with pcij(ϕ
∗
ij) as a

function of the observable price import unit value pcij :

pcij(ϕ
∗
ij) =

[
θ(σ + γ)− γσ + γ

θ(σ + γ)− γσ

]
pcij , (47)

and substitute this last result into equation (44) to obtain:

p̃cij =

[
θ(σ + γ)

θ(σ + γ)− γσ

] [
θ(σ + γ)− γσ

θ(σ + γ)− γ(σ − 1)

]σ−1

(pcij)
1−σ. (48)

We can now use this last result to express the aggregate nominal bilateral import demand, defined

in (37), as a share of total expenditure as follows:

λij ≡
Xij

Ej
=

[
θ(σ + γ)

θ(σ + γ)− γσ

] [
θ(σ + γ)− γσ

θ(σ + γ)− γ(σ − 1)

]σ−1

MijP
σ−1
j (pcij)

1−σ. (49)

Finally, we remove the productivity threshold, ϕ∗ij , and the mass of firms, Mij , using equations (9)

and (21), respectively, to yield:

λij = k2Liw
−θ

(
1+γ
γ

)
( σ
σ−1)

i E

θ
γ

1+γ (σ−1)

j P
(σ−1)+θ

(
1+γ
γ

)
j τ

−θ
(

1+γ
γ

)
ij f

− θ
γ

σ+γ (σ−1)

ij (pcij)
1−σ, (50)

where k2 is a constant that depends only on parameters σ, γ, θ, δ, and fe.22 This completes the

derivation for the demand-side equation of the empirical model.

22Definitions of constants k0 and k1 in Online Appendix A and k2, k3, k4, and k5 in the paper are omitted for
brevity.
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We now turn our attention to the aggregate bilateral export-supply equation. We again proceed

in several steps. We begin by inverting the optimal pricing rule (6) to get an analytical expression

for output as a function of the price:

qij(ϕ) =

[(
γ

1 + γ

)(
σ − 1

σ

)
ϕpij(ϕ)

wi

]γ
. (51)

We then use this result to compute the average export supply from country i to country j:

qij ≡
∫ ∞
ϕ∗ij

qij(ϕ)µij(ϕ)dϕ =

[(
γ

1 + γ

)(
σ − 1

σ

)
1

wi

]γ ∫ ∞
ϕ∗ij

[ϕpij(ϕ)]γ µij(ϕ)dϕ. (52)

Defining aggregate bilateral export supply (in physical units) as Qij ≡Mijqij , then using equation

(52) yields:

Qij = Mij

[(
γ

1 + γ

)(
σ − 1

σ

)
1

wi

]γ
p̆ij , (53)

where

p̆ij ≡
∫ ∞
ϕ∗ij

[ϕpij(ϕ)]γ µij(ϕ)dϕ (54)

is yet another unobservable price index.

Because p̆ij is not observable, we need to obtain an expression for p̆ij as a function of an observed

average price pij . The first step is to solve for p̆ij as a function of the zero-cutoff-profit firm’s

price, pij(ϕ
∗
ij). Substituting the optimal price equation (43) into equation (54), assuming a Pareto

distribution for productivities, and solving yields:

p̆ij =

[
θ(σ + γ)

θ(σ + γ)− γσ

] [
ϕ∗ijpij(ϕ

∗
ij)
]γ
. (55)

Substituting in the analogue for equation (47) for pij(ϕ
∗
ij), we can write:

p̆ij =

[
θ(σ + γ)

θ(σ + γ)− γσ

] [
θ(σ + γ)− γ(σ − 1)

θ(σ + γ)− γσ

]γ [
ϕ∗ijpij

]γ
. (56)

Substituting equation (56) for p̆ij in equation (53) yields:

Qij =

[(
γ

1 + γ

)(
σ − 1

σ

)]γ [ θ(σ + γ)

θ(σ + γ)− γσ

] [
θ(σ + γ)− γ(σ − 1)

θ(σ + γ)− γσ

]γ
Mij

(
pijϕ

∗
ij

wi

)γ
. (57)

Solving for average price, we get:

pij = k3

(
Qij
Mij

) 1
γ wi
ϕ∗ij

, (58)

where k3 is a constant that depends only on the structural parameters σ, γ, and θ.

For estimation purposes, we need to make the aggregate bilateral export-supply equation

(58) comparable to the aggregate bilateral import-demand equation (50). The value of aggregate
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bilateral exports equals the value of aggregate bilateral imports, such that Mijpijqij = λijEj , or

Qij = λijEj/pij . Using the fact that pcij = τijpij , we get Qij = τijλijEj/p
c
ij . Using these results to

substitute for Qij and pij in equation (58) yields:

pcij = τijpij = k3τij

(
τijλijEj
Mijpcij

) 1
γ wi
ϕ∗ij

. (59)

Solving for pcij yields:

pcij = k4τij

(
λijEj
Mij

) 1
1+γ

(
wi
ϕ∗ij

) γ
1+γ

(60)

where k4 is a constant that depends only on the parameters σ, γ, and θ. Finally, we eliminate the

productivity threshold, ϕ∗ij , and the mass of firms, Mij , using the derivations in equations (9) and

(21), respectively, to obtain:

pcij = k5L
− 1

1+γ

i w
γ

1+γ
+
(
θ
γ
−1

)
( σ
σ−1)

i E
1

1+γ
+
(

1− θ
γ

)
( 1
σ−1)

j P
1− θ

γ

j τ
θ
γ

ij f
1

σ−1

(
θ
γ
−1

)(
σ

1+γ
+ γ

1+γ

)
ij λ

1
1+γ

ij , (61)

where k5 is a constant that depends only on the parameters σ, γ, θ, δ, and fe. This completes the

derivation for the supply-side equation of the empirical model.

Together, aggregate bilateral import-demand equation (50) and the aggregate bilateral export-

supply equation (61) form the basis of our method to estimate the structural parameters of the model.

As shown in Online Appendix D at the end of the paper, using equation (50), the double-differenced

aggregate bilateral import-demand can be expressed as follows:

∆ lnλijt = ∆ lnLit − θ
(

1 + γ

γ

)(
σ

σ − 1

)
∆ lnwit −

(
θ

σ − 1

)(
σ + γ

γ

)
∆ ln fijt

− θ
(

1 + γ

γ

)
∆ ln τijt − (σ − 1)∆ ln pcijt + ∆φijt,

(62)

where ∆φijt is the double difference of a (demand-side) residual, φijt.
23 By double-differencing, we

remove time-invariant and exporter-specific effects. The operator ∆ denotes the double difference

with respect to time and reference exporting country h such that for a given variable a, ∆ ln aijt ≡
(ln aij,t−ln aij,t−1)−(ln ahj,t−ln ahj,t−1). To obtain the supply-side equation, we first double-difference

equation (61), then we substitute equation (62) for ∆ lnλijt, and solve to obtain:

∆ ln pcijt =

(
γ

σ + γ

)[
1−

(
1 + γ

γ

)(
σ

σ − 1

)]
∆ lnwit −

(
1

σ − 1

)
∆ ln fijt,

+

(
1

σ + γ

)
∆φijt + ∆ψijt,

(63)

23In Feenstra (1994) and the subsequent literature, the residuals are derived from within the theoretical model by
including demand shocks in the CES preferences, cf., equation (1). As discussed in Online Appendix D, it would be
straightforward to extend the model to include these shocks.
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where ∆ψijt is the double difference of a (supply-side) residual, ψijt.
24

Our methodology relies on the orthogonality of the double-differenced residual terms – a standard

identification condition in the trade literature (e.g., Feenstra (1994); Broda and Weinstein (2006);

Soderbery (2015); and Feenstra and Weinstein (2017)) – which can be expressed as E(∆φijt∆ψijt) = 0,

where E denotes the expectation operator. As shown in Appendix D, to take advantage of this

moment condition, we use (62) and (63) to solve for ∆φij,t and ∆ψijt. We then multiply the two

expressions and rearrange to obtain:

Yijt =
20∑
k=1

βkZijt,k + ξijt, (64)

where

Yijt =
(
∆ ln pcijt

)2
, Zijt,1 = (∆ lnλijt)

2 , Zijt,2 = ∆ lnλijt∆ ln pcijt,

Zijt,3 = (∆ ln τijt)
2 , Zijt,4 = ∆ ln τijt∆ ln pcijt, Zijt,5 = ∆ ln τijt∆ lnλijt,

Zijt,6 = ∆ ln τijt∆ lnLit, Zijt,7 = ∆ ln τijt∆ lnwit, Zijt,8 = ∆ lnLit∆ ln pcijt,

Zijt,9 = ∆ lnLit∆ lnλijt, Zijt,10 = ∆ lnwit∆ ln pcijt, Zijt,11 = ∆ lnwit∆ lnλijt, (65)

Zijt,12 = ∆ lnLit∆ lnwit, Zijt,13 = (∆ lnLit)
2 , Zijt,14 = (∆ lnwit)

2 ,

Zijt,15 = (∆ ln fijt)
2 , Zijt,16 = ∆ ln fijt∆ ln pijt, Zijt,17 = ∆ ln fijt∆ lnλijt,

Zijt,18 = ∆ ln fijt∆ ln τijt, Zijt,19 = ∆ ln fijt∆ lnwit, Zijt,20 = ∆ ln fijt∆ lnLit,

ξij =
(σ+γ)∆φijt∆ψijt

(1+γ)(σ−1) is a residual, and the βks are functions of the three structural parameters, σ,

γ, and θ, only. Because of the double differencing, all the variables in (64) have null averages. This

implies that the empirical model identifies the coefficients (βk) from the second moments of the data

(i..e, variances and covariances) as explained in Rigobon (2003) and Gervais and Richard (2021).

The coefficients of this model cannot be consistently estimated because the error term is correlated

with the regressors. However, as explained in Feenstra (1994) and Broda and Weinstein (2006), it is

possible to obtain consistent estimates by exploiting the panel structure of the data and assuming

that the parameters are constant over time for each good. Following the literature, we estimate the

model using averages over time:

Y ij =

20∑
k=1

βkZij,k + ξij , (66)

where the over-bar indicates that the variables are averages over time (e.g., Zij ≡ T−1
∑

t Zijt). As

demonstrated in Feenstra (1994) and Broda and Weinstein (2006), the estimates are robust to the

simplest form of measurement error (with equal variance across country-pair) if a constant term is

added to equation (66).

24As discussed in Appendix D, it would be possible to add random shocks to the model such that the residuals
would emerge from the theoretical model similar to Feenstra (1994). Due to submission page constraints, Appendix D
is “Not Intended for Publication.”

29



Equation (66) is a generalization of the estimating equation used by Feenstra (1994) and Broda

and Weinstein (2006) to estimate the elasticities σ and γ by industry. The benchmark model uses

the same dependent variable Y ij , but includes only the first two covariates, Zijt,1 and Zijt,2. The

additional covariates included in our equation (66) appear because of two important differences

between our framework and the benchmark. First, the benchmark model is derived under the

Armington (1969) assumption that goods are differentiated by country of origin. Instead, we assume

there is monopolistic competition, such that there is more than one variety per exporting country.

Hence, we need to control for the mass of exporting firms which, as shown in equation (21), depends

on employment (Li). Second, in the benchmark model all firms in a given country face the same

constant marginal cost. Instead, we assume there is firm-heterogeneity and that marginal costs

are increasing in output. Therefore, we need to control for average firm-productivity using the

productivity threshold (ϕ∗ij). As seen in equation (9), the threshold depends, among other things,

on the fixed and variable trade costs (fij and τij) and the wage rate (wi). Overall, we have 4 only

additional determinants of trade. But because of the interactions, the number of terms in the

estimating equation increases from 2 to 20!

4.2 Data

For estimation, we need information on average unit import prices, trade shares, trade costs,

employment, and wages. The primary data set is the Comtrade Database collected and maintained

by the United Nations. This dataset collects both f.o.b. export values that correspond to the

transaction value of the goods, as well as c.i.f. import values which include the value of services

performed to deliver goods to the border of the importing country.25 The dataset also contains

information on quantities imported and exported.26 Additional information on trade barriers come

from a database compiled by Feenstra and Romalis (2014), which collects information on the

rates associated with most favored nation status or any preferential status available.27 We use this

information to construct measures of trade shares, average unit import values, and trade costs for

each importer-exporter-industry-year observation in the sample.

For the analysis, we define industries as four-digit Standard International Trade Classification

(SITC4) categories. Information on employment is not available at this level of detail. To obtain an

estimate of employment, we follow Feenstra and Romalis (2014) and distribute employment across

industries in proportion to export production. For each industry-country-year category, we measure

employment as total employment multiplied by industry export value divided by Gross Domestic

25Values are reported in current US dollars. We convert current dollars to 2005 dollars using information on the
Consumer Price Index (CPI-U) data provided by the United States Department of Labor Bureau of Labor Statistic.

26When possible, we convert physical units of measurement to a common denominator (e.g., “Thousands of items”
to “Items”). For industries with multiple units of measurement, we keep only the observations which report physical
quantity in the unit of measurement that account for the largest value of import over the entire sample.

27The dataset combines information from the TRAINS data, the World Trade Organization’s (WTO) Integrated
Data Base, the International Customs Journal, and the texts of preferential trade agreements obtained from the
WTO’s website. Tariff rates are reported at the four-digit SITC level.
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Product (GDP).28 Information on employment and GDP for each country-year comes for the Penn

World Tables (version 9.1). Finally, we use GDP per capita as our measure of wage rates. Our

sample covers the period from 1999 to 2010 (we include 1999, so that after taking time-differences

we end up with years 2000-2010).

4.3 Empirical Implementation

As shown in Appendix D, the coefficients in estimating equation (66) for each industry, i.e., the

βk, depend only on the three structural parameters of the model. This implies that, in principle,

our model allows us to identify all three structural parameters, σ, γ, and θ, from the estimated

coefficients for each industry. However, to be consistent with the theory, this requires imposing a

large number of constraints on the coefficients. Because some of the constraints are not linear in the

coefficients, identifying the three structural parameters entails writing a non-linear optimization

program that searches for the optimal values of three structural parameters over a non-trivial space.

This is well outside of the scope of the current (already lengthy) paper.

In addition to the technical difficulties associated with such a procedure, our data may not be

reliable enough to justify such an approach. The description of our empirical measures highlights

the fact that there are three categories of measures we would need to properly estimate equation

(66). The first category contains two variables for which we have reliable information, the average

unit import values (pcijt), and the trade shares (λijt). These correspond to the variables used in

the benchmark models estimated by Feenstra (1994) and Broda and Weinstein (2006). The second

category contains two variables for which we do not have direct information on, but that we can

control for using proxies, industry-level employment (Lit) and input costs (wit). The third category

contains two trade-barriers variables, the fixed export costs (fijt), and the variable export costs (τijt).

These variables are even more problematic because, while we have reliable information on trade

costs, it is unclear how to allocate freight costs between fixed and variable components. Moreover,

because our identification strategy relies on double-differenced variables, the usual time invariant

controls for fixed costs used in the literature (e.g., institutions’ quality) cannot be used to estimate

our model (they disappear in the first difference).

Given these considerations, we implement (66) as follows. As in Feenstra (1994) and Broda and

Weinstein (2006), we use only the most two reliable measures, average unit import values (pcij) and

trade shares (λij) to estimate the σ, and γ, and use various combinations of controls to account for

the other independent variables and to control for the impact of the third structural parameter, θ.

The estimating equation takes the following general form:

Y ij = β1Zij,1 + β2Zij,2 + Controlsij + υij , (67)

28Because we introduce increasing marginal costs, the relationship between labor and export is not linear. However,
the association is still positive, such that it make sense to attribute larger values of labor to industries in large countries
that export large amount of a good. We also check the sensitivity of our estimates to this assumption using exporter
fixed effects instead of direct measures of inputs.
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where

β1 =
1

(1 + γ)(σ − 1)
, and β2 =

σ − γ − 2

(1 + γ)(σ − 1)
. (68)

Because the coefficients β1 and β2 are defined exactly as in Feenstra (1994) and Broda and Weinstein

(2006), we use the same methodology to back out the structural parameters from the estimates.

Two points are worth mentioning. First, although we do not provide empirical estimates of θ, we do

control for the influence of firms’ productivity heterogeneity in our estimates of σ and γ. Second,

with a full complement of high-quality data and a properly specified constrained estimator, our

empirical model could identify all three structural parameters of the model.

We employ three specification types to estimate equation (67) by industry. For our first specifi-

cation, we use our ad valorem measures of trade costs (which includes both freight costs and tariff

rates) to control for all the fixed and the variables trade costs, τij and fij . This reduces the number

of regressors to the first 14 Zij,k in equation (64) – with τijt representing an index of trade costs that

includes both fixed and variable barriers. While we cannot identify all 20 coefficients in the original

specification, this simpler specification nevertheless controls for all the relevant variables and allows

us to obtain estimates for the two structural parameters σ and γ associated with equation (68).

To alleviate concerns regarding our proxies for Li and wi and our lack of explicit controls for fixed

export costs, we also estimate two richer specifications. For our second specification, we add exporter

and importer fixed effects to control for the importer-specific and exporter-specific components of

time-series changes in trade barriers not captured by our ad valorem measures. Note that, for this

specification, we remove the three exporter specific terms Z12 to Z14 from our second specification,

because they are subsumed in the exporter fixed effects. Therefore, our second specification includes

the first 11 regressors (Z1 to Z11) in equation (64), with τijt again representing an index of trade

costs that includes both fixed and variable barriers, along with importer and exporter fixed effects.

In our second specification just described, we removed the exporter-specific terms Z12 to Z14, but

kept the interaction terms that contain the measures of Li and wi, i.e., Z6 to Z11. In our third and

final specification, we replace the measures of Li and wi by the exporter fixed effects altogether. This

last specification includes Z1 to Z5, with τijt again representing an index of trade costs that includes

both fixed and variable barriers, exporter fixed effects to control for Z12 to Z14, and interaction

terms between the exporter fixed effects and the three main variables τij , pij and λij to control for

terms Z6 to Z11.

4.4 Estimation Results

We estimate equation (67) separately for each four-digit SITC industry in our dataset using each

of our three specifications. For purpose of comparison, we also present first the results from using

the benchmark estimation method of Feenstra (1994); this corresponds to estimating β1 and β2

in equation (67) without any additional controls. Because we obtain hundreds of estimates across

industries, it would not be practical to report them all. Instead, we present only the distribution of

the estimated coefficients.
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As seen in Table 1, the median elasticity of substitution in consumption (σ) and the median

inverse elasticity of marginal costs (γ) estimated using the benchmark Feenstra (1994) method

(without controls for firm-heterogeneity) are 4.70 and 4.00, respectively, as shown in the first two

columns of numbers. These accord with previous estimates in the literature. Turning to our estimates,

we find that the median estimated elasticities of substitution for specifications 1 to 3 are about 6.22,

6.43, and 6.39, respectively. The corresponding median estimated inverse elasticities of marginal costs

are 5.98, 6.31, and 5.74. The results presented in Table 1 have three important implications. First,

our estimates are robust to changes in specification. In addition to the median, the distributions of

the estimates are quite similar across our three specifications. Second, our estimates are economically

quite different from the benchmark estimates. We find that using our richer specifications increases

the estimated values of both the elasticity of substitution and the inverse output elasticities of

marginal costs, that is, the bilateral export supply elasticities. Third, the estimated parameters are

distributed densely around the medians.

TABLE 1
Distribution of Parameter Estimates

Percentile
Feenstra (1994) Specification 1 Specification 2 Specification 3
σ γ σ γ σ γ σ γ

1 2.64 0.57 2.55 0.66 2.59 0.71 2.54 0.62
5 3.00 1.29 3.21 1.51 3.20 1.56 3.41 1.57
10 3.29 1.68 3.77 1.98 3.82 2.00 4.03 2.23
25 3.95 2.41 4.71 3.41 4.79 3.57 4.97 3.49
50 4.70 4.00 6.22 5.98 6.43 6.31 6.39 5.74
75 5.99 6.85 9.14 11.00 9.35 12.37 8.87 10.16
90 8.63 13.02 16.11 21.83 16.30 24.22 13.63 20.61
95 11.72 20.67 22.16 38.46 23.98 43.51 18.74 35.02
99 26.75 47.27 74.25 93.91 67.43 150.69 32.97 118.74

Notes: This table presents the distributions of the estimated structural parameters of the model obtained
from estimating equation (67) separately for each industry using four different specifications (see main text
for details). The parameter σ is the elasticity of substitution and the parameter γ is the inverse marginal cost
elasticity of output. For purpose of comparison, we report the results for the 549 industries for which we obtain
estimates that conform to the restrictions of the theoretical model. About 30 percent of the industries in our
sample are excluded. By comparison Broda and Weinstein (2006) exclude about 35 percent of their industries.

These estimates for the elasticities of substitution are in line with previous empirical results

using similar data, such as Broda and Weinstein (2006) and Soderbery (2015). Unfortunately, the

literature provides few comparisons for our estimates of γ. For instance, Broda and Weinstein (2006)

do not report estimates for γ. Hottman et al. (2016) report an (implied) median estimate of γ of

6.25 using U.S. barcode firm-level data. Interestingly, this median estimate lies in the range of our

median estimates generated using here industry-level international trade data, but controlling for

firm heterogeneity.
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5 Numerical Analyses

Having established in the previous section strong empirical evidence using international data that

firms actually face increasing marginal costs, we provide in this section two numerical analyses to

illustrate the importance of allowing for increasing marginal costs in welfare calculations and other

counterfactuals. This section uses the empirical estimates of the three structural parameters to

quantify three important features of international trade. First, for a given set of parameters, we

quantify the impact of increasing marginal costs on the fixed- and variable-trade-cost elasticities

of trade. Second, we illustrate the importance of allowing for increasing marginal costs in welfare

calculations. Third, we use our estimates to show that the necessary changes to fixed trade costs, to

obtain the welfare-equivalent of (small) changes to variable trade costs, are much smaller in the

case of empirically-justified increasing marginal costs than in the case of constant marginal costs,

helping to explain the increasing prominence of deep trade agreements in the world economy.

5.1 Trade Elasticities

Table 2 reports the trade elasticities implied by the theoretical model using the estimated structural

parameters of the model, σ and γ. As noted earlier, given the absence of sufficient quality data for

all variables, we were not able at this time to estimate θ simultaneously; hence, the three values of

θ used in Table 2 were chosen from representative studies. The median value, θ = 8.28, came from

Eaton and Kortum (2002); 6.53 was selected from Costinot et al. (2012) and 12.86 from Eaton and

Kortum (2002). We computed elasticities for 30 different scenarios, each using a different value of θ

and γ as indicated in the table. The variable-trade-cost elasticity is independent of the value of the

elasticity of substitution, σ. However, the fixed-trade-cost elasticity is a function of σ, γ, and θ. For

Table 2, we chose our median estimate of the elasticity of substitution, σ = 6.33.

Two insights are worth noting. First, as expected, for any given value of γ (a row), the variable-

and fixed-trade-cost elasticities are increasing in θ, since θ is in the numerator of both elasticities.

Second, going down any column, one observes that, as γ increases, the variable- and fixed-trade-cost

elasticities converge to the benchmark constant-marginal-cost case. Comparing the elasticities of

trade at the median value of γ to the benchmark (γ =∞) shows that increasing marginal costs have

a quantitatively significant impact on the elasticity estimates. For example, (for θ = 8.28) at the

median estimated value of the bilateral export supply elasticity, γ = 5.74, the variable-trade-cost

trade elasticity of 9.72 is 17 percent larger than that with constant marginal costs (8.28); this accords

with intuition as the trade elasticity with IMC is scaled up by 1 + 1
γ relative to that with CMC. As

a clue to our second counterfactual later, note now that the fixed-trade-cost trade elasticity with

IMC for the same values of γ and θ is quadruple that for CMC.

In the next two sections, we provide two different quantitative counterfactual analyses, with the

purpose of showing the quantitative importance of accounting for empirically-justified increasing

marginal costs in the evaluation of: (1) the “gains from trade,” and (2) the trade impacts of
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TABLE 2
Estimated Trade Elasticities

Variable trade elasticity Fixed trade elasticity
θ θ

Percentile γ 6.53 8.28 12.86 6.53 8.28 12.86

1 0.62 17.06 21.63 33.60 12.35 15.93 25.29
5 1.57 10.69 13.55 21.05 4.99 6.59 10.79
10 2.23 9.46 11.99 18.63 3.56 4.79 7.99
25 3.49 8.40 10.65 16.54 2.34 3.24 5.58
50 5.74 7.67 9.72 15.10 1.50 2.16 3.91
75 10.16 7.17 9.09 14.13 0.92 1.44 2.79
90 20.61 6.85 8.68 13.48 0.55 0.96 2.05
95 35.02 6.72 8.52 13.23 0.40 0.77 1.75
99 118.74 6.58 8.35 12.97 0.24 0.58 1.45

∞ 6.53 8.28 12.86 0.18 0.50 1.33

Notes: This table presents the distributions of the elasticities of trade estimated separately for each industry
under 30 different scenarios, each with different values for the structural parameters as indicated in the table.
The Pareto distribution parameter (θ) varies across columns, whereas the inverse elasticity of marginal costs
(γ) varies across rows. The last row corresponds the benchmark constant marginal cost case (γ =∞). For the
fixed trade cost elasticity, we fix the elasticity of substitution at the sample median, such that σ = 6.33. For
purpose of comparison, we report the results for the 477 industries for which the fixed trade cost elasticity is
positive.

fixed-trade-cost reductions relative to variable-trade-cost reductions, the two main elements of deep

trade agreements.

5.2 Counterfactual 1: Welfare Gains from Trade

We provide in this section a numerical analysis in the spirit of Feenstra (2010b) and Costinot and

Rodriguez-Clare (2014) to illustrate the importance of allowing for increasing marginal costs in

welfare calculations. We show using representative values of the (inverse) index of the heterogeneity

of firms’ productivities (θ) and of the inverse output elasticity of marginal costs (γ) that the welfare

effect of a trade liberalization is reduced by more than 10 percent in the case of increasing marginal

costs relative to the case of CMC.

From equation (33), the percentage change in real income associated with moving from the

initial equilibrium (with trade) to autarky for country j is given by (100 times):

Gj = 1− λ1/ε
jj ,

where λjj is the domestic absorption share of GDP and ε = θ(1 + 1/γ).29 Consequently, the only

data needed for this numerical exercise is export shares. As in Feenstra (2010b), we use information

29In Feenstra (2010b), p. 53, Gj is defined as [(1− ExportSharej)−1/θ − 1]/[(1− ExportSharej)−1/θ]. However,

using ACR notation and some algebra, this simplifies to Gj = 1− λ1/θ
j , which is identical to the measure of Gj in

Costinot and Rodriguez-Clare (2014), p. 204.
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on nominal exports and nominal GDPs from the Penn World Tables to calculate export shares.30 As

discussed earlier, we did not estimate values for θ; we controlled for the influence of firm heterogeneity.

Our selection of values for γ is based upon the estimated values for γ from Section 4. Moreover, a

key consideration here is comparing the gains from trade with constant marginal costs versus the

gains from trade with increasing marginal costs. Consequently, we also calculate the gains from

trade assuming a value of γ =∞ to obtain a benchmark value.

Table 3 provides the results of our numerical analysis for the average welfare change; in our

sample, the mean trade share is 39.3 percent, so we set λjj = 60.7. The table is organized as follows.

The columns represent alternative values of θ, while the rows represent alternative values of γ. The

last row illustrates the gains from trade (relative to autarky) under the various values of θ and the

assumption of constant marginal costs (γ =∞). As expected, as one moves across columns for any

row the gains from trade decrease as the inverse index of firm heterogeneity (θ) rises. Moreover, for

any given value of θ, the gains from trade decrease as γ increases, moving down any column. As a

representative case, for θ = 8.28 and our median estimate of γ = 5.74 from Section 4, we find that

the welfare gain from trade is 5.00 percent, which is a reduction of 14.5 percent from the welfare

gain of 5.85 percent in the benchmark case of constant marginal costs (γ =∞). These values are

consistent with the “welfare-diminution” effect discussed in section 3.

TABLE 3
Welfare Gains from Trade, 2010

θ

Percentile γ 6.53 8.28 12.86

1 0.62 2.88 2.28 1.47
5 1.57 4.56 3.61 2.34
10 2.23 5.14 4.08 2.64
25 3.49 5.77 4.58 2.97
50 5.74 6.30 5.00 3.25
75 10.16 6.72 5.34 3.47
90 20.61 7.03 5.59 3.63
95 35.02 7.16 5.69 3.70
99 118.74 7.30 5.80 3.77
100 ∞ 7.36 5.85 3.81

Notes: This table presents the absolute value of the percentage change in real income associated with moving

from the initial equilibrium to autarky given by 1− λ1/ετjj , where λjj is domestic absorption. In our sample,
the mean trade share is 39.3, so we set λjj = 60.7. We compute gains from trade under 30 different scenarios,
each with different values for the structural parameters of the model as indicated in the table. The values for
the Pareto distribution parameter (θ) varies across columns, whereas the values for the inverse elasticity of
marginal costs (γ) varies across rows. The last row presents the benchmark constant marginal cost case, which
corresponds to γ =∞. We note that, the variable trade cost elasticity (ετ ) is independent of the elasticity of
substitution σ.

30We could just as easily used the World Input-Output Database (WIOD) used in Costinot and Rodriguez-Clare
(2014), but chose the set of countries in Feenstra (2010b) largely due to the broader sample and wider variation in the
levels of countries’ per capita real GDPs.
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Table A.1 in Online Appendix A reports calculations of the gains from trade for 20 countries

of various levels of per capita real GDP, similar to Table 3.1 in Feenstra (2010b). As expected,

countries with larger export shares have larger gains from opening up from autarky. For instance,

the United States has a small export share; consequently, the gains from trade are smaller. However,

the presence of increasing marginal costs still has a substantive effect for the United States; in the

case of γ = 5.74, the reduction of welfare of 0.23 from 1.57 to 1.34 owing to increasing marginal

costs is 15 percent. Overall, the results presented in this section suggest that increasing marginal

costs have substantive effects on welfare calculations.

5.3 Counterfactual 2: Welfare-Equivalent Changes and Deep Trade Agreements

As discussed in the introduction, the “new millennium” has also introduced “new types of trade

agreements.” The stark contrast between shallow versus deep trade agreements is essentially the

difference between reducing ad valorem tariff rates on international trade versus reducing “regulatory

heterogeneity”:

Accordingly, the emphasis of trade liberalization has shifted from reducing protectionist

barriers (i.e., tariff rates) to harmonizing – to the extent possible – rules and regulations.

Noting the shift in emphasis, former WTO Director General Pascal Lamy put it this

way: “TTIP isn’t about trade trade-offs, but a process of regulatory convergence, which

is a totally different ball game.” (Norberg (2015), p.1).

As illustrated recently in the United States-Mexico-Canada Agreement, the successor to NAFTA,

deep trade agreements embody a large increase in the number of chapters and the scope of the

agreement. In reality, these developments essentially span three (partially overlapping) areas:

1. modern “trade” agreements have been deepened to cover services trade flows, capital flows,

migration flows, and idea flows;

2. modern trade agreements aim to reduce barriers at the border and behind the border in

terms of regulatory convergence, such as trade facilitation (customs administration), technical

barriers to trade, sanitary and phytosanitary measures, and competition policy;

3. such agreements extend to addressing environmental policy and labor rights.

For our purposes, we are addressing the second category, where regulatory divergences create costs

of trade unrelated to the level of output, i.e., fixed trade costs. While recent empirical studies noted

in the introduction provide evidence of the non-trivial impact of lowering such barriers on trade

flows, few studies have yet provided estimates of their impact on the extensive margin of trade.

While empirical studies are now starting to flourish given the World Bank’s new data base on

the “Content of Preferential Trade Agreements,” the theoretical and quantitative welfare effects

of deep trade agreements have been scarcely examined, especially in the context of the new trade

theory with heterogeneous firms. Specifically, to the authors’ knowledge only three papers address
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systematically quantifying the trade and welfare effects of bilateral (ad valorem) variable-trade-cost

liberalizations relative to fixed-trade-cost changes. As mentioned in the introduction, Zhai (2008) is

among the earliest of these rare studies that have introduced a Melitz model into a CGE model to

calculate the trade and welfare effects of three types of policy simulations: a 50 percent tariff-rate

cut, a 5 percent reduction in variable trade costs, and a 50 percent reduction in fixed trade costs.

The CGE model’s implementation of the Melitz framework (under CMC) is consistent with the

discussion in this paper. For purposes of this paper, we discuss the implications of the latter two

simulations; the reason is that Zhai (2008) allows tariffs to generate income, whereas variable trade

costs are “iceberg” trade costs, as in this paper. A 50 percent tariff-rate reduction in Zhai (2008)

reduces disposable income, which has an offsetting effect on expenditures and trade; the model in

this paper ignores this aspect (which is left for future research).

Using a multi-country framework, a value of σ of 5, and a value of θ of 6.2, Zhai (2008) finds

for the United States, for example, that a 5 percent reduction in variable trade costs increased

welfare by 32.8 billion (US) dollars. In the context of his model, a 50 percent reduction in fixed

trade costs increased welfare 44.8 billion (US) dollars. Hence, the welfare-equivalent reduction in

fixed trade costs would be 36 percent, to match the 5 percent reduction in variable trade costs (or

a ratio of approximately 7). This accords quantitatively to the notion that, for the same percent

reduction in the cutoff productivity ϕ∗ij , the fall in fij would need to be about 7 times, since ϕ∗ij
adjusts in proportion to f

1/(σ−1)
ij in the case of CMC. In CGE analyses of the Trans-Atlantic Trade

and Investment Partnership (TTIP), a reduction of 36 percent in non-tariff measures was considered

“very ambitious,” and such a differential suggests against the proliferation of deep trade agreements.

To the authors’ knowledge, only two other papers have considered CGE analyses using a Melitz

framework, Balisteri et al. (2011) and Dixon et al. (2016). The structure of Balisteri et al. (2011) is

similar in many respects to Zhai (2008), but differs in several other respects. Balisteri et al. (2011)

actually estimate values for σ and even θ, and use exporter and importer fixed effects to estimate

exporter- and importer-specific fixed trade costs. The residual in their approach is bilateral fixed

trade costs, which adjust to match the simulated bilateral trade flows to actual trade flows. This

method yields some difficult-to-rationalize bilateral fixed trade costs. For instance, the bilateral fixed

trade cost of exports from the United States to Japan is twice as high as those from Canada to Japan;

moreover, the fixed trade costs of intra-national Japanese trade is the same as fixed trade costs

from Canada to Japan. Nevertheless, Balisteri et al. (2011) only compare a 50 percent reduction in

tariff rates against a 50 percent reduction in fixed trade costs, which provides a non-comparable

comparison to Zhai (2008) and our model, since tariff cuts in Balisteri et al. (2011) involve reductions

in disposable income and cannot be compared to a 50 percent reduction in iceberg variable trade

costs, as we know from Zhai (2008). The only other CGE model with a Melitz framework is Dixon

et al. (2016). However, this study only examined relative impacts of reductions in (ad valorem)

variable trade costs across Melitz and Krugman versions of their model. Hence, for comparison, our

model is most similar to Zhai (2008).
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In our second counterfactual, we are interested in measuring fixed-trade-cost changes, f̂ij , that

are equivalent in welfare to removing a given (ad valorem) variable trade cost, τ̂ij . In our model, as

seen in equation (29), we can write:

φij = τ−ετij f
−εf
ij , (69)

such that for a given value of τ̂ij , the equivalent fixed-trade-cost change is f̂ij = τ̂

ετ
εf

ij . This gives

the change in fixed trade costs that is equivalent to a change in variable trade costs in terms of its

impact on trade flows, λ̂ij , and welfare.

Using results from section 3, the ratio of elasticities plays a critical role in defining welfare-

equivalent trade-cost changes. From the theoretical model, we know that:

ετ
εf

=
θ
(

1+γ
γ

)
θ

γ
σ+γ

(σ−1)
− 1

. (70)

For any value of γ < ∞, this ratio is smaller than in the benchmark CMC case. In the limit, as

γ →∞, the ratio converges to the benchmark. This implies that under IMC the equivalent change

f̂ij for a given τ̂ij is smaller than under CMC. The economic intuition was discussed in section 3.

Consider the median values of our estimated parameters σ and γ using specification 3 from

section 4, σ = 6.53 and γ = 5.74, as well as the preferred (median) value of θ = 8.28 from Eaton

and Kortum (2002). Substituting in these values yields:

CMC :
ετ
εf

=
θ

θ
σ−1 − 1

= 16.65 (71)

IMC :
ετ
εf

=
θ
(

1+γ
γ

)
θ

γ
σ+γ

(σ−1)
− 1

= 4.41 (72)

Armed only with observable estimates of variable trade costs (for which we use average MFN tariff

rates), we can then obtain a fixed-trade-cost change that is equivalent in welfare to eliminating a

country’s – or an average of countries’ – MFN tariff rates. From the WTO, the average MFN tariff

rates applied by the G20 countries is about 5 percent. This implies that the equivalent fixed costs

changes are:

CMC : f̂ = (1.05)16.65 = 2.25 (73)

IMC : f̂ = (1.05)4.41 = 1.24. (74)

These results make clear that the equivalent change is much larger under CMC than under IMC.

Table 4 reports the distribution of the ratio of welfare-equivalent fixed-trade-cost changes across

industries for a 5 percent reduction in the tariff rate, 0.05/1.05 u 0.05.31 To discipline the quantitative

exercise, we use the mean tariff applied in each industry and consider a complete removal of the

31Due to our model’s construct, we are ignoring any loss of tariff revenue, leaving this for future research.
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tariff barriers as our shocks, τ̂ . We compute the equivalent change for two separate cases, the

benchmark constant marginal case of γ →∞ and the increasing marginal cost case. The table shows

that, for the median industry, ad valorem tariffs are about 3 percent. The equivalent fixed costs

change under CMC is 47 percent, whereas under IMC it is only 13 percent. Both distributions of

welfare-equivalent fixed-trade-cost changes start at 0 percent, but the CMC distribution has a much

thicker right tail. At the 90th percentile of the distribution, which corresponds to eliminating a 9

percent tariff, the equivalent fixed-trade-cost change is a reduction of 1,434 percent. But under IMC,

it is a much more reasonable 56 percent.

TABLE 4
Equivalent Fixed Costs Change

CMC IMC

Percentile τ̂ ετ/εf f̂ ετ/εf f̂

1 1.00 0.93 1.00 0.65 1.00
5 1.01 2.82 1.04 1.40 1.02
10 1.01 3.56 1.09 1.91 1.03
25 1.02 6.12 1.20 2.64 1.07
50 1.03 10.45 1.47 3.65 1.13
75 1.05 23.12 2.72 5.29 1.28
90 1.09 52.67 15.34 7.43 1.56
95 1.12 134.50 126.26 9.86 2.13
99 1.23 711.54 2.41e+10 36.75 9.31

Notes: This table present the distribution of the average industry-level ad valorem trade barriers (τ̂)

and the corresponding equivalent fixed cost changes (f̂). We set θ = 8.28 and let the elasticity of
substitution (σ) and the inverse elasticity of marginal costs (γ) varies across industries. The last row
presents the benchmark constant marginal cost case, which corresponds to γ =∞. The equivalent

fixed costs changes are obtained from f̂ij = τ̂
ετ
εf

ij . We keep the 477 industries in the sample for which
the fixed trade costs elasticities are positive.

Table A.2 in Online Appendix A reports the distribution of the ratio of welfare-equivalent

fixed-trade-cost changes for selected countries. We first compute the average tariff rate imposed by

each country for each industry separately. We then compute an import-weighted-average tariff rate

for each country. We set the shock to eliminating the average tariff rate. As in Table 4, we compute

the equivalent fixed-trade-cost changes for the CMC and IMC cases. Here, the main point is that –

even if the parameters are the same across countries – changes in the compositions of trade flows

have an impact on equivalent changes.

We conclude by addressing the result for the United States. For the United States, the MFN

tariff rate is only about 3 percent, which conforms to most observers knowledge of it. While the

value of bilateral fixed trade costs is unknown, the lack of that knowledge is immaterial for our

calculations here. All that is needed here is values of average tariff rates (or variable trade costs), the

well-known (ad valorem variable-trade-cost) “trade elasticity,” and a value for the fixed-trade-cost

elasticity. With little empirical knowledge of the levels of fixed trade costs, our estimates of σ and

γ – generated using our novel econometric augmentation of the Feenstra method (along with an
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external estimate of θ, in light of limited high-quality data for our econometric procedure) – allow us

to construct an estimate of θ
γ

σ+γ
(σ−1)

. Given the framework above, we find that – under CMC – the

welfare-equivalent reduction in fixed trade costs is 88 percent (7.46/8.46). By contrast, under IMC

the welfare-equivalent reduction in fixed trade costs is only 15 percent. The latter makes deep trade

agreements much more attractive to pursue, with a 15 percent reduction well below the reductions

of 25 percent used in earlier analyses of TTIP in Berden et al. (2010) and Francois et al. (2013).

6 Conclusions

This paper has offered three contributions to the international trade literature: theoretical, empirical,

and numerical. First, extending theoretically a standard (one-sector) Melitz model of international

trade (with a Pareto distribution for productivities) to the case of increasing marginal production

costs, we generated a gravity equation akin to that in Arkolakis et al. (2012) except that the trade

elasticity (θ) was magnified by one plus the marginal cost elasticity of output. The magnified trade

elasticity implies that the welfare gain from a trade liberalization is reduced, as diminishing marginal

returns interact with the Pareto shape parameter to lower the average productivity gains from trade

liberalizations.

Second, we provided estimates of the bilateral export supply elasticity (or (inverse) marginal cost

elasticity of output) using a novel econometric extension of the Feenstra-Broda-Weinstein method

that controlled explicitly for firm heterogeneity. Importantly, we find that increasing marginal costs

exist, with an across-industry median bilateral export supply elasticity estimate ranging from about

5.7 to 6.4 across various specifications. Such estimates of the (inverse) marginal cost elasticity of

output are far below ∞, which is assumed in the benchmark models in the trade literature assuming

constant marginal costs.

Third, we provided two numerical analyses to illustrate quantitatively the relative importance of

our study. In the first counterfactual, we examined the relative quantitative importance of increasing

marginal costs for estimating the welfare gains of trade liberalizations. Using a numerical calibration

approach similar to that in Feenstra (2010b), we found for the median estimates of firm heterogeneity

and of the marginal cost elasticity, the presence of increasing marginal costs diminished the welfare

gains from trade by about 13 percent – in line with theory. Our second counterfactual analysis

provided insight into the increasing prominence of deep trade agreements in the world economy.

Under constant marginal costs, our analysis indicated for the median industry that the needed

reduction in fixed trade costs to be equivalent in welfare-improvement to a 3 percent reduction in ad

valorem variable trade costs was 47 percent, the latter considered “ambitious” in most CGE analyses

of deep trade liberalizations, cf., Berden et al. (2010) and Francois et al. (2013). By contrast, under

increasing marginal costs, the welfare-equivalent reduction in fixed-trade-costs is only 13 percent .

We offer three suggestions for further research in this area. First, to reduce theoretical complexity,

we have omitted disposable income associated with tariff revenue in our analysis. Future work could

incorporate the implications of tariff revenue for computing the welfare effects of reducing tariff
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rates. Second, availability of higher quality data for industrial employment, input costs, variable

trade costs, and fixed trade costs would enable credible estimation of σ, γ, and θ simultaneously;

this would provide a significant enhancement of the Feenstra-Broda-Weinstein econometric approach.

Third, Grossman et al. (2020) recently addressed theoretically the role of fixed trade costs in modern

trade agreements in a model where firms differentiate their products by destination to appeal to

local consumer tastes. In their framework, profit-maximizing choices of product characteristics by

firms are optimal globally in the absence of consumption externalities, but nations’ governments

have incentives to invoke regulatory protection. In the future, our work on the importance for deep

trade agreements of recognizing increasing marginal costs could be combined with the tastes for

regulatory divergences to better understand – and potentially quantify – the welfare-equivalent

effects of fixed- versus variable-trade-cost reductions.

Finally, adapting Table 3.1 in Head and Mayer (2014), Table A.3 in Online Appendix A provides

a summary to compare and contrast the implied ad valorem variable-trade-cost intensive-margin

elasticities, ad valorem variable-trade-cost trade elasticities, export-fixed-cost trade elasticities, and

welfare effects from the large class of models addressed in Arkolakis et al. (2012) with those from

this paper. The main point of the present paper is that there are now three important empirically

motivated parameters in the (one-sector) Melitz model likely determining the general equilibrium

effects of trade-cost changes on trade flows, margins of trade, and economic welfare.
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A Online Appendix A

A.1 Pricing Rule and Firm Revenue

As in Feenstra (2010a) and Feenstra (2010b), we let pij(ϕ) and qij(ϕ) denote the (free-on-board or
fob) price received and the quantity shipped by the firm at the factory gate, respectively. A firm
with productivity ϕ in country i serving country j maximizes profits by choosing the factory-gate
price pij :

max
pij

πij(ϕ) = pij(ϕ)qij(ϕ)− wi

[
fij +

qij(ϕ)
1+γ
γ

ϕ

]
. (A.1)

By the definition of iceberg trade costs, we have that the quantity produced after the “iceberg melt”
is equal to the quantity consumed: qij(ϕ)/τij = cij(ϕ). Furthermore, because firms charge pij(ϕ)
per unit produced, consumers pay pcij(ϕ) ≡ τijpij(ϕ) per unit consumed. Combining these results
and making use of the demand function in equation (2), we can express output as:

qij(ϕ) = τijcij(ϕ) = τijEjP
σ−1
j pcij(ϕ)−σ = EjP

σ−1
j τ1−σ

ij pij(ϕ)−σ. (A.2)

Substituting this last result into equation (A.1) yields

max
pij

πij(ϕ) = EjP
σ−1
j τ1−σ

ij pij(ϕ)1−σ − wifij −
wi
ϕ

[
EjP

σ−1
j τ1−σ

ij pij(ϕ)−σ
] 1+γ

γ
.

Because each firm produces only one of a continuum of varieties, a change in pij has a negligible
effect on the price index Pj . As a result, the first order condition for the profit maximisation problem
is:

∂πij
∂pij

= (1− σ)EjP
σ−1
j τ1−σ

ij pij(ϕ)−σ + σ

(
1 + γ

γ

)
wi
ϕ

(
EjP

σ−1
j τ1−σ

ij

) 1+γ
γ
pij(ϕ)

−σ
(

1+γ
γ

)
−1

= 0,

Simplifying the equation above yields:

pij(ϕ) =

(
1 + γ

γ

)(
σ

σ − 1

)
wi
ϕ

[
EjP

σ−1
j τ1−σ

ij pij(ϕ)−σ
] 1
γ
.

From equation (A.2) we can replace for the last term in squared bracket using qij(ϕ) to obtain the
optimal factory-gate price:

pij(ϕ) =

(
1 + γ

γ

)(
σ

σ − 1

)
wi
ϕ
qij(ϕ)

1
γ . (A.3)

We can use this result to derive optimal firm-destination revenue as follows:

rij(ϕ) = pij(ϕ)qij(ϕ) =

(
1 + γ

γ

)(
σ

σ − 1

)
wiqij(ϕ)

1+γ
γ

ϕ
. (A.4)

As explained earlier, firms charge pij(ϕ) per unit produced such that consumers pay pcij(ϕ) ≡
τijpij(ϕ) per unit consumed. From equation (A.3), consumers pay a price per unit consumed of:

pcij(ϕ) ≡ τijpij(ϕ) =

(
1 + γ

γ

)(
σ

σ − 1

)
wiτij
ϕ

qij(ϕ)
1
γ . (A.5)
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Finally, we note that our solution for optimal consumer price converges to the benchmark result as
γ →∞:

lim
γ→∞

pij(ϕ)c =

(
σ

σ − 1

)
wiτij
ϕ

.

A.2 Firm Profits

From equation (A.1), we have:

πij(ϕ) = pij(ϕ)qij(ϕ)− wi

[
fij +

qij(ϕ)
1+γ
γ

ϕ

]

= rij(ϕ)− wifij −
(

γ

1 + γ

)(
σ − 1

σ

)[(
1 + γ

γ

)(
σ

σ − 1

)
wiqij(ϕ)

1+γ
γ

ϕ

]

= rij(ϕ)− wifij −
(

γ

1 + γ

)(
σ − 1

σ

)
rij(ϕ)

=

[
1−

(
γ

1 + γ

)(
σ − 1

σ

)]
rij(ϕ)− wifij

=

(
σ + γ

1 + γ

)
rij(ϕ)

σ
− wifij (A.6)

where the third line uses the definition of optimal revenue in equation (A.4). We note that our
solution for profits converges to the benchmark result as γ →∞:

lim
γ→∞

πij(ϕ) =
rij(ϕ)

σ
− wifij .

A.3 Cutoff Productivity

Together, the profit function defined in equation (A.1) and the zero-profit condition πij(ϕ
∗
ij) = 0

imply that: (
σ + γ

1 + γ

)
rij(ϕ

∗
ij)

σ
= wifij . (A.7)

Substituting into this last equation optimal revenue, as defined in equation (A.4), yields:

(
σ + γ

1 + γ

)(
1

σ

)(
1 + γ

γ

)(
σ

σ − 1

)
wiqij(ϕ

∗
ij)

1+γ
γ

ϕ∗ij
= wifij , (A.8)

which, after rearranging, yields an expression for the optimal output of the cutoff firm:

qij(ϕ
∗
ij) =

[(
γ

σ + γ

)
(σ − 1)fijϕ

∗
ij

] γ
1+γ

. (A.9)
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We can substitute this last result into equation (A.3) to obtain an expression for the optimal
factory-gate price for the cutoff firm:

pij(ϕ
∗
ij) =

(
1 + γ

γ

)(
σ

σ − 1

)
wi
ϕ∗ij

[(
γ

σ + γ

)
(σ − 1)fijϕ

∗
ij

] 1
1+γ

=

(
1 + γ

γ

)(
σ

σ − 1

)[(
γ

σ + γ

)
(σ − 1)fij

] 1
1+γ

wi(ϕ
∗
ij)
−γ
1+γ . (A.10)

From equation (A.2), we can express firm revenue as:

rij(ϕ) = pij(ϕ)qij(ϕ) = EjP
σ−1
j τ1−σ

ij pij(ϕ)1−σ.

Using this last result, we can express the zero-profit condition in equation (A.7) as:(
σ + γ

1 + γ

)
EjP

σ−1
j τ1−σ

ij pij(ϕ
∗
ij)

1−σ

σ
= wifij . (A.11)

Substituting for the factory-gate price in equation (A.11) using equation (A.10), we can solve for
the zero-cutoff-profit productivity:

wifij =

(
σ + γ

1 + γ

) EjP
σ−1
j τ1−σ

ij

{(
1+γ
γ

)(
σ
σ−1

) [(
γ

σ+γ

)
(σ − 1)fij

] 1
1+γ

wi(ϕ
∗
ij)
−γ
1+γ

}1−σ

σ

⇒ (ϕ∗ij)
(σ−1)

(
γ

1+γ

)
=

(
1 + γ

σ + γ

)(
σwifij

EjP
σ−1
j τ1−σ

ij

)[(
1 + γ

γ

)(
σ

σ − 1

)
wi

]σ−1 [( γ

σ + γ

)
(σ − 1)fij

]σ−1
1+γ

⇒ ϕ∗ij =


(

1+γ
γ

σ
σ−1wi

)σ
EjP

σ−1
j


1

γ
1+γ (σ−1) [

γ

σ + γ
(σ − 1)fij

] 1
γ

σ+γ (σ−1)

τ
1+γ
γ

ij . (A.12)

Again, when γ →∞ we obtain the benchmark result:

lim
γ→∞

ϕ∗ij =

[(
σ

σ − 1

)σ
(σ − 1)

fijw
σ
i

EjP
σ−1
j

] 1
σ−1

τij =
σ1+ 1

σ−1w
1+ 1

σ−1

i f
1

σ−1

ij τij

(σ − 1)E
1

σ−1

i Pj

=

(
σ

σ − 1

)
wiτij
Pj

(
σwifij
Ej

) 1
σ−1

.

A.4 Average Profits

In our model, the relationship between the relative revenues of two firms in country i serving the
domestic market and their relative productivities is similar to – but nontrivially different from – the
constant marginal cost case. From equation (A.2) and the pricing rule (A.5), we can express the
ratio of output between any firm and the cutoff firm as follows

qij(ϕ)

qij(ϕ∗ij)
=

(
ϕ

ϕ∗ij

)σ( γ
σ+γ

)
, (A.13)
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which differs from the constant marginal cost case because of the extra term in the exponent (i.e.,
γ/(σ + γ)). However, when γ =∞ the result is the same as in Melitz (2003). Using equation (A.3)
to define the ratio of prices and multiplying by the ratio of quantities to obtain relative revenues
yields:

rij(ϕ)

rij(ϕ∗ij)
=

pij(ϕ)

pij(ϕ∗ij)
× qij(ϕ)

qij(ϕ∗ij)
=

 qij(ϕ)
1
γ /ϕ

qij(ϕ∗ij)
1
γ /ϕ∗ij

[ qij(ϕ)

qij(ϕ∗ij)

]
=

(
ϕ

ϕ∗ij

)(σ−1)
(

γ
σ+γ

)
(A.14)

where the last equality follows from equation (A.13). Note that when γ →∞, the relationship is
identical to the constant marginal cost case. The sufficient condition here for a positive relationship

between productivity and revenue is σ
(

1+γ
σ+γ

)
> 1, instead of the typical assumption σ > 1.

From the zero-profit condition πij(ϕ
∗
ij) = 0 and the definition of profits in equation (A.6), we

have:

πij(ϕ
∗
ij) = 0 ⇔ rij(ϕ

∗
ij) =

(
1 + γ

σ + γ

)
σwifij . (A.15)

Using this result and equation (A.14), we obtain:

rij(ϕ) =

(
ϕ

ϕ∗ij

)(σ−1)
(

γ
σ+γ

)
rij(ϕ

∗
ij) =

(
1 + γ

σ + γ

)(
ϕ

ϕ∗ij

)(σ−1)
(

γ
σ+γ

)
σwifij , (A.16)

which shows clearly that firm revenue is increasing in firm productivity. Using this last result, we
can express average revenue for a country i firm selling to country j as:

rij(ϕ
∗
ij) =

∫ ∞
ϕ∗ij

rij(ϕ)µij(ϕ)dϕ

=

(
1 + γ

σ + γ

)(
1

ϕ∗ij

)(σ−1)
(

γ
σ+γ

)
σwifij

∫ ∞
ϕ∗ij

ϕ
(σ−1)

(
γ

σ+γ

)
µij(ϕ)dϕ

=

(
1 + γ

σ + γ

)[
ϕ̃ij(ϕ

∗
ij)

ϕ∗ij

](σ−1)
(

γ
σ+γ

)
σwifij (A.17)

where

µij (ϕ) =


g(ϕ)

1−G(ϕ∗ij)
= θ(ϕ∗ij)

θϕ−θ−1, if ϕ ≥ ϕ∗ij ,

0 otherwise
(A.18)

is the equilibrium distribution of firm productivity, and

ϕ̃ij(ϕ
∗
ij) =

[∫ ∞
ϕ∗ij

ϕ
(σ−1)

(
γ

σ+γ

)
µij(ϕ)dϕ

]( 1
σ−1)σ+γγ

. (A.19)

defines an aggregate productivity level as a function of the cutoff level ϕ∗ij .
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Using equation (A.19), we can define average profit for each destination market as follows:

πij(ϕ
∗
ij) =

∫ ∞
ϕ∗ij

πij(ϕ)µij(ϕ)dϕ =

∫ ∞
ϕ∗ij

[(
σ + γ

1 + γ

)
rij(ϕ)

σ
− wifij

]
µij(ϕ)dϕ

=

(
σ + γ

1 + γ

)∫ ∞
ϕ∗ij

rij(ϕ)

σ
µij(ϕ)dϕ− wifij =

(
σ + γ

1 + γ

)
rij(ϕ

∗
ij)

σ
− wifij

=


[
ϕ̃ij(ϕ

∗
ij)

ϕ∗ij

](σ−1)
(

γ
σ+γ

)
− 1

wifij . (A.20)

This result is analogous to the zero-cutoff-profit condition in Melitz (2003), with πi a negative

function of ϕ∗ij . The nontrivial difference is the necessary condition that σ
(

1+γ
σ+γ

)
> 1.

By definition, the average profit of an incumbent firm is the sum of the average profits from
sales to all markets:

πi =
N∑
j=1

[
1−G(ϕ∗ij)

1−G(ϕ∗ii)

]
πij(ϕ

∗
ij) =

N∑
j=1

(
ϕ∗ij
ϕ∗ii

)−θ
πij(ϕ

∗
ij), (A.21)

where the last equality follows from the Pareto distribution assumption. This expression includes
domestic profits (i.e., when i = j). Using equation (A.20) in (A.21), we can express average total
firm profit (under the Pareto distribution assumption) as:

πi =
N∑
j=1

(
ϕ∗ij
ϕ∗ii

)−θ
[
ϕ̃ij(ϕ

∗
ij)

ϕ∗ij

](σ−1)
(

γ
σ+γ

)
− 1

wifij . (A.22)

We can further simplify this expression using the definition of average productivity in equation
(A.19), which implies that:

[
ϕ̃ij(ϕ

∗
ij)
](σ−1)

(
γ

σ+γ

)
=

∫ ∞
ϕ∗ij

ϕ
(σ−1)

(
γ

σ+γ

)
µij(ϕ)dϕ =

∫ ∞
ϕ∗ij

ϕ
(σ−1)

(
γ

σ+γ

)
θϕ−θ−1

(ϕ∗ij)
−θ dϕ

= θ(ϕ∗ij)
θ

∫ ∞
ϕ∗ij

ϕ
σ
(
γ+1
σ+γ

)
−θ−2

dϕ =

 θ

θ − (σ − 1)
(

γ
σ+γ

)
 (ϕ∗ij)

(σ−1)
(

γ
σ+γ

)
.

(A.23)

Using this last result in equation (A.22) yields:

πi =
N∑
j=1

(
ϕ∗ij
ϕ∗ii

)−θ
 θ

θ − (σ − 1)
(

γ
σ+γ

)
− 1

wifij =
(σ − 1)

(
γ

σ+γ

)
θ − (σ − 1)

(
γ

σ+γ

) N∑
j=1

(
ϕ∗ii
ϕ∗ij

)θ
wifij .

(A.24)
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A.5 Masses of Firms

As seen in equation (17), the labor-market-clearing condition can be expressed as:

Li = M e
i f

e +

N∑
j=1

Mij

∫ ∞
ϕ∗ij

[
fij +

qij(ϕ)
1+γ
γ

ϕ

]
µij(ϕ)dϕ, (A.25)

where M e
i is the mass of firms attempting to enter the industry in country i and Mij is the mass of

firms based in i that serve market j and

µij (ϕ) =


g(ϕ)

1−G(ϕ∗ij)
= θ(ϕ∗ij)

θϕ−θ−1, if ϕ ≥ ϕ∗ij ,

0 otherwise
(A.26)

is the equilibrium distribution of firm productivity.
Multiplying both sides of equation (A.25) by wi, yields:

wiLi = wiM
e
i f

e + wi

N∑
j=1

Mijfij + wi

N∑
j=1

Mij

∫ ∞
ϕ∗ij

qij(ϕ)
1+γ
γ

ϕ
µij(ϕ)dϕ. (A.27)

From the optimal revenue defined in equation (A.4), we can show that:

wiqij(ϕ)
1+γ
γ

ϕ
=

(
γ

1 + γ

)(
σ − 1

σ

)
rij(ϕ).

Using this result in our previous equation yields:

wiLi = wiM
e
i f

e + wi

N∑
j=1

Mijfij +

(
γ

1 + γ

)(
σ − 1

σ

) N∑
j=1

Mij

∫ ∞
ϕ∗ij

rij(ϕ)µij(ϕ)dϕ. (A.28)

As in Feenstra (2010a) and Redding (2011), zero expected profits imply that aggregate revenue is
equal to expenditure such that:

wiLi =
N∑
j=1

Mij

∫ ∞
ϕ∗ij

rij(ϕ)µij(ϕ)dϕ. (A.29)

Substituting with this result for the last term on the right-hand-side of equation (A.28) yields:

wiLi = wiM
e
i f

e + wi

N∑
j=1

Mijfij +

(
γ

1 + γ

)(
σ − 1

σ

)
wiLi

⇔
[
1−

(
γ

1 + γ

)(
σ − 1

σ

)]
Li = M e

i f
e +

N∑
j=1

Mijfij . (A.30)
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Substituting the left-hand-side of equation (A.30) for the first two terms on the right-hand-side of
equation (A.27) and dividing out the wi yields:

Li =

[
1−

(
γ

1 + γ

)(
σ − 1

σ

)]
Li +

N∑
j=1

Mij

∫ ∞
ϕ∗ij

qij(ϕ)
1+γ
γ

ϕ
µij(ϕ)dϕ

⇔
(

γ

1 + γ

)(
σ − 1

σ

)
Li =

N∑
j=1

Mij

∫ ∞
ϕ∗ij

qij(ϕ)
1+γ
γ

ϕ
µij(ϕ)dϕ (A.31)

We can now solve for
∑N

j=1Mijfij . From equation (A.13), we can express the output for any
firm as a function of the output of the cutoff firm as follows:

qij(ϕ) =

(
ϕ

ϕ∗ij

) σγ
σ+γ

qij(ϕ
∗
ij). (A.32)

Using this result, we can solve the integral on the right-hand-side of equation (A.31):

∫ ∞
ϕ∗ij

q(ϕ)
1+γ
γ

ϕ
µij(ϕ)dϕ =

∫ ∞
ϕ∗ij

[
q(ϕ∗ij)

(
ϕ
ϕ∗ij

) σγ
σ+γ

]
ϕ

1+γ
γ

µij(ϕ)dϕ

=

∫ ∞
ϕ∗ij

q(ϕ∗ij)
1+γ
γ

(
ϕ
ϕ∗ij

)σ( 1+γ
σ+γ

)

ϕ

[
θϕ−θ−1

(ϕ∗ij)
−θ

]
dϕ

= q(ϕ∗ij)
1+γ
γ

(
1

ϕ∗ij

)σ 1+γ
σ+γ
−θ

θ

∫ ∞
ϕ∗ij

ϕ
γ

σ+γ
(σ−1)−(θ+1)

dϕ

= q(ϕ∗ij)
1+γ
γ

(
1

ϕ∗ij

)σ 1+γ
σ+γ
−θ [

θ

θ − γ
σ+γ (σ − 1)

][(
1

∞

)θ− γ
σ+γ

(σ−1)

− (ϕ∗ij)
γ

σ+γ
(σ−1)

]

=

[
θ

θ − γ
σ+γ (σ − 1)

]
q(ϕ∗ij)

1+γ
γ (ϕ∗ij)

γ
σ+γ

(σ−1)−σ 1+γ
σ+γ

=

 θ

θ − (σ − 1)
(

γ
σ+γ

)
 q(ϕ∗ij) 1+γ

γ

ϕ∗ij
. (A.33)

Importantly, note that, for a finite integral, we require only that θ > γ
σ+γ (σ − 1) and not θ > σ − 1,

as in the standard constant marginal cost Melitz models.
Rearranging equation (A.9), we can show that:

qij(ϕ
∗
ij)

1+γ
γ

ϕ∗ij
=

(
γ

σ + γ

)
(σ − 1)fij .
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Using this result in the equation above yields:

∫ ∞
ϕ∗ij

qij(ϕ)

ϕ

1+γ
γ

µij(ϕ)dϕ =

θ
(

γ
σ+γ

)
(σ − 1)

θ − γ
σ+γ (σ − 1)

 fij , (A.34)

which implies that:

N∑
j=1

Mij

∫ ∞
ϕ∗ij

qij(ϕ)

ϕ

1+γ
γ

µij(ϕ)dϕ =

θ
(

γ
σ+γ

)
(σ − 1)

θ − γ
σ+γ (σ − 1)

 N∑
j=1

Mijfij . (A.35)

Substituting with this last result into equation (A.31) yields:

(
γ

1 + γ

)(
σ − 1

σ

)
Li =

θ
(

γ
σ+γ

)
(σ − 1)

θ − γ
σ+γ (σ − 1)

 N∑
j=1

Mijfij

⇒
N∑
j=1

Mijfij =

(
γ

1 + γ

)(
σ − 1

σ

) θ − γ
σ+γ (σ − 1)

θ
(

γ
σ+γ

)
(σ − 1)

Li. (A.36)

Substituting this result into equation (A.35) yields:

N∑
j=1

Mij

∫ ∞
ϕ∗ij

qij(ϕ)

ϕ

1+γ
γ

µij(ϕ)dϕ =

(
γ

1 + γ

)(
σ − 1

σ

)
Li. (A.37)

We can now solve for M e
i . Substituting equations (A.36) and (A.37) into equation (A.27), after

eliminating out the wi, yields:

Li = M e
i f

e +

N∑
j=1

Mijfij +

N∑
j=1

Mij

∫ ∞
ϕ∗ij

qij(ϕ)
1+γ
γ

ϕ
µij(ϕ)dϕ

= M e
i f

e +

(
γ

1 + γ

)(
σ − 1

σ

) θ − γ
σ+γ (σ − 1)

θ
(

γ
σ+γ

)
(σ − 1)

Li +

(
γ

1 + γ

)(
σ − 1

σ

)
Li

= M e
i f

e +

(
γ

1 + γ

)(
σ − 1

σ

)1 +
θ − γ

σ+γ (σ − 1)

θ
(

γ
σ+γ

)
(σ − 1)

Li
= M e

i f
e +

(
γ

1 + γ

)(
σ − 1

σ

)θ
(

γ
σ+γ

)
(σ − 1) + θ − γ

σ+γ (σ − 1)

θ
(

γ
σ+γ

)
(σ − 1)

Li
= M e

i f
e +

(θ − 1)
(

γ
σ+γ

)
(σ − 1) + θ

θσ
(

1+γ
σ+γ

)
Li
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which implies that:

M e
i =

1−
(θ − 1)

(
γ

σ+γ

)
(σ − 1) + θ

θσ
(

1+γ
σ+γ

)
 Li
fe

=

θσ
(

1+γ
σ+γ

)
− (θ − 1)

(
γ

σ+γ

)
(σ − 1)− θ

θσ
(

1+γ
σ+γ

)
 Li
fe

=

(
1

θσ

)(
σ + γ

1 + γ

)(
θσ + θσγ − θσγ + θγ + γσ − γ − θγ − θσ

σ + γ

)
Li
fe

=

(
γ

1 + γ

)(
σ − 1

σ

)
Li
θfe

. (A.38)

We now solve for Mii. As standard, we assume a fraction δ of existing firms Mii exit the industry.
In a steady state equilibrium, the mass of new entrant (M e

i ) must replace firms hit by the exogenous
shock and forced to exit the industry. Hence, in a steady state:

[1−G(ϕ∗ii)]M
e
i = δMii (A.39)

where [1−G(ϕ∗ii)] = (ϕ∗ii)
−θ is the probability of successful entry. It follows that:

Mii =
[1−G(ϕ∗ii)]M

e
i

δ
=

M e
i

δ(ϕ∗ii)
θ

=

(
γ

1 + γ

)(
σ − 1

σ

)
Li

θδfe(ϕ∗ii)
θ

(A.40)

Finally, we can solve for the mass of exporting firms Mij . A successful entrant in country-i will
export to country j if it is is productive enough to be profitable in the foreign country. This implies
that:

Mij =

[
1−G(ϕ∗ij)

1−G(ϕ∗ii)

]
Mii =

(
γ

1 + γ

)(
σ − 1

σ

)
Li

θδfe(ϕ∗ij)
θ
. (A.41)

A.6 Price Index

In this section, we solve for the price index. Substituting equation (A.2) into optimal pricing rule
(A.5) we obtain:

pcij(ϕ) =

(
1 + γ

γ

)(
σ

σ − 1

)
wiτij
ϕ

qij(ϕ)
1
γ

=

(
1 + γ

γ

)(
σ

σ − 1

)
wiτij
ϕ

[
EjP

σ−1
j pcij(ϕ)−σ

] 1
γ

=

[(
1 + γ

γ

)(
σ

σ − 1

)
wiτij
ϕ

] γ
σ+γ

E
1

σ+γ

j P
σ−1
σ+γ

j (A.42)
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Substituting this result into price index equation (3), we obtain:

P 1−σ
j =

∫
ν∈Ωj

pcj(ν)1−σdν =
∑
i

Mij

∫ ∞
ϕ∗ij

pcij(ϕ)1−σµij(ϕ)dϕ

=
∑
i

Mij

∫ ∞
ϕ∗ij

{[(
1 + γ

γ

)(
σ

σ − 1

)
wiτij
ϕ

] γ
σ+γ

E
1

σ+γ

j P
σ−1
σ+γ

j

}1−σ

µij(ϕ)dϕ

=
∑
i

Mij

{[(
1 + γ

γ

)(
σ

σ − 1

)
wiτij

] γ
σ+γ

E
1

σ+γ

j P
σ−1
σ+γ

j

}1−σ ∫ ∞
ϕ∗ij

ϕ
(σ−1)

(
γ

σ+γ

)
µij(ϕ)dϕ

=
∑
i

Mij


[(

1 + γ

γ

)(
σ

σ − 1

)
wiτij
ϕ∗ij

] γ
σ+γ

E
1

σ+γ

j P
σ−1
σ+γ

j


1−σ  θ

θ − (σ − 1)
(

γ
σ+γ

)
 (A.43)

=

 θ

θ − (σ − 1)
(

γ
σ+γ

)
∑

i

Mij [p
c
ij(ϕ

∗
ij)]

1−σ =

 θ

θ − (σ − 1)
(

γ
σ+γ

)
∑

i

Mijτ
1−σ
ij [pij(ϕ

∗
ij)]

1−σ.

We can use the definition of the productivity cutoff in equation (A.12) and the mass of firms in
equation (A.41) to obtain an expression also for the price index Pj as a function of the endogenous
wages and parameters of the model, but we omit this for brevity.

A.7 Trade Flows

Using the pricing rule (A.3), the result in equation (A.34), and equation (A.41) for the mass of
firms, we can express trade flows as:

Xij ≡Mij

∫ ∞
ϕ∗ij

rij(ϕ)µij(ϕ)dϕ = Mij

∫ ∞
ϕ∗ij

pij(ϕ)qij(ϕ)µij(ϕ)dϕ

= Mij

∫ ∞
ϕ∗ij

(
1 + γ

γ

)(
σ

σ − 1

)
wi
ϕ
qij(ϕ)

1+γ
γ µij(ϕ)dϕ

= Mij

(
1 + γ

γ

)(
σ

σ − 1

)
wi

∫ ∞
ϕ∗ij

qij(ϕ)

ϕ

1+γ
γ

µij(ϕ)dϕ

= Mij

(
1 + γ

γ

)(
σ

σ − 1

)θ
(

γ
σ+γ

)
(σ − 1)

θ − γ
σ+γ (σ − 1)

wifij
=

(
γ

1 + γ

)(
σ − 1

σ

)
Li

θδfe(ϕ∗ij)
θ︸ ︷︷ ︸

Extensive Margin

(
1 + γ

γ

)(
σ

σ − 1

)θ
(

γ
σ+γ

)
(σ − 1)

θ − γ
σ+γ (σ − 1)

wifij︸ ︷︷ ︸
Intensive Plus Compositional Margins

=

 (σ − 1)
(

γ
σ+γ

)
θ − (σ − 1)

(
γ

σ+γ

)
 wiLifij
δfe(ϕ∗ij)

θ
. (A.44)
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By definition, aggregate expenditure in country j is given by:

Ej =
∑
k

Xkj =

 (σ − 1)
(

γ
σ+γ

)
θ − (σ − 1)

(
γ

σ+γ

)
 1

δfe

∑
k

wkLkfkj(ϕ
∗
kj)
−θ.

Therefore, the share of country j’s expenditure on goods supplied by country i is given by:

λij ≡
Xij

Ej
=

wiLifij(ϕ
∗
ij)
−θ∑N

k=1wkLkfkj(ϕ
∗
kj)
−θ
. (A.45)

Adapting equation (A.12), we know:

ϕ∗kj =


(

1+γ
γ

σ
σ−1wk

)σ
EjP

σ−1
j


1

γ
1+γ (σ−1) [

γ

σ + γ
(σ − 1)fkj

] 1
γ

σ+γ (σ−1)

τ
1+γ
γ

kj

Substituting this equation and equation (A.12) into equation (A.45), we obtain bilateral trade from
i to j as a share of j’s expenditures (λij):

λij =

wiLifij

w(
1+γ
γ

)
( σ
σ−1)

i τ
1+γ
γ

ij f

(
1

γ
σ+γ (σ−1)

)
ij

−θ

∑N
k=1wkLkfkj

w(
1+γ
γ

)
( σ
σ−1)

k τ
1+γ
γ

kj f

(
1

γ
σ+γ (σ−1)

)
kj

−θ

=
Liw

1−θ
(

1+γ
γ

)
( σ
σ−1)

i τ
−θ

(
1+γ
γ

)
ij f

1− θ
γ

σ+γ (σ−1)

ij∑N
k=1 Lkw

1−θ
(

1+γ
γ

)
( σ
σ−1)

k τ
−θ

(
1+γ
γ

)
kj f

1− θ
γ

σ+γ (σ−1)

kj

. (A.46)

A.8 Wage Rates

The equilibrium wage rate (wi) in each country can be determined from the requirement that total
revenue equals total expenditure on goods produced there:

wiLi =

N∑
j=1

λijwjLj .

Substituting in equation (A.46) yields the following system of N equations (one for each of N
countries):

wiLi =

N∑
j=1

 Liw
1−θ

(
1+γ
γ

)
( σ
σ−1)

i τ
−θ

(
1+γ
γ

)
ij f

1− θ
γ

σ+γ (σ−1)

ij∑N
k=1 Lkw

1−θ
(

1+γ
γ

)
( σ
σ−1)

k τ
−θ

(
1+γ
γ

)
kj f

1− θ
γ

σ+γ (σ−1)

kj

wjLj (A.47)

Equation (A.47) implies a system of N equations in the N unknown wage rates in each country, wi.
Note that this equation takes the same form as equation (3.14) on p. 1734 of Alvarez and Lucas
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(2007). Using equation (A.47), we can define the following excess demand system:

Ξ(w) =
1

wi

 N∑
j=1

Liw
1−θ

(
1+γ
γ

)
( σ
σ−1)

i τ
−θ

(
1+γ
γ

)
ij f

1− θ
γ

σ+γ (σ−1)

ij∑N
k=1 Lkw

1−θ
(

1+γ
γ

)
( σ
σ−1)

k τ
−θ

(
1+γ
γ

)
kj f

1− θ
γ

σ+γ (σ−1)

kj

− wiLi

 (A.48)

where w denotes the vector of wage rates across countries.

Proposition 1. There exists a unique wage-rate vector w ∈ RN++ such that Ξ(w) = 0.

Proof. Note that Ξ(w) has the following properties:

1. Ξ(w) is continuous (by assumption on the parameters).

2. Ξ(w) is homogenous of degree zero.

3. w · Ξ(w) = 0 for all w ∈ RN++ (Walras Law).

4. There exists a constant s > 0 such that Ξi(w) > −s for each country i and all w ∈ RN++.

5. If wm → w0 where w0 6= 0 and w0
i = 0 for some country i, then maxj{Ξj(w)} → ∞.

6. Ξ(w) satisfies the gross substitutes property

∂Ξi(w)

∂wj
> 0, i 6= j, and

∂Ξi(w)

∂wi
< 0, ∀w ∈ RN++.

Under these conditions, Propositions 17.C.1 and 17.F.3 of Mas-Colell, Whinston, and Green (1995)
or Theorems 1-3 of Alvarez and Lucas (2007) hold, such that there exists a unique vector of wage
rates w ∈ RN++ that satisfies the clearing conditions Ξ(w) = 0.

A.9 Elasticities

In this section, we compute the elasticities of trade with respect to trade costs. First, we determine
the elasticity of trade with respect to ad valorem variable trade costs. By definition, aggregate
bilateral trade flows are given by:

Xij ≡Mij

∫ ∞
ϕ∗ij

rij(ϕ)µij(ϕ)dϕ = Mij [1−Gij(ϕ∗ij)]−1

∫ ∞
ϕ∗ij

rij(ϕ)g(ϕ)dϕ. (A.49)

It follows that:

∂Xij

∂τij
=
∂Mij

∂τij

Xij

Mij
+Mij [1−Gij(ϕ∗ij)]−2

∂Gij(ϕ
∗
ij)

∂ϕ

∂ϕ∗ij
∂τij

[1−Gij(ϕ∗ij)]
Xij

Mij

−Mij [1−Gij(ϕ∗ij)]−1rij(ϕ
∗
ij)g(ϕ∗ij)

∂ϕ∗ij
∂τij

+Mij [1−Gij(ϕ∗ij)]−1

∫ ∞
ϕ∗ij

∂rij(ϕ)

∂τij
g(ϕ)dϕ (A.50)
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ετ ≡ −
∂Xij

∂τij

τij
Xij

=
∂Mij

∂τij

Xij

Mij

τij
Xij

+Mij [1−Gij(ϕ∗ij)]−2
∂Gij(ϕ

∗
ij)

∂ϕ

∂ϕ∗ij
∂τij

[1−Gij(ϕ∗ij)]
Xij

Mij

τij
Xij

−Mij
τij
Xij

[1−Gij(ϕ∗ij)]−1rij(ϕ
∗
ij)g(ϕ∗ij)

∂ϕ∗ij
∂τij

+Mij
τij
Xij

[1−Gij(ϕ∗ij)]−1

∫ ∞
ϕ∗ij

∂rij(ϕ)

∂τij
g(ϕ)dϕ

= −

{
∂Mij

∂τij

τij
Mij︸ ︷︷ ︸

extensive

+
g(ϕ∗ij)ϕ

∗
ij

1−G(ϕ∗ij)

[
1−

rij(ϕ
∗
ij)

Xij/Mij

]
∂ϕ∗ij
∂τij

τij
ϕ∗ij︸ ︷︷ ︸

compositional

+

∫ ∞
ϕ∗ij

∂rij(ϕ)

∂τij

τij
Xij/Mij

µij(ϕ)dϕ︸ ︷︷ ︸
intensive

}
. (A.51)

We now calculate each component of equation (A.51) separately. From equation (9), we have:

∂ϕ∗ij
∂τij

=

(
1 + γ

γ

)
ϕ∗ij
τij

⇒
∂ϕ∗ij
∂τij

τij
ϕ∗ij

=
1 + γ

γ
.

From equation (A.41), we have:

∂Mij

∂τij
= −θ

(
Mij

ϕ∗ij

)
∂ϕ∗ij
∂τij

= −θ

(
Mij

ϕ∗ij

)(
1 + γ

γ

)
ϕ∗ij
τij

= −θ
(

1 + γ

γ

)
Mij

τij
.

This last result implies that:
∂Mij

∂τij

τij
Mij

= −θ
(

1 + γ

γ

)
.

Under the Pareto distribution assumption, it follows that:

g(ϕ∗ij)ϕ
∗
ij

1−G(ϕ∗ij)
=
θ(ϕ∗ij)

−θ−1ϕ∗ij
(ϕ∗ij)

−θ = θ.

Next, using our definition of the equilibrium mass of firms, Mij , and cutoff-firm revenue, rij(ϕ
∗
ij),

given, respectively, in equations (A.41) and (A.15) we can show that:

1−
rij(ϕ

∗
ij)

Xij/Mij
= 1− 1

θ

[
θ −

(
γ

σ + γ

)
(σ − 1)

]
=

1

θ

(
γ

σ + γ

)
(σ − 1).

Finally, from equation (A.16), we get:

∂rij(ϕ
∗
ij)

∂τij
= −(σ − 1)

(
1 + γ

σ + γ

)
rij(ϕ

∗
ij)

τij
.
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It follows that:∫ ∞
ϕ∗ij

∂rij(ϕ)

∂τij

τij
Xij/Mij

µij(ϕ)dϕ = −
∫ ∞
ϕ∗ij

(σ − 1)

(
1 + γ

σ + γ

)
rij(ϕ

∗
ij)

τij

τij
Xij/Mij

µij(ϕ)dϕ

= −(σ − 1)

(
1 + γ

σ + γ

)(
1

Xij

)
Mij

∫ ∞
ϕ∗ij

rij(ϕ
∗
ij)µij(ϕ)dϕ

= −(σ − 1)

(
1 + γ

σ + γ

)
Xij

Xij
= −(σ − 1)

(
1 + γ

σ + γ

)
. (A.52)

Replacing with these results into equation (A.51), we get:

ετ = −

−θ
(

1 + γ

γ

)
︸ ︷︷ ︸

extensive

+

average exports per firm︷ ︸︸ ︷
(1− σ)

(
1 + γ

σ + γ

)
︸ ︷︷ ︸

intensive

+ (σ − 1)

(
1 + γ

σ + γ

)
︸ ︷︷ ︸

compositional


= θ

(
1 + γ

γ

)
= θ

(
1 +

1

γ

)
, (A.53)

which is the result in the paper.
The computations for the fixed-trade-cost elasticity are similar. From equation (A.49), we get:

∂Xij

∂fij
=
∂Mij

∂fij

Xij

Mij
+Mij [1−Gij(ϕ∗ij)]−2

∂Gij(ϕ
∗
ij)

∂ϕ

∂ϕ∗ij
∂fij

[1−Gij(ϕ∗ij)]
Xij

Mij

−Mij [1−Gij(ϕ∗ij)]−1rij(ϕ
∗
ij)g(ϕ∗ij)

∂ϕ∗ij
∂fij

+Mij [1−Gij(ϕ∗ij)]−1

∫ ∞
ϕ∗ij

∂rij(ϕ)

∂fij
g(ϕ)dϕ, (A.54)

such that

εf ≡ −
∂Xij

∂fij

fij
Xij

= −

{
∂Mij

∂fij

fij
Mij︸ ︷︷ ︸

extensive

+
g(ϕ∗ij)ϕ

∗
ij

1−G(ϕ∗ij)

[
1−

rij(ϕ
∗
ij)

Xij/Mij

]
∂ϕ∗ij
∂fij

fij
ϕ∗ij︸ ︷︷ ︸

compositional

+
fij

Xij/Mij

∫ ∞
ϕ∗ij

∂rij(ϕ)

∂fij
µij(ϕ)dϕ︸ ︷︷ ︸

intensive

}
. (A.55)

We now calculate each component of equation (A.55) separately. From equation (9), we have:

∂ϕ∗ij
∂fij

fij
ϕ∗ij

=

(
σ + γ

γ

)(
1

σ − 1

)
.

From equation (A.41), we have:

∂Mij

∂fij
= −θ

(
Mij

ϕ∗ij

)
∂ϕ∗ij
∂fij

= −θ
(
σ + γ

γ

)(
1

σ − 1

)(
Mij

ϕ∗ij

)
ϕ∗ij
fij

= −θ
(
σ + γ

γ

)(
1

σ − 1

)
Mij

fij
.
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This last result implies that:

∂Mij

∂fij

fij
Mij

= −θ
(
σ + γ

γ

)(
1

σ − 1

)
.

Next, using those results and the definition of the equilibrium mass of firms, Mij , and cutoff-
firm revenue, rij(ϕ

∗
ij), given, respectively, in equations (A.41) and (A.15) we can show that the

compositional margin is equal to 1 as follows:

g(ϕ∗ij)ϕ
∗
ij

1−G(ϕ∗ij)

[
1−

rij(ϕ
∗
ij)

Xij/Mij

]
∂ϕ∗ij
∂fij

fij
ϕ∗ij

= θ

[
1− 1 +

1

θ

(
γ

σ + γ

)
(σ − 1)

](
σ + γ

γ

)(
1

σ − 1

)
= 1.

Finally, from equation (A.16), we can show that:

∂rij(ϕ
∗
ij)

∂fij
= 0.

It follows that the intensive margin component is equal to 0 as well. Replacing with these results
into equation (A.51), we get:

εf = −

− θ
γ

σ+γ (σ − 1)︸ ︷︷ ︸
extensive

+

average exports per firm︷ ︸︸ ︷
0︸︷︷︸

intensive

+ 1︸︷︷︸
compositional


=

θ
γ

σ+γ (σ − 1)
− 1, (A.56)

which is the result in the paper.

A.10 Structural gravity

In this section, we show how to derive the structural gravity equation from our theoretical model.
Substituting with the definition of the productivity threshold in equation (A.12) in the definition of
bilateral trade flows in equation (A.44), yields

Xij = CLi

(
EjP

σ−1
j

)( 1+γ
γ

)
( σ
σ−1)

w
1−θ

(
1+γ
γ

)
( σ
σ−1)

i τ
−θ

(
1+γ
γ

)
ij f

1− θ
γ

σ+γ (σ−1)

ij . (A.57)

By definition of revenue, it follows that:

Ri =

N∑
j=1

Xij = CLiw
1−θ

(
1+γ
γ

)
( σ
σ−1)

i Π̃
−θ

(
1+γ
γ

)
i . (A.58)

where

Π̃
−θ

(
1+γ
γ

)
i =

N∑
j=1

(
EjP

σ−1
j

)( 1+γ
γ

)
τ
−θ

(
1+γ
γ

)
ij f

1− θ
γ

σ+γ (σ−1)

ij . (A.59)
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Rearranging this last result to solve for RiΠ̃
θ
(

1+γ
γ

)
i and substituting into (A.57), we get:

Xij = RiΠ̃
θ
(

1+γ
γ

)
i

(
EjP

σ−1
j

)( 1+γ
γ

)
( σ
σ−1)

φij (A.60)

where

φij = τ
−θ

(
1+γ
γ

)
ij f

1− θ
γ

σ+γ (σ−1)

ij (A.61)

denotes the trade barriers component of bilateral trade flows. We can define Φ̃j such that:

EjΦ̃
θ
(

1+γ
γ

)
j =

(
EjP

σ−1
j

)( 1+γ
γ

)
. (A.62)

Substituting with this last result into (A.60) yields:

Xij =
Ri

Π̃−ετi

Ej

P−ετj

φij . (A.63)

Using the definition of Φ̃j , we can rewrite the multilateral resistance term Π̃i as follows:

Π̃−ετi =
N∑
j=1

Ejφij

Φ̃−ετj

. (A.64)

Finally, by definition of expenditure and equation (A.59) it follows that:

Ej =
N∑
i=1

Xij = Li

(
EjP

σ−1
j

)( 1+γ
γ

)
N∑
i=1

RiΠ̃
−ετ
i φij . (A.65)

This result implies that:

Φ̃−ετj =
N∑
i=1

Rjφij

Π̃−ετi

. (A.66)

If we relabel, Π̃−ετi = Πi and Φ̃−ετj = Φj , then the system of equations (A.63)-(A.66) forms a
structural gravity equation equivalent to the one presented in the main text.

A.11 Welfare

In the model, welfare is equal to purchasing power. Letting the consumption aggregate Cj ≡ Uj ,
then by definition of the price index it follows that:

PjCj = wj ⇔ Wj =
wj
Pj
, (A.67)

where P is the ideal price index. To compute welfare, we need to define each term of the purchasing.
We begin with the price index.

From the zero-profit condition πij(ϕ
∗
ij) = 0 and the definition of profits in equation (A.6), we

have: (
σ + γ

1 + γ

)
rij(ϕ

∗
ij)

σ
= wifij .
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Substituting demand function (A.2) into the equation above yields:(
σ + γ

1 + γ

)
EjP

σ−1
j pij(ϕ

∗
ij)

1−σ

σ
= wifij ⇒ pij(ϕ

∗
ij)

1−σ =

(
1 + γ

σ + γ

)
σwifij

EjP
σ−1
j

. (A.68)

Substituting this result into equation (A.43) we obtain:

P 1−σ
j =

 θ

θ − (σ − 1)
(

γ
σ+γ

)
( 1 + γ

σ + γ

)
σ

EjP
σ−1
j

∑
i

Mijwifij

⇔ 1 =

 θ

θ − (σ − 1)
(

γ
σ+γ

)
( 1 + γ

σ + γ

)
σ

Ej

∑
i

Mijwifij . (A.69)

Replacing in equation (A.59) with the cutoff productivity term defined in equation (A.12) and the
mass of firms defined in equation (A.41), we obtain:

P
θ
(

1
1+γ

)
j =

 1

θ − (σ − 1)
(

γ
σ+γ

)
( γ

σ + γ

)(
σ − 1

δfe

)
A−θE

θ
(

1+γ
γ

)
( 1
σ−1)−1

j

×
N∑
i=1

Liw
1−θ

(
1+γ
γ

)
( σ
σ−1)

i τ
−θ

(
1+γ
γ

)
ij f

1−θ
(

1
γ

σ+γ (σ−1)

)
ij , (A.70)

where A is a constant that depends only on parameters σ and γ. Having defined the first component
of welfare, we turn to the second component: wage rates. From equation (A.46), we have:

λjj =
Ljw

1−θ
(

1+γ
γ

)
( σ
σ−1)

j f
1− θ

γ
σ+γ (σ−1)

jj∑N
k=1 Lkw

1−θ
(

1+γ
γ

)
( σ
σ−1)

k τ
−θ

(
1+γ
γ

)
kj f

1− θ
γ

σ+γ (σ−1)

kj

⇔ w
θ
(

1
1+γ

)
j =

(
1

λjj

)
Ljw

1−θ
(

1+γ
γ

)
( 1
σ−1)

j f
1− θ

γ
σ+γ (σ−1)

jj∑N
k=1 Lkw

1−θ
(

1+γ
γ

)
( σ
σ−1)

k τ
−θ

(
1+γ
γ

)
kj f

1− θ
γ

σ+γ (σ−1)

kj

, (A.71)

where τjj = 1. Substituting with our results in equations (A.70) and (A.71) into our definition of
welfare in equation (A.67), and simplifying, yields:

Wj =


 1

θ − (σ − 1)
(

γ
σ+γ

)
( γ

σ + γ

)(
σ − 1

δfe

)
A−θ


1
θ

(
γ

1+γ

)
L

1
σ−1

j f

(
1

1+γ

)
( γθ−

σ+γ
σ−1 )

jj λ
− 1
θ

(
γ

1+γ

)
jj

= BL
1

σ−1

j f

(
1

1+γ

)
( γθ−

σ+γ
σ−1 )

jj λ
− 1
θ

(
γ

1+γ

)
jj
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where B is a constant that depends only on parameters σ, γ, θ, δ, and fe. Hence, for any foreign
shock (i.e., holding constant Lj and fjj), then:

Ŵj = λ̂
− 1

θ( 1+γ
γ )

jj (A.72)

where the hat denotes the gross change, i.e., W ′j/Wj and λ′jj/λjj .
Feenstra (2010a,b) insightfully show that one can interpret the gains from trade in a Melitz

model as a gain due to increase in “export variety” or “average productivity.” Importantly, the gain
reflects the increase in real wage rates due to the productivity improvement as new exporting firms
drive out less productive domestic firms, raising average productivity.32

To make this point, Feenstra (2010a,b) derive a transformation curve between masses of varieties
for sale to different markets, Mij , and show that trade increases real income by allowing the economy
to reach more productive output combinations. As shown in section A.12 of Online Appendix A, we
can solve for the concave transformation frontier between the (output-adjusted) masses of varieties,
M̃ij , as follows:

Li = k1(fe)
1

1+η

∑
j

f
η−θ
η

ij M̃
1+η
η

ij


η

1+η

, (A.73)

where k1 > 0 is a constant that depends only on parameters of the model. The economically
important difference between our result under IMC and that in Feenstra (2010a,b) under CMC is

that the constant-elasticity-of-transformation (CET) in our model is η = θ
(

σ
σ−1

)(
1+γ
γ

)
− 1 > 0,

whereas Feenstra’s CET is ω = θ
(

σ
σ−1

)
− 1 > 0. All else equal, η ≥ ω because (1 + γ)/γ ≥ 1, with

strict inequality when γ <∞. Thus, with IMC, the CET curve will be flatter than under CMC as
long as γ <∞. In fact, we can show:

η = ω + (ω + 1)/γ,

which reveals the degree to which the CET under IMC is larger. As γ declines from ∞, η increases
relative to ω. As γ approaches ∞, η = ω, as in Feenstra (2010a,b).

In section A.12 of Online Appendix A, we show that aggregate income in our model is a linear
function of the (output-adjusted) masses of varieties:

Ri =

N∑
j=1

AijM̃ij , (A.74)

where the Aijs are demand-shift parameters that depend only on parameters of the model. As
explained in Feenstra (2010a,b), the welfare maximizing combination of (output-adjusted) masses of
varieties can be obtained by maximizing income in equation (A.74) subject to the transformation
curve in equation (A.73).

We can now evaluate the impact of trade liberalization on welfare. For simplicity, consider the
two-country case illustrated in Figure A.1 (an extended version of Figure 5 in Feenstra (2010a) or
Figure 3.3 in Feenstra (2010b)). As shown in Figure A.1, our transformation curve (the dashed
bowed-out line from point A to point B) is flatter compared to that of Feenstra (2010a,b) under

32As Feenstra (2010a,b) note, because the gains from new imported varieties exactly offset the losses from fewer
domestic varieties (under the Pareto distribution assumption), there are no further gains from trade on the consumption
side.
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CMC (the solid bowed-out line from point A to point B). Point A represents the equilibrium under
autarky for both cases. At that point, the mass of (output-adjusted) varieties for sale in the domestic
market is positive, M̃ > 0, and the mass of (output-adjusted) varieties for sale in the foreign market
is null, M̃x = 0. Autarky income is represented by the straight line closest to the origin, starting at
point A. By opening up to trade, the economy can increase its mass of (output-adjusted) varieties
for sale in the foreign market and reduce its mass of (output-adjusted) varieties for sale in the
domestic market. Under CMC, the gain in income is shown by the shift outward of the straight line
through point A to the straight line tangent to the (solid-line) transformation curve at point C.
Under IMC, the transformation curve is flatter which leads to smaller gains in income, as shown by
the shift outward of the straight line through point A to the straight line tangent to the (dashed-line)
transformation curve at point D. The difference between the income line tangent to point C and
the income line tangent to point D represents the welfare diminution effect associated with IMC.

The diminished welfare gains due to IMC can also be interpreted mathematically in the context
of Feenstra (2010a,b). In a Melitz model with constant marginal costs, the change in welfare (Ŵj)
from a reduction in variable trade costs is proportionate to the change in average productivity
( ˆ̃ϕij) and the change in the number of varieties (M̂ij), cf., Melitz (2003), equation (17). Feenstra
(2010a,b) show also that the change in welfare (Ŵj) can be simplified further to be proportionate to
the change in output of the zero-cutoff-profit firm (qij(ϕ̂

∗
ij)), cf. Feenstra (2010a), p. 20. As seen in

equation (8), under IMC the output of the cutoff productivity firm is proportional to the cutoff
productivity according to:

qij(ϕ
∗
ij) =

[(
γ

σ + γ

)
(σ − 1)fijϕ

∗
ij

] γ
1+γ

.

Because a property of the Pareto distribution is that the average productivity, ϕ̃ij , is proportionate

to cutoff productivity, ϕ∗ij , changes in welfare will be proportional to (ϕ̂∗ij)
γ

1+γ . Under CMC, there is
a linear relationship between the productivity cutoff and the output, i.e., as γ approaches ∞, γ

1+γ
approaches 1. However, when we introduce IMC, this relationship becomes concave. As a result, a
given change in ϕ∗ij has a smaller effect on output, qij(ϕ

∗
ij), under IMC than under CMC. This is

the intuition underlying the “welfare diminution effect” from increasing marginal costs.

A.12 Constant Elasticity of Transformation

In this section, we derive the constant-elasticity-of-transformation (CET) function for our model.
As a first step, we define aggregate revenue in our model. Using equation (22):

Ri =
N∑
j=1

Xij =
N∑
j=1

Mij

∫ ∞
ϕ∗ij

rij(ϕ)µij(ϕ)dϕ. (A.75)

In our model, we can solve for pij(ϕ) = qij(ϕ)−
1
σ τ

1−σ
σ

ij P
σ−1
σ

j (wjLj)
1
σ . Since rij(ϕ) = pij(ϕ)qij(ϕ)

and assuming aggregate revenue (Ri) equals aggregate income (wiLi), we can write:

Ri = wiLi =

N∑
j=1

AijMij

∫ ∞
ϕ∗ij

qij(ϕ)
σ−1
σ µij(ϕ)dϕ =

N∑
j=1

AijM̃ij (A.76)
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where, analogous to Feenstra (2010a) and Feenstra (2010b):

Aij = τ
1−σ
σ

ij Pj

(
wjLj
Pj

) 1
σ

(A.77)

and we denote M̃ij as the “output-adjusted” mass of varieties produced in country i and sold in
market j:

M̃ij = Mij

∫ ∞
ϕ∗ij

qij(ϕ)
σ−1
σ µij(ϕ)dϕ. (A.78)

In the context of our model, we showed in Section A.4 of Online Appendix A that:

ϕ̃ij =

[∫ ∞
ϕ∗ij

ϕ
γ

γ+σ
(σ−1)

µij(ϕ)dϕ

] 1
γ

γ+σ (σ−1)

(A.79)

is a measure of average productivity (ϕ̃ij). Using equation (A.13) in section A.4, we can write:

qij(ϕ) =

(
ϕ

ϕ̃ij

)σ γ
γ+σ

qij(ϕ̃ij). (A.80)

Using equation (A.80) in the middle equality in equation (A.76) yields:

wiLi =
N∑
j=1

AijMij

∫ ∞
ϕ∗ij

[(
ϕ

ϕ̃ij

)σ γ
γ+σ

qij(ϕ̃ij)

]σ−1
σ

µij(ϕ)dϕ

=

N∑
j=1

AijMij [qij(ϕ̃ij)]
σ−1
σ ϕ̃

(1−σ) γ
γ+σ

ij

∫ ∞
ϕ∗ij

ϕ
(σ−1) γ

γ+σµij(ϕ)dϕ. (A.81)

Since the integral term simplifies to ϕ̃
(σ−1) γ

γ+σ

ij , then:

wiLi =
N∑
j=1

AijMij [qij(ϕ̃ij)]
σ−1
σ =

N∑
j=1

AijM̃ij (A.82)

where
M̃ij = Mij [qij(ϕ̃ij)]

σ−1
σ .

Furthermore, using results from sections A.4 and A.5 in Online Appendix A, we find:

M̃ij = k0f
γ
γ+1

σ−1
σ

ij

(
fe

Li

)− γ
1+γ

σ−1
θσ

M
1− γ

γ+1
σ−1
θσ

ij , (A.83)

where k0 is a constant that depends only on parameters σ, γ, and θ. Inverting equation (A.83) to
solve for the mass of firms as a function of the adjusted mass:

Mij =

(
1

k0

) 1+η
η

f
− θ
η

ij

(
fe
Li

) 1
η

M̃
1+η
η

ij (A.84)
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where η = θ
(

1+γ
γ

)(
σ
σ−1

)
− 1.

We can use equation (A.36), from section A.5 above, to express country i’s labor stock as a
linear transformation function of masses Mij :

Li =

(
1 + γ

γ

)(
σ

σ − 1

)[
θ(σ − 1) γ

γ+σ

θ − (σ − 1) γ
γ+σ

]
N∑
j=1

Mijfij . (A.85)

Substituting equation (A.84) into equation (A.85) yields country i’s labor stock as a concave CET
function of the “output-adjusted” masses:

Li = k1(fe)
1

1+η

∑
j

f
η−θ
η

ij M̃
1+η
η

ij


η

1+η

(A.86)

which is similar – but not identical – to (corrected) equations (32) and (3.24) in Feenstra (2010a)
and Feenstra (2010b), respectively, and k1 is a constant that depends only parameters σ, γ, and θ.33

D

M! x

M!

B

C

A

Figure A.1: CET Frontier with Increasing Marginal Costs and Constant Marginal Costs

33The exponent for fij , 1− θ
η

, differs from, and is a corrected version of, that in Feenstra (2010a) and Feenstra (2010b).

Under CMC, the exponent in Feenstra (2010a) and Feenstra (2010b) should be 1− θ
ω

, not 1 + θ
ω

(
= 1 + (ω+1)(σ−1)

ωσ

)
,

and was confirmed with Robert Feenstra in email correspondence (December 19, 2015).
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TABLE A.1
Welfare Gains from Trade for Selected Countries, 2010

γ

Name GDPPC Export Share 3.49 5.74 10.16 ∞

Guinea 1,677 30.34 3.34 3.65 3.90 4.27
Mali 1,736 22.84 2.40 2.63 2.81 3.08
Nepal 1,807 9.58 0.94 1.03 1.10 1.21
Kyrgyzstan 2,863 51.55 6.58 7.18 7.66 8.38
Republic of Moldova 3,737 39.23 4.57 4.99 5.33 5.84
Congo 4,709 65.81 9.58 10.45 11.13 12.16
Guatemala 6,293 25.81 2.76 3.02 3.23 3.54
China 9,423 26.27 2.82 3.09 3.29 3.61
Thailand 13,109 66.49 9.75 10.64 11.33 12.37
Gabon 13,151 57.66 7.75 8.46 9.02 9.86
Brazil 13,623 10.74 1.06 1.16 1.24 1.36
Malaysia 20,192 86.93 17.39 18.88 20.05 21.79
Israel 30,538 35.02 3.97 4.34 4.63 5.07
Bahamas 31,413 34.95 3.96 4.33 4.62 5.06
Italy 35,936 25.19 2.69 2.94 3.14 3.44
Germany 40,481 42.25 5.02 5.49 5.86 6.42
Saudi Arabia 41,482 49.57 6.22 6.80 7.25 7.94
United States 49,907 12.32 1.23 1.34 1.43 1.57
Norway 57,900 39.73 4.64 5.07 5.41 5.93
Bermuda 62,290 49.69 6.25 6.82 7.28 7.96

Notes : This table presents the absolute value of the percentage change in real income associ-

ated with moving from the initial equilibrium to autarky given by 1− λ1/ετjj , where λjj is
domestic absorption, computed for selected countries for year 2010. We set θ = 8.28 and let
the inverse elasticity of marginal costs (γ) varies across columns as indicated in the table.
The last column presents the benchmark constant marginal cost case, which corresponds to
γ =∞. We note that the variable trade cost elasticity (ετ ) is independent of the elasticity
of substitution σ. We selected 20 countries that cover the range of income per capita and
geographical regions. To the extend possible, we choose the same countries as in Table 3.1
of Feenstra (2010b) to facilitate comparison. The table is organized as follows. The first
column is the country’s name. The second and third columns provide data on the countries’
per capita real GDPs in 2010 and the corresponding export shares (in percent), respectively.
Columns 4 to 7 provide the calculations of the gains from trade for four various values of γ
(3.49, 5.74, 10.16, and ∞) using θ = 8.28.
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TABLE A.2
Average Equivalent Fixed Costs Changes for Selected Countries, 2010

CMC IMC

Name GDPPC Mean tariff ετ/εf f̂ ετ/εf f̂

Guinea 1,677 1.08 21.18 5.47 5.57 1.56
Mali 1,736 1.10 37.62 32.55 6.14 1.77
Nepal 1,807 1.14 369.65 4.17e+20 6.32 2.25
Kyrgyzstan 2,863 1.01 48.42 1.79 7.11 1.09
Republic of Moldova 3,737 1.03 99.00 16.88 6.34 1.20
Congo 4,709 1.17 22.04 29.81 4.28 1.93
Guatemala 6,293 1.05 75.18 34.46 6.14 1.34
China 9,423 1.09 28.11 11.33 6.12 1.70
Thailand 13,109 1.09 30.27 12.78 5.09 1.54
Gabon 13,151 1.17 22.60 33.62 4.35 1.97
Brazil 13,623 1.11 62.80 620.23 5.71 1.79
Malaysia 20,192 1.08 61.59 142.58 5.43 1.55
Israel 30,538 1.06 73.65 60.13 6.49 1.44
Bahamas 31,413 1.28 94.90 1.18e+10 4.74 3.19
Italy 35,936 1.01 55.27 2.02 6.37 1.08
Germany 40,481 1.01 60.92 2.46 5.27 1.08
Saudi Arabia 41,482 1.10 227.70 2.98e+09 6.25 1.82
United States 49,907 1.03 63.53 8.46 4.70 1.17
Norway 57,900 1.01 48.47 1.89 5.23 1.07
Bermuda 62,290 1.18 42.42 1124.48 3.99 1.94

Notes: This table present the distribution of the average country-level ad valorem trade barriers (τ̂)

and the corresponding equivalent fixed cost changes (f̂) for selected countries for year 2010. We set
θ = 8.28 and let the inverse elasticity of marginal costs (γ) varies across rows as indicated in the table.
The last row presents the benchmark constant marginal cost case, which corresponds to γ =∞. The

equivalent fixed costs changes are obtained from f̂ij = τ̂
ετ
εf

ij . We keep the 477 industries in the sample
for which the fixed trade costs elasticities are positive. We selected 20 countries that cover the range
of income per capita and geographical regions. To the extend possible, we choose the same countries
as in Table 3.1 of Feenstra (2010b) to facilitate comparison.
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TABLE A.3
Elasticities and Welfare Measures by Model

Model
Intensive-margin Trade Fixed-trade-cost Welfare-change

elasticity elasticity (ετ ) elasticity (εf ) measure

Armington differentiation
σ − 1 σ − 1 n.a. λ̂

− 1
σ−1

jj(Anderson, 1979)
Armington differentiation and CET 1 + γ

σ + γ
(σ − 1)

1 + γ

σ + γ
(σ − 1) n.a. λ̂

− 1
1+γ
σ+γ

(σ−1)

jj(Bergstrand, 1985)
Monopolistic Competition

σ − 1 σ − 1 n.a. λ̂
− 1
σ−1

jj(Krugman, 1980)
Heterogeneity without fixed export costs n.a.

θ n.a. λ̂
− 1
θ

jj(Eaton-Kortum, 2002)
Heterogeneity with fixed export costs

σ − 1 θ
θ

σ − 1
− 1 λ̂

− 1
θ

jjand Pareto (Chaney, 2008)
Heterogeneity with fixed export costs, 1 + γ

σ + γ
(σ − 1) θ

(
1 + γ

γ

)
θ

γ
σ+γ (σ−1) − 1

λ̂
− 1

θ( 1+γ
γ )

jjPareto, and IMC (Current paper)

Notes: This table reports the (positively-defined) ad valorem variable-trade-cost intensive-margin elasticity, the ad valorem
variable-trade-cost trade elasticity, the export-fixed-cost trade elasticity, and the measure of welfare effects, under various
theoretical assumptions as indicated in the first column’s papers. The trade and intensive margin elasticities reported here for
Bergstrand (1985) assume the case in that paper of σ = µ and γ = η; see Online Appendix B for explanation. n.a. denotes
not applicable.
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B Appendix B (Not Intended for Publication)

B.1 The Bergstrand (1985) Model with Increasing Marginal Costs

As noted in numerous studies and in prominent surveys of the gravity equation in international trade,
the first formal theoretical foundation for the gravity equation was Anderson (1979). Assuming a
frictionless world, Anderson (1979) established theoretically one of the most enduring empirical
relationships in international trade – that bilateral trade from i to j (Xij) was proportional to the
product of both countries’ national outputs (YiYj) – using only four assumptions: every country i
is endowed with a nationally differentiated output (Yi), preferences are identical and homothetic
across countries, the assumed absence of trade costs allows all prices to be identical across countries,
and trade is balanced multilaterally (i.e., markets clear). The first three assumptions implied the
demand for i’s output in j was proportionate to j’s output, Xij = biYj , where bi is every importer’s
demand for the good of i as a share of its expenditures. Assuming all output of each country is
absorbed (i.e., markets clear), Xij = YiYj/YW , where YW is world output. However, once Anderson
(1979) introduced (positive) trade costs, he was unable to generate a transparent “structural” gravity
equation, such as in Anderson and van Wincoop (2003). In fact, throughout the later sections
including his appendix (using CES preferences), Anderson (1979) assumed inappropriately “the
convention that all free trade prices are unity” despite his incorporating trade costs (cf., p. 115).

In contrast to Anderson (1979), the main motivation behind Bergstrand (1985) was to address
the role of prices in the gravity equation, both theoretically and empirically. Unlike Anderson (1979),
Bergstrand (1985) started with a CES utility function to emphasize that products from various
markets were imperfect substitutes, as originally hypothesized by Armington. Moreover, he nested
a CES utility function among importables inside a CES utility function between importables and
the domestic good. On the supply side, he chose not to use the convention of constant marginal
costs. Rather, he introduced a constant-elasticity-of-transformation (CET) function for producing
output in the domestic market and foreign market, allowing a cost (in terms of labor) for output to
be transformed between home and foreign markets. He also used a CET function to allow a cost
for foreign output to be transformed between various export markets. He nested the latter CET
function inside the former CET function. This formulation motivated upward-sloping supply curves
for each bilateral market (including the domestic market). Assuming bilateral import demand values
equaled bilateral export supply values in general equilibrium, this generated a system of 4N2 + 3N
equations in the same number of unknowns.

Assuming each of bilateral market was small relative to the other N2 − 1 markets and identical
preferences and technologies across countries, Bergstrand (1985) derived the trade gravity equation:

Xij = Y
σ−1
γ+σ

i Y
γ+1
γ+σ

j (CijTij)
−σ γ+1

γ+σE
σ γ+1
γ+σ

ij

 N∑
k=1,k 6=i

p1+γ
ik

−
(σ−1)(γ−η)
(1+γ)(γ+σ)

 N∑
k=1,k 6=j

p1−σ
kj


(γ+1)(σ−µ)
(1−σ)(γ+σ)


 N∑
k=1,k 6=i

p1+γ
ik


1+η
1+γ

+ p1+η
ii


− σ−1
γ+σ


 N∑
k=1,k 6=j

p1−σ
kj


1−µ
1−σ

+ p1−µ
jj


− γ+1
γ+σ

, (B.1)

where Cij ≥ 1 is the gross transport (or c.i.f./f.o.b.) factor, Tij ≥ 1 is the gross tariff rate, Eij is the
spot exchange rate (value of j’s currency in terms of i’s), pik is the (free-on-board, or f.o.b.) price
in i’s currency of i’s goods sold in k, p̄kj is the (cost-insurance-freight, or c.i.f.) price of k’s good
in j (including tariffs), σ (µ) is the elasticity of substitution in consumption between importables
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(between importables and the domestic good), and γ (η) is the elasticity of transformation of output
between export markets (between foreign markets and the domestic market).34 The limitation
in Bergstrand (1985) was that – due to the complexity of equation (B.1) – the market-clearing
condition of Anderson (1979) could not be imposed.

In the remainder of this appendix, we provide two theoretical results. First, we show that a
special case of gravity equation (14) in Bergstrand (1985) – labeled equation (B.1) above – yields
that the intensive-margin (and trade) elasticity with respect to τij is identical to the intensive-margin
elasticity in Section 3.2 of this paper (from our modified Melitz model). Second, we show that –
allowing the non-nested (single) constant-elasticity-of-transformation in this case to equal infinity
and assuming multilateral trade balance – a “structural gravity equation” results.

B.2 Reconciling the Intensive-Margin Elasticity in Bergstrand (1985) with Sec-
tion 3.2’s Intensive-Margin Elasticity

Before we reconcile equation (B.1) with structural gravity, a special case of Bergstrand (1985)
yields an intensive-margin (and, in this homogeneous-firm context, trade) elasticity identical to
that in Section 3.2. We need only two assumptions. First, assume the elasticities of substitution
in consumption in equation (B.1) to be identical (σ = µ). Second, assume the elasticities of
transformation in equation (B.1) to be identical (γ = η). Simplifying notation in equation (B.1) by
denoting τij = CijTij/Eij , these two assumptions yield:

Xij = Y
σ−1
γ+σ

i Y
γ+1
γ+σ

j (τij)
(1−σ) γ+1

γ+σ


 N∑
j=1

p1+γ
ij

 1
1+γ


(1−σ) γ+1

γ+σ ( N∑
i=1

(pijτij)
1−σ

) 1
1−σ
−(1−σ) γ+1

γ+σ

.(B.2)

From equation (B.2), the (positively-defined) intensive-margin (and trade) elasticity with respect
to τij is:

ετ = −∂Xij

∂τij

τij
Xij

= − 1 + γ

σ + γ
(1− σ) =

1 + γ

σ + γ
(σ − 1). (B.3)

This elasticity is identical to that in Section 3.2 of the current paper. Moreover, this trade elasticity is
scaled down by 1+γ

σ+γ relative to the constant marginal cost case in Anderson (1979) (and analogously
in Krugman (1980)). The intuitive explanation for this was provided in the paper’s introduction,
Section 1, and illustrated in Figure 1.

B.3 Reconciling the Gravity Equation in Bergstrand (1985) with Structural
Gravity

The second theoretical result in this appendix is to show that a special case of gravity equation
(14) in Bergstrand (1985) is consistent with the structural gravity equation in Anderson and van
Wincoop (2003) and in Baier et al. (2017). Building upon the previous section B.2, add two more
assumptions. First, assume production is now costlessly transformable between markets (γ =∞).

34We have replaced here some notation in the original article. We use Xij for the nominal trade flow rather than
PXij and we use pij rather than Pij to denote bilateral prices.
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With this additional assumption, equation (B.2) above simplifies to:

Xij = Yj

(
piτij
Pj

)1−σ
(B.4)

where pij is replaced by pi since output is now costlessly transformed between markets and:

Pj ≡

[
N∑
i=1

(piτij)
1−σ

]1/(1−σ)

. (B.5)

Equation (B.4) is identical to equation (6) in Anderson and van Wincoop (2003) (ignoring the
arbitrary preference parameter βi in that paper) and to the bilateral import demand functions
in structural gravity equations discussed in Baier et al. (2017). Second, structural gravity follows
once one assumes also market clearance (trade balance), Yi =

∑N
j=1Xij . Following derivations in

Anderson and van Wincoop (2003) and Baier et al. (2017):

Xij =
YiYj
YW

(
τij

ΠiPj

)1−σ
(B.6)

where:

Πi =

 N∑
j=1

Yj
YW

(
τij
Pj

)1−σ
1/(1−σ)

(B.7)

and:

Pj =

[
N∑
i=1

Yj
YW

(
τij
Πi

)1−σ
]1/(1−σ)

. (B.8)

Thus, the simplifications of equation (B.1) above from Bergstrand (1985) – along with adding in
the market-clearing condition – yields the same structural gravity equation as in Anderson and van
Wincoop (2003) and Baier et al. (2017).
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C Appendix C (Not Intended for Publication)

The key distinguishing assumption of our model is that marginal costs are increasing in output.
There are many ways to implement this. In section 2.2 of the paper, we motivated the case for
marginal costs increasing with respect to destination-specific output. This is one extreme of a range
of models. At the other extreme, marginal costs could depend exclusively on the overall output
of the firm. In that case, all the destination-specific customization is captured in the fixed export
costs, as more common to Melitz models. In this appendix, we develop a model that fits this type of
increasing marginal costs, that is, marginal costs are allowed to increase with total firm output.

Because the marginal costs depend on overall output, which itself depends on the endogenous
set of countries to which the firm exports, we cannot solve analytically a model with asymmetric
country size and asymmetric bilateral trade barriers. As a consequence, in this appendix we assume
all countries are identical and develop an extension of the symmetric-country Melitz (2003) model
that features increasing marginal production costs and a Pareto distribution of firm productivity.
We present only key results because the solution method is similar to the one we used to solve the
model in the main text; we refer the reader to Online Appendix A for additional details.

Consider a world with 1 + J identical countries. The representative consumer in each country
has CES preferences defined over differentiated varieties. The representative consumer maximizes
utility subject to the standard income constraint. Hence, the optimal aggregate demand function
for each variety ν is given by:

c(ν) = EP σ−1pc(ν)−σ, with P =

[∫
ν∈Ω

pc(ν)1−σdν

] 1
1−σ

(C.1)

where E denotes aggregate expenditure, p(ν)c is the unit price of variety ν, and Ω is the set of
varieties available for consumption.

Firms face fixed production costs and increasing marginal costs, such that the total labor demand
by a firm depends on its total output (q) and whether or not the firm exports as follows:

l(ϕ) = f + IxJfx +
q

1+ 1
γ

ϕ
, (C.2)

where ϕ denotes the firm’s productivity and q is total output defined as:

q = qd + IxJqx,

where qd denotes domestic sales and qx denotes sales to a foreign market. The variable Ix is an
indicator function equal to 1 if the firm exports and 0 otherwise. It is important to note that,
because countries are symmetric, if a firm can export profitably to one market abroad, it will be
able to export profitably to all foreign markets.

Export markets are segmented, such that the firm-level profit maximization problem takes the
following form:

max
pd,px

π(ϕ) = pdqd + IxJpxqx − w
[
f + IxJfx +

1

ϕ
(qd + IxJqx)

1+ 1
γ

]
(C.3)
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subject to the demand constraints defined in (C.1). The two first order conditions imply the following
pricing rules:

pDd (ϕ) =

(
1 + γ

γ

)(
σ

σ − 1

)
w

ϕ
qDd (ϕ)

1
γ ,

pXd (ϕ) =

(
1 + γ

γ

)(
σ

σ − 1

)
w

ϕ

[(
1 + Jτ1−σ) qXd (ϕ)

] 1
γ ,

(C.4)

where pDd (ϕ) and qDd (ϕ) denote, respectively, the optimal domestic sales price and output of a
(pure) domestic firm with productivity ϕ, and pXd (ϕ) and qXd (ϕ) are the corresponding values for
an exporting firm. We note that the pricing rule for domestic firms (pDd (ϕ)) is the same as in
our main model. The results in equation (C.4) imply that, conditional on productivity and total
output, exporting firms charge the same price as domestic firms. However, as we will show below,
exporting firms are more productive and sell more output compared to domestic firms. Because the
two differences have opposing impacts on prices, exporting firms can charge lower or higher prices
compared to domestic firms.

We define the profitability threshold ϕ∗ as the productivity level at which a pure domestic firm
makes zero profits: πd(ϕ

∗) = 0. Using this condition, we can solve for the output and the price of
the threshold firm as follows:

qDd (ϕ∗) =

[(
γ

σ + γ

)
(σ − 1)fϕ∗

] γ
1+γ

,

pDd (ϕ∗) =

(
1 + γ

γ

)(
σ

σ − 1

)[(
γ

σ + γ

)
(σ − 1)f

] 1
1+γ

w(ϕ∗)
−γ
1+γ .

(C.5)

Similarly, if we define the export profitability threshold as the level of productivity required for an
exporting firm to break even, πx(ϕ∗x) = 0, we can solve for the price and the output of the threshold
exporting firm as follows:

qDx (ϕ∗x) =

(
1

1 + Jτ1−σ

)[(
γ

σ + γ

)
(σ − 1)(f + Jfx)ϕ∗x

] γ
1+γ

,

pDx (ϕ∗X) =

(
1 + γ

γ

)(
σ

σ − 1

)[(
γ

σ + γ

)
(σ − 1)(f + Jfx)

] 1
1+γ

w(ϕ∗x)
−γ
1+γ .

(C.6)

Using these results to substitute into the definition of the productivity thresholds and rearranging,
we obtain:

πd(ϕ
∗) = 0 ⇔ rDd (ϕ∗) =

(
1 + γ

σ + γ

)
σwf,

πx(ϕ∗x) = 0 ⇔ rDx (ϕ∗x) =

(
1 + γ

σ + γ

)(
σw

1 + Jτ1−σ

)
(f + Jfx) .

(C.7)
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From these last results and the definition of revenues, it is straightforward to show that:

rDd (ϕ) =

(
1 + γ

σ + γ

)
σwf

(
ϕ

ϕ∗

)(σ−1)
(

γ
σ+γ

)
,

rDx (ϕ) =

(
1 + γ

σ + γ

)(
σw

1 + Jτ1−σ

)
(f + Jfx)

(
ϕ

ϕ∗x

)(σ−1)
(

γ
σ+γ

)
.

(C.8)

Using equations (C.7), we can obtain a first definition of the ratio of domestic threshold revenue
and export threshold revenue. We can obtain a second such equation using the definition of revenue
r(ϕ) = p(ϕ)q(ϕ) and the optimal demand function (C.1) as follows:

rDd (ϕ∗)

rDx (ϕ∗x)
=

[
pDd (ϕ∗)

p(ϕ∗x)

]1−σ

. (C.9)

Combining the two expressions for the ratio of revenues and using the definitions of prices in
equations (C.5) and (C.6), we get:

ϕ∗x
ϕ∗

=

(
1

1 + Jτ1−σ

)( 1
σ−1)

(
1+γ
γ

)(
f + Jfx

f

)( 1
σ−1)

(
σ+γ
γ

)
. (C.10)

When γ →∞, the relationship between the two thresholds is analogous to that in the benchmark
Melitz (2003) model. We can use the definition of revenue in (C.8) and the ratio in (C.10) to express
average profits as a function of parameters of the model and the profitability threshold ϕ∗. Using
the free entry condition that the expected value of entry is equal to the cost of entry, we can show
that there exists a unique equilibrium threshold ϕ∗.

We are interested in defining the trade elasticities in our model. As a first step, we define
domestic absorption as follows:

XD = M

∫ ∞
ϕ∗

rD(ϕ)µ(ϕ)dϕ = M

[∫ ϕ∗x

ϕ∗
rDd (ϕ)µ(ϕ)dϕ+

∫ ∞
ϕ∗x

rDx (ϕ)µ(ϕ)dϕ

]
, (C.11)

where M is the equilibrium mass of firm in each country and µ(ϕ), defined as:

µ(ϕ) =

{
0 if ϕ < ϕ∗,
g(ϕ)

1−G(ϕ∗) if ϕ ≥ ϕ∗,
(C.12)

denotes the equilibrium distribution of firm productivities. We assume that the following theoretical
restriction on the parameters holds: θ > γ

σ+γ (σ − 1). Equation (C.11) shows that domestic absorption
depends on the mass of firms M and the average sales of firms in their domestic market. The average
sales per firms can be decomposed into the separate contribution of domestic firms and exporting
firms, the first and second term in square brackets, respectively.

To obtain an analytical solution, we assume that firms draw their productivity from a Pareto
distribution with parameter θ, such that G(ϕ) = 1− ϕ−θ. Using this assumption and the definition
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of revenue in equation (C.8), we can solve for domestic absorption as:

XD = M

 θ

θ − (σ − 1)
(

γ
σ+γ

)
( 1 + γ

σ + γ

)
σθwf (C.13)

×

1−
(
ϕ∗x
ϕ∗

) γ(σ−1)
σ+γ

−θ
+

(
1

1 + Jτ1−σ

)(
f + Jfx

f

)(
ϕ∗x
ϕ∗

)−θ .
As a second step, we define expenditure on foreign goods as:

XX = MxJ

∫ ∞
ϕ∗x

rXx (ϕ)µx(ϕ)dϕ = MJ

∫ ∞
ϕ∗x

rXx (ϕ)µ(ϕ)dϕ, (C.14)

where MX = [1−G(ϕ∗x)]M is the equilibrium mass of exporting firms in each country and µx(ϕ),
defined as:

µx(ϕ) =

{
0 if ϕ < ϕ∗x,
g(ϕ)

1−G(ϕ∗x) if ϕ ≥ ϕ∗x,
(C.15)

denotes the equilibrium distribution of exporting firms’ productivities. Substituting with the
definition of revenue in equation (C.8) and using the fact that rxx(ϕ) = τ1−σrDx (ϕ) yields:

XX = M

 θ

θ − (σ − 1)
(

γ
σ+γ

)
( 1 + γ

σ + γ

)
σθw(f + Jfx)

(
Jτ1−σ

1 + Jτ1−σ

)(
ϕ∗x
ϕ∗

)−θ
. (C.16)

We now have separate analytical expressions for expenditures on domestic and foreign goods.
We can now compute the share of expenditures on foreign goods. From equations (C.10), (C.13)

and (C.16), we obtain:

XX

E
=

XX

XD +XX
=

Jτ1−σ

1+Jτ1−σ(
1

1+Jτ1−σ

)( θ
σ−1)

(
1+γ
γ

) (
f+Jfx
f

)( θ
σ−1)

(
σ+γ
γ

)
−1
−
(

1
1+Jτ1−σ

) 1+γ
σ+γ

+ 1

. (C.17)

We can use this last result to derive the trade elasticities. Note that:

ετ ≡
∂(XX/JE)

∂τ

τ

XX/JE
=
∂(XX/E)

∂τ

τ

XX/E
, (C.18)

εfx ≡
∂(XX/JE)

∂fx

τ

XX/JE
=
∂(XX/E)

∂τ

fx
XX/E

. (C.19)

It is useful to introduce additional notation to simplify the presentation. Define the following terms:

a =

(
1

1 + Jτ1−σ

)( θ
σ−1)

(
1+γ
γ

)(
f + Jfx

f

)( θ
σ−1)

(
σ+γ
γ

)
−1

, (C.20)

b =

(
1

1 + Jτ1−σ

) 1+γ
σ+γ

, (C.21)

c =
Jτ1−σ

1 + Jτ1−σ . (C.22)
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Then, it is possible to rewrite the share of expenditures on foreign goods (C.17) as follows:

XX

E
=

c

1 + a− b
. (C.23)

After some tedious, but straightforward, algebra, we can show that:

ετ = θ

(
1 + γ

γ

)[
a

1 + a− b
−
(
σ − 1

θ

)(
γ

σ + γ

)
b

1 + a− b

]
c, (C.24)

εfx =

[(
σ + γ

γ

)(
θ

σ − 1

)
− 1

](
a

1 + a− b

)
c. (C.25)

To gain some insight into these complex equations, we consider the case of a large number of
countries. In the limit, when J tends to infinity it follows that:

lim
J→∞

b = 0, and lim
J→∞

c = 1. (C.26)

Together, these results imply that:

lim
J→∞

a

1 + a− b
= 1, and lim

J→∞

b

1 + a− b
= 0. (C.27)

Using these results in the definition of the elasticities in (C.24) and (C.25), it follows that:

ετ = θ

(
1 + γ

γ

)
, (C.28)

εf =
θ

γ
σ+γ (σ − 1)

− 1. (C.29)

These results show that – as the number of countries increases – the trade elasticities in our
symmetric model with increasing marginal costs defined over total output converge to the elasticities
in our benchmark model with asymmetric countries and destination-specific increasing marginal
costs.
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D Appendix D (Not Intended for Publication)

In this appendix, we provide details on the computation required to go from the aggregate bilateral
import-demand equation (50) and the aggregate bilateral export-supply equation (61) to the
estimating equation (67), which we use to estimate the structural parameters of the model.

We proceed in two main steps. In the first step, we remove the time-invariant and importer-
specific effects by double-differencing. Taking logs of aggregate bilateral import-demand equation
(50) yields:

lnλijt = ln k2 + θ

(
1 + γ

γ

)(
1

σ − 1

)
lnEjt +

[
σ − 1 + θ

(
1 + γ

γ

)]
ln pjt

+ βjt + lnLit − θ
(

1 + γ

γ

)(
σ

σ − 1

)
lnwit − θ

(
1 + γ

γ

)
ln τijt

− θ
(
σ + γ

γ

)(
1

σ − 1

)
ln fijt − (σ − 1) ln pcijt + φijt.

where φijt is a demand-side residual that we added to the model. In the literature beginning with
Feenstra (1994), these are generally obtained directly from the model by including (Armington)
demand parameters into the CES preferences. It would be straightforward to add them to our
theoretical model but would complicate the analytical expressions without having any impact on
our main findings. The sole purpose of the Armington parameters would be to generate residuals
terms for the empirical model.

We remove time-invariant effects by taking a first-difference over time to obtain:

∆t lnλijt ≡ lnλijt − lnλij,t−1

= ∆tβjt + ∆t lnLit − θ
(

1 + γ

γ

)(
σ

σ − 1

)
∆t lnwit − θ

(
1 + γ

γ

)
∆t ln τijt

− θ
(
σ + γ

γ

)(
1

σ − 1

)
∆t ln fijt − (σ − 1)∆t ln pcijt + ∆tφijt.

where ∆t refers to the time-differencing. Next, we remove importer-specific effects by taking a first
difference with respect to a reference country k to obtain:

∆ lnλijt ≡ ∆t ln λkjt −∆t lnλijt = (lnλijt − lnλij,t−1)− (lnλkjt − lnλkj,t−1)

= ∆ lnLit − θ
(

1 + γ

γ

)(
σ

σ − 1

)
∆ lnwit − θ

(
1 + γ

γ

)
∆ ln τijt (D.1)

− θ
(
σ + γ

γ

)(
1

σ − 1

)
∆ ln fijt − (σ − 1)∆ ln pcijt + ∆φijt,

where ∆ refers to the double-differencing. This last result is equation (62) in the main text.
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We repeat the same process for the aggregate bilateral export-supply equation (61). First, we
take logs:

ln pcijt = ln k5 +

(
1

1 + γ

)[
1 +

(
1 + γ

γ

)(
γ − θ
σ − 1

)]
lnEjt

+

(
γ − θ
γ

)
lnPjt −

(
1

1 + γ

)
lnLit +

(
1

1 + γ

)[
γ + (θ − γ)

(
1 + γ

γ

)(
σ

σ − 1

)]
lnwit

+

(
θ

γ

)
ln τijt +

[(
θ − γ
γ

)(
σ + γ

1 + γ

)(
1

σ − 1

)]
ln fijt +

(
1

1 + γ

)
lnλijt + µijt,

where µijt is a supply-side residual that we added to the model. In Feenstra (1994), these residuals
come from random productivity shocks in the supply-curve. We could also include random produc-
tivity shocks to our theoretical model and generate similar supply-side residuals. However, as was
the case for the demand-side residuals, we feel that the added complexity was not useful given the
main objectives of the paper. It is important to point out that the supply curve in Feenstra (1994)
is not obtained from technologies and firm behavior. It is simply assumed. By contrast, we develop
a general equilibrium model from which we derive the aggregate demand and supply curves.

From our last result, we take a first-difference over time to obtain:

∆t ln pcijt =

(
1

1 + γ

)[
1 +

(
1 + γ

γ

)(
γ − θ
σ − 1

)]
∆t ln Ejt +

(
γ − θ
γ

)
∆t lnPjt −

(
1

1 + γ

)
∆t lnLit

+

(
1

1 + γ

)[
γ + (θ − γ)

(
1 + γ

γ

)(
σ

σ − 1

)]
∆t lnwit +

(
θ

γ

)
∆t ln τijt

+

[(
θ − γ
γ

)(
σ + γ

1 + γ

)(
1

σ − 1

)]
∆t ln fijt +

(
1

1 + γ

)
∆t lnλijt + ∆tµijt,

and, finally, a first difference with respect to a reference country k to obtain:

∆ ln pcijt = 1

(
1

1 + γ

)
∆ lnLit +

(
1

1 + γ

)[
γ + (θ − γ)

(
1 + γ

γ

)(
σ

σ − 1

)]
∆ lnwit

+

(
1

1 + γ

)
∆ lnλijt +

[(
θ − γ
γ

)(
σ + γ

1 + γ

)(
1

σ − 1

)]
∆ ln fijt

+

(
θ

γ

)
∆ ln τijt + ∆µijt.

We can eliminate lnλijt from this last result using the definition in equation (D.1). This yields:

∆ ln pcijt = −
(

1

1 + γ

)
∆ lnLit +

(
1

1 + γ

)[
γ + (θ − γ)

(
1 + γ

γ

)(
σ

σ − 1

)]
∆ lnwit

+

(
θ

γ

)
∆ ln τijt +

[(
θ − γ
γ

)(
σ + γ

1 + γ

)(
1

σ − 1

)]
∆ ln fijt

+

(
1

1 + γ

)[
∆ lnLit − θ

(
1 + γ

γ

)(
σ

σ − 1

)
∆ lnwit − θ

(
1 + γ

γ

)
∆ ln τijt

− θ
(
σ + γ

γ

)(
1

σ − 1

)
∆ ln fijt − (σ − 1)∆ ln pcijt + ∆φijt

]
+ ∆µijt.
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Finally, after some algebra, we obtain:

∆ ln pcijt =

(
γ

σ + γ

)[
1−

(
1− γ
γ

)(
σ

σ − 1

)]
∆ lnwijt −

(
1

σ − 1

)
∆ ln fijt

+

(
1

σ + γ

)
∆φijt + ∆ψijt, (D.2)

where ∆ψijt ≡
(

1+γ
σ+γ

)
∆µijt. This is equation (63) in the main text.

In the second step, we exploit the moment condition: E (∆φijt∆ψijt) = 0. To do so, we first need
to define the doubled-differenced residuals, ∆φijt and ∆ψijt. From equation (D.1), we obtain:

∆φijt = ∆ lnλijt −∆ lnLit + θ

(
1 + γ

γ

)(
σ

σ − 1

)
∆ lnwit + θ

(
1 + γ

γ

)
∆ ln τijt

+ θ

(
σ + γ

γ

)(
1

σ − 1

)
∆ ln fijt + (σ − 1)∆ ln pcijt (D.3)

and from (D.2), we get:

∆ψijt = ∆ ln pcijt −
(

γ

σ + γ

)[
1−

(
1 + γ

γ

)(
σ

σ − 1

)]
∆ lnwit

+

(
1

σ − 1

)
∆ ln τijt −

(
1

σ + γ

)
∆φijt.

We use equation (D.3) to substitute for ∆φijt in the previous result and obtain:

∆ψijt = ∆ ln pcijt −
(

γ

σ + γ

)[
1−

(
1 + γ

γ

)(
σ

σ − 1

)]
∆ lnwit +

(
1

σ − 1

)
∆ ln fijt

−
(

1

σ + γ

)[
∆ lnλijt −∆ lnLit + θ

(
1 + γ

γ

)(
σ

σ − 1

)
∆ lnwit + θ

(
1 + γ

γ

)
∆ ln τijt

+ θ

(
σ + γ

γ

)(
1

σ − 1

)
∆ ln fijt + (σ − 1)∆ ln pcijt

]
.

After collecting terms, this expression reduces to:

∆ψijt =

(
1 + γ

σ + γ

)
∆ ln pcijt −

(
1

σ + γ

)[
γ + (θ − γ)

(
1 + γ

γ

)(
σ

σ − 1

)]
∆ lnwit

+

(
1

σ + γ

)
∆ lnLit − θ

(
1

σ + γ

)(
1 + γ

γ

)
∆ ln τijt

+

(
1

σ − 1

)(
θ − γ
γ

)
∆ ln fijt −

(
1

σ + γ

)
∆ lnλijt. (D.4)

For convenience, we simplify the notation in equations (D.3) and (D.4), and re-order terms, to
obtain, respectively:

∆φijt = a1∆ lnλijt + a2∆ lnLit + a3∆ lnwit + a4∆ ln fijt + a5∆ ln pcijt + a6∆ ln τijt, (D.5)

∆ψijt = b1∆ ln pcijt + b2∆ lnwit + b3∆ lnLit + b4∆ ln τijt + b5∆ ln fijt + b6∆ lnλijt, (D.6)

where the coefficients are defined as follows:
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a1 = 1 b1 = 1+γ
σ+γ

a2 = −1 b2 = −
(

1
σ+γ

) [
γ + (θ − γ)

(
1+γ
γ

)(
σ
σ−1

)]
a3 = θ

(
1+γ
γ

)(
σ
σ−1

)
b3 = 1

σ+γ

a4 = θ
(
σ+γ
γ

)(
1

σ−1

)
b4 = −θ

(
1

σ+γ

)(
1+γ
γ

)
a5 = σ − 1 b5 =

(
1

σ−1

)(
θ−γ
γ

)
a6 = θ

(
1+γ
γ

)
b6 = −1

σ+γ

We can now obtain an expression for the product of the double-differenced exogenous demand and
supply shocks, ∆φijt∆ψijt. From equations (D.5) and (D.6), we obtain (after some simplifications):

∆φijt∆ψijt = (a1b1 + a5b6)∆ lnλijt∆ ln pcijt + (a1b2 + a3b6)∆ lnλijt∆ lnwit

+ (a1b3 + a2b6)∆ lnλijt∆ lnLit + (a1b4 + a6b6)∆ lnλijt∆ ln τijt

+ (a1b5 + a4b6)∆ lnλijt∆ ln fit + (a1b6)(∆ lnλijt)
2

+ (a2b1 + a5b3)∆ lnLit∆ ln pcijt + (a2b2 + a3b3)∆ lnLit∆ lnwit

+ (a2b5 + a4b5)∆ lnLit∆ ln fijt + (a2b4 + a6b3)∆ lnLit∆ ln τijt

+ (a2b3)(∆ lnLit)
2 + (a3b1 + a5b2)∆ lnwit∆ ln pcijt

+ (a3b2)(∆ lnwit)
2 + (a3b4 + a6b2)∆ lnwit∆ ln τijt

+ (a3b5 + a4b2)∆ lnwit∆ ln fijt + (a4b1 + a5b5)∆ ln fijt∆ ln pcijt

+ (a4b4 + a6b5)∆ ln fijt∆ ln τijt + (a4b5)(∆ ln fijt)
2

+ (a5b1)(∆ ln pcijt)
2 + (a5b4 + a6b1)∆ ln pcijt∆ ln τijt

+ (a6b4)(∆ ln τijt)
2.

Applying the moment condition E (∆φijt∆ψijt) = 0 to this last result yields the estimating equation
(64) in the main text.

Finally, we note that the coefficients on (∆ lnλijt)
2 and ∆ lnλijt∆ ln pcijt are equal, respectively,

to:

β1 ≡ −
a1b6
a5b1

= −

 (1)
(
−1
σ+γ

)
(σ − 1)

(
1+γ
σ+γ

)
 =

(
1

σ + γ

)(
1

σ − 1

)(
σ + γ

1 + γ

)
=

1

(σ − 1)(1 + γ)
(D.7)

and

β2 ≡ −
(
a1b1 + a5b6

a5b1

)
= −

(1)
(

1+γ
σ+γ

)
+ (σ − 1)

(
1

σ+γ

)
(σ − 1)

(
1+γ
σ+γ

)


= −
[(

1 + γ − σ + 1

σ + γ

)(
1

σ − 1

)(
σ + γ

1 + γ

)]
= −

[
2 + γ − σ

(σ − 1)(1 + γ)

]
=

σ − γ − 2

(σ − 1)(1 + γ)

which are exactly the same definitions as in Feenstra (1994).
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