Appendix A

The technique described in the paper, BV-OLS, yields virtually identical gravity equation
coefficient estimates to those estimated using region-specific fixed effects (which are unbiased estimates).
However, fixed effects cannot be used to generate general equilibrium comparative statics. Because BV-
OLS yields linear approximations, it does not provide precise estimates of the region-specific multilateral
resistance (MR) terms (with or without borders). However, one need not have to estimate the entire
system of equations using custom nonlinear least squares to generate the exact same estimates of the MR
terms as with A-vW’s NLLS estimation. Given initial estimates of the MR terms using BV-OLS, a
version of fixed-point iteration can be used to generate identical MR terms as under the NLLS technique,
and fixed-point iteration is computationally much less intensive than the A-vW NLLS technique. In
particular, even though the system of equations that determines the MR terms is non-linear, our fixed-
point iteration method does not require computation of the Jacobian of the system of equations, nor does
it require that the inverse of the Jacobian exists. We show that our approach requires nothing more than
simple matrix manipulation in STATA, GAUSS, or any similar matrix programming language.

The approach can be calculated for MR terms with or without borders; for demonstration here, we
assume borders are present. First, BV-OLS yields estimates of multilateral resistance terms P;*? for
i=1,..., N regions (with borders) based upon the log-linear approximation. Denote V, as the Nx1 vector of
these P, terms and V," as the Nx1 vector of their inverses (P,”*). The functional equation we solve is
f(V) =V - BV', where B is an NxN matrix of GDP-share-weighted trade costs where each element, b;,
equals gt;" where t; are defined in section 2. Evaluated at the equilibrium values of the MR terms, V*
and VE, then f (VF) =V - BVE=0.

The fixed-point iteration method we use has essentially only two steps. First, use point estimates
from BV-OLS to construct B, V,, and V. Second, compute V,,, according to:

V41 = 2BVK ™ + (1— )V (A1)

starting a k = 0 until successive approximations are less than some predetermined value of  (say, 1x107),
where ¢ = Nk+l —Vk \ and z is a damping factor with z € (0,1). The estimated V,,, satisfying this second

step is identical to the V estimated using A-vW’s custom NLLS estimation.

The remainder of this appendix proves in mathematical detail why our version of the fixed-point
iteration converges to a solution. First, the standard approach for fixed-point iteration is to start with an

initial guess V, and iterate on:

Vk4+1=BVk~ (A2)

starting at k=0. The above equation converges as long as BV is a contraction map; that is, a necessary
condition for a fixed-point iteration to converge is that — for each row of the Jacobian of BV — the sum of
the absolute values of each element is less than unity, cf., Gerald and Wheatley (1990). This condition is
unlikely to hold in general and it certainly does not hold for the McCallum-A-vW-Feenstra data. Even if
it is a contraction map, it may not be the case that iterating induces convergence to the fixed point.

To see why this iteration process will not work in this context, consider a simple univariate
mapping of:



v=(1/2)v" (A3)

Trivially, the fixed point of this mapping is E _1,.2 . Clearly, the Jacobian satisfies the necessary
condition for the fixed-point iteration to converge. However, with any initial guess of vg=1/+2 ,the
iteration produces a periodic cycle. For example, choose v, = 2 and the “solution” iterates between

{1/4 i odd
Vj = )

21 even

and convergence does not obtain. To induce convergence in this system, we simply add a damping factor
z (z=0.5) and iterate on:

Vi1 =20/ 2w L+ (1-z)vk (A4)

With an initial estimate of v, = 2 for k=0, iterating on (A4) causes convergence of v to the true value
(within ten decimal places) in three iterations.

Consequently, to induce convergence in our context, we introduce the damping factor z, where
z € (0,1) , and (A2) becomes:

V41 =2BVK ™ +(1-2)Vk (A5)

Note this implies that V,,, =V, - z f(V,). For an initial guess in the range of V¥, the fixed-point iteration
will converge to f(VF) = 0 if z is contracting (since z is less than unity), cf., Nirenberg (1975). Thus, for
the class of models discussed in A-vW the solution to the price terms can be obtained by fixed-point
iteration with a damping factor of z €(0,1) . Note how similar this is to the Gauss-Newton iteration

scheme discussed in Judd (1998). Unlike the Gauss-Newton iteration, this procedure does not require
computing the Jacobian or its inverse, if the latter exists.

We applied this procedure to the McCallum-A-vW-Feenstra Canadian-U.S. data set, using a
stopping rule of € < 1x10° for all elements of V. If we use the parameter values in A-vW of
p(1- o) =-0.79and a(1- o) = —165, convergence is achieved after 25 iterations (for both cases, with

and without the border) and the correlation of the multilateral resistance terms with the multilateral
resistance terms constructed by A-vW is 1.0 (reported to seven decimal places). If we use the parameter
values in BV-OLS of p(1-0)=-125 and a(1- o) = —154, convergence is achieved after 21 iterations

(for both cases, with and without the border) and the correlation of the multilateral resistance terms with
the multilateral resistance terms constructed by the A-vW NLLS methodology is 1.0 (reported to seven
decimal places). Given that this methodology replicates perfectly the MR terms calculated by A-vW, the
comparative statics are identical to those reported by A-vW (2003, 187).





