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A Appendix A

A.1 Pricing Rule and Firm Revenue

As in Feenstra (2010), we let pij(φ) and qij(φ) denote the (free-on-board or fob) price

received and the quantity shipped by the firm at the factory gate, respectively. A firm with

productivity φ in country i serving country j maximizes profits by choosing the factory-gate

price pij :

max
pij

πij(φ) = pij(φ)qij(φ)− w̃i

[
fij +

qij(φ)
1+γ
γ

φ

]
. (A.1)

where w̃i ≡ wi/Ai. By the definition of iceberg trade costs, we have that the quantity

produced after the “iceberg melt” is equal to the quantity consumed: qij(φ)/τij = cij(φ).

Furthermore, because firms charge pij(φ) per unit produced, consumers pay pcij(φ) ≡ τijpij(φ)

per unit consumed. Combining these results and making use of the demand function in

equation (2) in the paper, we can express output as:

qij(φ) = τijcij(φ) = τijEjP
σ−1
j b1−σi pcij(φ)

−σ = EjP
σ−1
j τ1−σij b1−σi pij(φ)

−σ. (A.2)

Substituting this last result into equation (A.1) yields

max
pij

πij(φ) = EjP
σ−1
j τ1−σij b1−σi pij(φ)

1−σ − w̃ifij −
w̃i
φ

[
EjP

σ−1
j τ1−σij b1−σi pij(φ)

−σ
] 1+γ

γ
.

Because each firm produces only one of a continuum of varieties, a change in pij has

a negligible effect on the price index Pj . As a result, the first order condition for the

profit-maximization problem is:

∂πij
∂pij

= (1−σ)EjP σ−1
j b1−σi τ1−σij pij(φ)

−σ+σ

(
1 + γ

γ

)
w̃i
φ

(
EjP

σ−1
j b1−σi τ1−σij

) 1+γ
γ
pij(φ)

−σ
(

1+γ
γ

)
−1

= 0,
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Simplifying the equation above yields:

pij(φ) =

(
1 + γ

γ

)(
σ

σ − 1

)
w̃i
φ

[
EjP

σ−1
j b1−σi τ1−σij pij(φ)

−σ
] 1

γ
.

From equation (A.2) we can replace with qij(φ) the last term in the squared brackets in the

equation above to obtain the optimal factory-gate price:

pij(φ) =

(
1 + γ

γ

)(
σ

σ − 1

)
w̃i
φ
qij(φ)

1
γ . (A.3)

We can use this result to derive optimal firm-destination revenue as follows:

rij(φ) = pij(φ)qij(φ) =

(
1 + γ

γ

)(
σ

σ − 1

)
w̃iqij(φ)

1+γ
γ

φ
. (A.4)

As explained earlier, firms charge pij(φ) per unit produced such that consumers pay

pcij(φ) ≡ τijpij(φ) per unit consumed. From equation (A.3), consumers pay a price per unit

consumed of:

pcij(φ) ≡ τijpij(φ) =

(
1 + γ

γ

)(
σ

σ − 1

)
w̃iτij
φ

qij(φ)
1
γ . (A.5)

Finally, we note that our solution for optimal consumer price converges to the benchmark

result as γ → ∞:

lim
γ→∞

pcij(φ) =

(
σ

σ − 1

)
w̃iτij
φ

.

A.2 Firm Profits

From equation (A.1), we have:

πij(φ) = pij(φ)qij(φ)− w̃i

[
fij +

qij(φ)
1+γ
γ

φ

]

= rij(φ)− w̃ifij −
(

γ

1 + γ

)(
σ − 1

σ

)[(
1 + γ

γ

)(
σ

σ − 1

)
w̃iqij(φ)

1+γ
γ

φ

]

= rij(φ)− w̃ifij −
(

γ

1 + γ

)(
σ − 1

σ

)
rij(φ)

=

[
1−

(
γ

1 + γ

)(
σ − 1

σ

)]
rij(φ)− w̃ifij

=

(
σ + γ

1 + γ

)
rij(φ)

σ
− w̃ifij (A.6)
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where the third line uses the definition of optimal revenue in equation (A.4). We note that

our solution for profits converges to the benchmark result as γ → ∞:

lim
γ→∞

πij(φ) =
rij(φ)

σ
− w̃ifij .

A.3 Cutoff Productivity

Together, the profit function defined in equation (A.1) and the zero-profit condition πij(φ
∗
ij) =

0 imply that: (
σ + γ

1 + γ

)
rij(φ

∗
ij)

σ
= w̃ifij . (A.7)

Substituting into this last equation optimal revenue, as defined in equation (A.4), yields:

(
σ + γ

1 + γ

)(
1

σ

)(
1 + γ

γ

)(
σ

σ − 1

)
w̃iqij(φ

∗
ij)

1+γ
γ

φ∗
ij

= w̃ifij , (A.8)

which, after rearranging, yields an expression for the optimal output of the cutoff firm:

qij(φ
∗
ij) =

[(
γ

σ + γ

)
(σ − 1)fijφ

∗
ij

] γ
1+γ

. (A.9)

We can substitute this last result into equation (A.3) to obtain an expression for the optimal

factory-gate price for the cutoff firm:

pij(φ
∗
ij) =

(
1 + γ

γ

)(
σ

σ − 1

)
w̃i
φ∗
ij

[(
γ

σ + γ

)
(σ − 1)fijφ

∗
ij

] 1
1+γ

=

(
1 + γ

γ

)(
σ

σ − 1

)[(
γ

σ + γ

)
(σ − 1)fij

] 1
1+γ

w̃i(φ
∗
ij)

−γ
1+γ . (A.10)

From equation (A.2), we can express firm revenue as:

rij(φ) = pij(φ)qij(φ) = EjP
σ−1
j b1−σi τ1−σij pij(φ)

1−σ.

Using this last result, we can express the zero-profit condition in equation (A.7) as:

(
σ + γ

1 + γ

)
EjP

σ−1
j b1−σi τ1−σij pij(φ

∗
ij)

1−σ

σ
= w̃ifij . (A.11)
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Substituting for the factory-gate price in equation (A.11) using equation (A.10), we can

solve for the zero-cutoff-profit productivity:

w̃ifij =

(
σ + γ

1 + γ

) EjP
σ−1
j b1−σi τ1−σij

{(
1+γ
γ

)(
σ
σ−1

) [(
γ

σ+γ

)
(σ − 1)fij

] 1
1+γ

w̃i(φ
∗
ij)

−γ
1+γ

}1−σ

σ

⇒ (φ∗
ij)

(σ−1)
(

γ
1+γ

)
=

(
1 + γ

σ + γ

)(
σw̃ifij

EjP
σ−1
j b1−σi τ1−σij

)[(
1 + γ

γ

)(
σ

σ − 1

)
w̃i

]σ−1 [( γ

σ + γ

)
(σ − 1)fij

]σ−1
1+γ

⇒ φ∗
ij =


(
1+γ
γ

σ
σ−1 w̃i

)σ
EjP

σ−1
j b1−σi


1

γ
1+γ (σ−1) [

γ

σ + γ
(σ − 1)fij

] 1+γ
γ

1+γ
σ+γ (σ−1)

τ
1+γ
γ

ij . (A.12)

Again, when γ → ∞ we obtain the benchmark result:

lim
γ→∞

φ∗
ij =

[(
σ

σ − 1

)σ
(σ − 1)

fijw̃
σ
i

EjP
σ−1
j b1−σi

] 1
σ−1

τij =
σ1+

1
σ−1 w̃

1+ 1
σ−1

i f
1

σ−1

ij biτij

(σ − 1)E
1

σ−1

i Pj

=

(
σ

σ − 1

)
w̃ibiτij
Pj

(
σwifij
Ej

) 1
σ−1

.

A.4 Average Profits

In our model, the relationship between the relative revenues of two firms in country i serving

the domestic market and their relative productivities is similar to – but nontrivially different

from – the constant marginal cost case. From equation (A.2) and the pricing rule (A.5), we

can express the ratio of output between any firm and the cutoff firm as follows

qij(φ)

qij(φ∗
ij)

=

(
φ

φ∗
ij

)σ( γ
σ+γ

)
, (A.13)

which differs from the constant marginal cost case because of the extra term in the exponent

(i.e., γ/(σ + γ)). However, when γ → ∞ the result is the same as in Melitz (2003). Using

equation (A.3) to define the ratio of prices and multiplying by the ratio of quantities to

obtain relative revenues yields:

rij(φ)

rij(φ∗
ij)

=
pij(φ)

pij(φ∗
ij)

× qij(φ)

qij(φ∗
ij)

=

 qij(φ)
1
γ /φ

qij(φ∗
ij)

1
γ /φ∗

ij

[ qij(φ)

qij(φ∗
ij)

]
=

(
φ

φ∗
ij

)(σ−1)
(

γ
σ+γ

)
(A.14)

where the last equality follows from equation (A.13). Note that when γ → ∞, the relationship

is identical to the constant marginal cost case. The sufficient condition here for a positive
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relationship between productivity and revenue is σ
(

1+γ
σ+γ

)
> 1, instead of the typical

assumption σ > 1.

From the zero-profit condition πij(φ
∗
ij) = 0 and the definition of profits in equation (A.6),

we have:

πij(φ
∗
ij) = 0 ⇔ rij(φ

∗
ij) =

(
1 + γ

σ + γ

)
σw̃ifij . (A.15)

Using this result and equation (A.14), we obtain:

rij(φ) =

(
φ

φ∗
ij

)(σ−1)
(

γ
σ+γ

)
rij(φ

∗
ij) =

(
1 + γ

σ + γ

)(
φ

φ∗
ij

)(σ−1)
(

γ
σ+γ

)
σw̃ifij , (A.16)

which shows clearly that firm revenue is increasing in firm productivity. Using this last result,

we can express average revenue for a country i firm selling to country j as:

rij(φ
∗
ij) =

∫ ∞

φ∗
ij

rij(φ)µij(φ)dφ

=

(
1 + γ

σ + γ

)(
1

φ∗
ij

)(σ−1)
(

γ
σ+γ

)
σw̃ifij

∫ ∞

φ∗
ij

φ
(σ−1)

(
γ

σ+γ

)
µij(φ)dφ

=

(
1 + γ

σ + γ

)[
φ̃ij(φ

∗
ij)

φ∗
ij

](σ−1)
(

γ
σ+γ

)
σw̃ifij (A.17)

where

µij (φ) =


g(φ)

1−G(φ∗
ij)

= θ(φ∗
ij)

θφ−θ−1, if φ ≥ φ∗
ij ,

0 otherwise
(A.18)

is the Pareto distribution of firm productivity, and

φ̃ij(φ
∗
ij) =

[∫ ∞

φ∗
ij

φ
(σ−1)

(
γ

σ+γ

)
µij(φ)dφ

]( 1
σ−1)

σ+γ
γ

. (A.19)

defines an aggregate productivity level as a function of the cutoff level φ∗
ij .
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Using equation (A.19), we can define average profit for each destination market as follows:

πij(φ
∗
ij) =

∫ ∞

φ∗
ij

πij(φ)µij(φ)dφ =

∫ ∞

φ∗
ij

[(
σ + γ

1 + γ

)
rij(φ)

σ
− w̃ifij

]
µij(φ)dφ

=

(
σ + γ

1 + γ

)∫ ∞

φ∗
ij

rij(φ)

σ
µij(φ)dφ− w̃ifij =

(
σ + γ

1 + γ

)
rij(φ

∗
ij)

σ
− w̃ifij

=


[
φ̃ij(φ

∗
ij)

φ∗
ij

](σ−1)
(

γ
σ+γ

)
− 1

 w̃ifij . (A.20)

This result is analogous to the zero-cutoff-profit condition in Melitz (2003), with πij a negative

function of φ∗
ij . The nontrivial difference is the necessary condition that σ

(
1+γ
σ+γ

)
> 1.

By definition, the average profit of an incumbent firm is the sum of the average profits

from sales to all markets:

πi =
N∑
j=1

[
1−G(φ∗

ij)

1−G(φ∗
ii)

]
πij(φ

∗
ij) =

N∑
j=1

(
φ∗
ij

φ∗
ii

)−θ
πij(φ

∗
ij), (A.21)

where the last equality follows from the Pareto distribution assumption. This expression

includes domestic profits (i.e., when i = j). Using equation (A.20) in (A.21), we can express

average total firm profit (under the Pareto distribution assumption) as:

πi =

N∑
j=1

(
φ∗
ij

φ∗
ii

)−θ

[
φ̃ij(φ

∗
ij)

φ∗
ij

](σ−1)
(

γ
σ+γ

)
− 1

 w̃ifij . (A.22)

We can further simplify this expression using the definition of average productivity in

equation (A.19), which implies that:

[
φ̃ij(φ

∗
ij)
](σ−1)

(
γ

σ+γ

)
=

∫ ∞

φ∗
ij

φ
(σ−1)

(
γ

σ+γ

)
µij(φ)dφ =

∫ ∞

φ∗
ij

φ
(σ−1)

(
γ

σ+γ

)
θφ−θ−1

(φ∗
ij)

−θ dφ

= θ(φ∗
ij)

θ

∫ ∞

φ∗
ij

φ
σ
(

γ+1
σ+γ

)
−θ−2

dφ =

 θ

θ − (σ − 1)
(

γ
σ+γ

)
 (φ∗

ij)
(σ−1)

(
γ

σ+γ

)
.

(A.23)
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Using this last result in equation (A.22) yields:

πi =

N∑
j=1

(
φ∗
ij

φ∗
ii

)−θ

 θ

θ − (σ − 1)
(

γ
σ+γ

)
− 1

 w̃ifij =
(σ − 1)

(
γ

σ+γ

)
θ − (σ − 1)

(
γ

σ+γ

) N∑
j=1

(
φ∗
ii

φ∗
ij

)θ
w̃ifij .

(A.24)

A.5 Masses of Firms

Consumers have no taste for leisure, so the supply of labor is fixed at Li. There are three

sources of demand for labor: labor for entry costs (fe), labor for fixed trade costs (fij), and

labor for production. Therefore, the labor-market-clearing condition is given by:

Li =
M e
i f

e

Ai
+

N∑
j=1

Mij

∫ ∞

φ∗
ij

1

Ai

[
fij +

qij(φ)
1+γ
γ

φ

]
µij(φ)dφ, (A.25)

where M e
i is the mass of firms attempting to enter the industry in country i, Mij is the mass

of firms based in i that serve market j, and

µij (φ) =


g(φ)

1−G(φ∗
ij)

= θ(φ∗
ij)

θφ−θ−1, if φ ≥ φ∗
ij ,

0 otherwise
(A.26)

is the Pareto distribution of firms’ productivities.

Multiplying both sides of equation (A.25) by wi, yields:

wiLi = w̃iM
e
i f

e + w̃i

N∑
j=1

Mijfij + w̃i

N∑
j=1

Mij

∫ ∞

φ∗
ij

qij(φ)
1+γ
γ

φ
µij(φ)dφ. (A.27)

From the optimal revenue equation (A.4), we can show that:

w̃iqij(φ)
1+γ
γ

φ
=

(
γ

1 + γ

)(
σ − 1

σ

)
rij(φ).

Using this result in equation (A.27) yields:

wiLi = w̃iM
e
i f

e + w̃i

N∑
j=1

Mijfij +

(
γ

1 + γ

)(
σ − 1

σ

) N∑
j=1

Mij

∫ ∞

φ∗
ij

rij(φ)µij(φ)dφ. (A.28)

As in Feenstra (2010) and Redding (2011), zero expected profits imply that aggregate revenue
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is equal to expenditure such that:

wiLi =
N∑
j=1

Mij

∫ ∞

φ∗
ij

rij(φ)µij(φ)dφ. (A.29)

Substituting with this result for the last term on the right-hand-side of equation (A.28)

yields:

wiLi = w̃iM
e
i f

e + w̃i

N∑
j=1

Mijfij +

(
γ

1 + γ

)(
σ − 1

σ

)
wiLi

⇔
[
1−

(
γ

1 + γ

)(
σ − 1

σ

)]
wiLi = w̃iM

e
i f

e + w̃i

N∑
j=1

Mijfij . (A.30)

Substituting the left-hand-side of equation (A.30) for the first two terms on the right-hand-

side of equation (A.27) yields:

wiLi =

[
1−

(
γ

1 + γ

)(
σ − 1

σ

)]
wiLi + w̃i

N∑
j=1

Mij

∫ ∞

φ∗
ij

qij(φ)
1+γ
γ

φ
µij(φ)dφ

⇔
(

γ

1 + γ

)(
σ − 1

σ

)
wiLi = w̃i

N∑
j=1

Mij

∫ ∞

φ∗
ij

qij(φ)
1+γ
γ

φ
µij(φ)dφ (A.31)

We can now solve for w̃i
∑N

j=1Mijfij . From equation (A.13), we can express the output

for any firm as a function of the output of the cutoff firm as follows:

qij(φ) =

(
φ

φ∗
ij

) σγ
σ+γ

qij(φ
∗
ij). (A.32)

Using this result and the Pareto distribution, we can solve the integral on the right-hand-side
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of equation (A.31):

∫ ∞

φ∗
ij

q(φ)
1+γ
γ

φ
µij(φ)dφ =

∫ ∞

φ∗
ij

[
q(φ∗

ij)
(
φ
φ∗
ij

) σγ
σ+γ

]
φ

1+γ
γ

µij(φ)dφ

=

∫ ∞

φ∗
ij

q(φ∗
ij)

1+γ
γ

(
φ
φ∗
ij

)σ( 1+γ
σ+γ

)

φ

[
θφ−θ−1

(φ∗
ij)

−θ

]
dφ

= q(φ∗
ij)

1+γ
γ

(
1

φ∗
ij

)σ 1+γ
σ+γ

−θ

θ

∫ ∞

φ∗
ij

φ
γ

σ+γ
(σ−1)−(θ+1)

dφ

= q(φ∗
ij)

1+γ
γ

(
1

φ∗
ij

)σ 1+γ
σ+γ

−θ [
θ

θ − γ
σ+γ (σ − 1)

][(
1

∞

)θ− γ
σ+γ

(σ−1)

− (φ∗
ij)

γ
σ+γ

(σ−1)

]

=

[
θ

θ − γ
σ+γ (σ − 1)

]
q(φ∗

ij)
1+γ
γ (φ∗

ij)
γ

σ+γ
(σ−1)−σ 1+γ

σ+γ

=

 θ

θ − (σ − 1)
(

γ
σ+γ

)
 q(φ∗

ij)
1+γ
γ

φ∗
ij

. (A.33)

Importantly, note that, for a positive integral, we require only that θ > γ
σ+γ (σ − 1) and not

θ > σ − 1, as in the standard constant marginal cost Melitz models.

Rearranging equation (A.9), we can show that:

qij(φ
∗
ij)

1+γ
γ

φ∗
ij

=

(
γ

σ + γ

)
(σ − 1)fij .

Using this result in the equation just above it yields:

∫ ∞

φ∗
ij

qij(φ)

φ

1+γ
γ

µij(φ)dφ =

θ
(

γ
σ+γ

)
(σ − 1)

θ − γ
σ+γ (σ − 1)

 fij , (A.34)

which implies that:

w̃i

N∑
j=1

Mij

∫ ∞

φ∗
ij

qij(φ)

φ

1+γ
γ

µij(φ)dφ =

θ
(

γ
σ+γ

)
(σ − 1)

θ − γ
σ+γ (σ − 1)

 w̃i N∑
j=1

Mijfij . (A.35)
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Substituting with this last result into equation (A.31) yields:

(
γ

1 + γ

)(
σ − 1

σ

)
wiLi =

θ
(

γ
σ+γ

)
(σ − 1)

θ − γ
σ+γ (σ − 1)

 w̃i N∑
j=1

Mijfij

⇒ w̃i

N∑
j=1

Mijfij =

(
γ

1 + γ

)(
σ − 1

σ

) θ − γ
σ+γ (σ − 1)

θ
(

γ
σ+γ

)
(σ − 1)

wiLi. (A.36)

Substituting this result into equation (A.35) yields:

w̃i

N∑
j=1

Mij

∫ ∞

φ∗
ij

qij(φ)

φ

1+γ
γ

µij(φ)dφ =

(
γ

1 + γ

)(
σ − 1

σ

)
wiLi. (A.37)

We can now solve forM e
i . Substituting equations (A.36) and (A.37) into equation (A.27),

and eliminating out the wi, yields:

Li =
1

Ai
M e
i f

e +
1

Ai

N∑
j=1

Mijfij +
1

Ai

N∑
j=1

Mij

∫ ∞

φ∗
ij

qij(φ)
1+γ
γ

φ
µij(φ)dφ

=
M e
i f

e

Ai
+

(
γ

1 + γ

)(
σ − 1

σ

) θ − γ
σ+γ (σ − 1)

θ
(

γ
σ+γ

)
(σ − 1)

Li + ( γ

1 + γ

)(
σ − 1

σ

)
Li

=
M e
i f

e

Ai
+

(
γ

1 + γ

)(
σ − 1

σ

)1 + θ − γ
σ+γ (σ − 1)

θ
(

γ
σ+γ

)
(σ − 1)

Li
=
M e
i f

e

Ai
+

(
γ

1 + γ

)(
σ − 1

σ

)θ
(

γ
σ+γ

)
(σ − 1) + θ − γ

σ+γ (σ − 1)

θ
(

γ
σ+γ

)
(σ − 1)

Li
=
M e
i f

e

Ai
+

(θ − 1)
(

γ
σ+γ

)
(σ − 1) + θ

θσ
(

1+γ
σ+γ

)
Li
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which implies that:

M e
i =

1− (θ − 1)
(

γ
σ+γ

)
(σ − 1) + θ

θσ
(

1+γ
σ+γ

)
 AiLi

fe

=

θσ
(

1+γ
σ+γ

)
− (θ − 1)

(
γ

σ+γ

)
(σ − 1)− θ

θσ
(

1+γ
σ+γ

)
 AiLi

fe

=

(
1

θσ

)(
σ + γ

1 + γ

)(
θσ + θσγ − θσγ + θγ + γσ − γ − θγ − θσ

σ + γ

)
AiLi
fe

=

(
γ

1 + γ

)(
σ − 1

σ

)
AiLi
θfe

. (A.38)

We now solve for Mii. As standard, we assume a fraction δ of existing firms Mii exit the

industry. In a steady state equilibrium, the mass of new entrant (M e
i ) must replace firms hit

by the exogenous shock and forced to exit the industry. Hence, in a steady state:

[1−G(φ∗
ii)]M

e
i = δMii (A.39)

where [1−G(φ∗
ii)] = (φ∗

ii)
−θ is the probability of successful entry. It follows that:

Mii =
[1−G(φ∗

ii)]M
e
i

δ
=

M e
i

δ(φ∗
ii)
θ
=

(
γ

1 + γ

)(
σ − 1

σ

)
AiLi

θδfe(φ∗
ii)
θ

(A.40)

Finally, we can solve for the mass of exporting firmsMij . A successful entrant in country-i

will export to country j if it is is productive enough to be profitable in the foreign country.

This implies that:

Mij =

[
1−G(φ∗

ij)

1−G(φ∗
ii)

]
Mii =

(
γ

1 + γ

)(
σ − 1

σ

)
AiLi

θδfe(φ∗
ij)

θ
. (A.41)

A.6 Price Index

In this section, we solve for the price index. Substituting equation (A.2) into optimal pricing

rule (A.5) we obtain:
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pcij(φ) =

(
1 + γ

γ

)(
σ

σ − 1

)
w̃iτij
φ

qij(φ)
1
γ

=

(
1 + γ

γ

)(
σ

σ − 1

)
w̃iτij
φ

[
EjP

σ−1
j b1−σi pcij(φ)

−σ
] 1

γ

=

[(
1 + γ

γ

)(
σ

σ − 1

)
w̃iτij
φ

] γ
σ+γ

E
1

σ+γ

j P
σ−1
σ+γ

j b
1−σ
σ+γ

i (A.42)

Substituting this result into the definition of the price index

Pj =

[∫
ν∈Ωj

b1−σi pcj(ν)
1−σdν

] 1
1−σ

, (A.43)

and rearranging, we obtain:

P 1−σ
j =

∫
ν∈Ωj

b1−σi pcj(ν)
1−σdν =

∑
i

Mij

∫ ∞

φ∗
ij

b1−σi pcij(φ)
1−σµij(φ)dφ

=
∑
i

Mij

∫ ∞

φ∗
ij

{[(
1 + γ

γ

)(
σ

σ − 1

)
w̃iτij
φ

] γ
σ+γ

E
1

σ+γ

j P
σ−1
σ+γ

j b
1−σ
σ+γ

i

}1−σ

µij(φ)dφ

=
∑
i

Mij

{[(
1 + γ

γ

)(
σ

σ − 1

)
w̃iτij

] γ
σ+γ

E
1

σ+γ

j P
σ−1
σ+γ

j b
1−σ
σ+γ

i

}1−σ ∫ ∞

φ∗
ij

φ
(σ−1)

(
γ

σ+γ

)
µij(φ)dφ

=
∑
i

Mij


[(

1 + γ

γ

)(
σ

σ − 1

)
w̃iτij
φ∗
ij

] γ
σ+γ

E
1

σ+γ

j P
σ−1
σ+γ

j b
1−σ
σ+γ

i


1−σ  θ

θ − (σ − 1)
(

γ
σ+γ

)


=

 θ

θ − (σ − 1)
(

γ
σ+γ

)
∑

i

Mijb
1−σ
i [pcij(φ

∗
ij)]

1−σ

=

 θ

θ − (σ − 1)
(

γ
σ+γ

)
∑

i

Mijτ
1−σ
ij b1−σi [pij(φ

∗
ij)]

1−σ. (A.44)

We can use the productivity cutoff in equation (A.12) and the mass of firms in equation

(A.41) to obtain an expression also for the price index Pj as a function of the endogenous

wages and parameters of the model, given in equation (A.87) below.
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A.7 Trade Flows

Using the pricing rule (A.3), the result in equation (A.34), and equation (A.41) for the mass

of firms, we can express trade flows as:

Xij ≡Mij

∫ ∞

φ∗
ij

rij(φ)µij(φ)dφ =Mij

∫ ∞

φ∗
ij

pij(φ)qij(φ)µij(φ)dφ

=Mij

∫ ∞

φ∗
ij

(
1 + γ

γ

)(
σ

σ − 1

)
w̃i
φ
qij(φ)

1+γ
γ µij(φ)dφ

=Mij

(
1 + γ

γ

)(
σ

σ − 1

)
w̃i

∫ ∞

φ∗
ij

qij(φ)

φ

1+γ
γ

µij(φ)dφ

=Mij

(
1 + γ

γ

)(
σ

σ − 1

)θ
(

γ
σ+γ

)
(σ − 1)

θ − γ
σ+γ (σ − 1)

 w̃ifij
=

(
γ

1 + γ

)(
σ − 1

σ

)
AiLi

θδfe(φ∗
ij)

θ

(
1 + γ

γ

)(
σ

σ − 1

)θ
(

γ
σ+γ

)
(σ − 1)

θ − γ
σ+γ (σ − 1)

 wifij
Ai

=

 (σ − 1)
(

γ
σ+γ

)
θ − (σ − 1)

(
γ

σ+γ

)
 wiLifij
δfe(φ∗

ij)
θ
. (A.45)

By definition, aggregate expenditure in country j is given by:

Ej =
∑
k

Xkj =

 (σ − 1)
(

γ
σ+γ

)
θ − (σ − 1)

(
γ

σ+γ

)
 1

δfe

∑
k

wkLkfkj(φ
∗
kj)

−θ. (A.46)

Therefore, the share of country j’s expenditure on goods supplied by country i is given by:

λij ≡
Xij

Ej
=

wiLifij(φ
∗
ij)

−θ∑N
k=1wkLkfkj(φ

∗
kj)

−θ
. (A.47)

Adapting equation (A.12), we know:

φ∗
kj =


(
1+γ
γ

σ
σ−1 w̃k

)σ
EjP

σ−1
j b1−σi


1

γ
1+γ (σ−1) [

γ

σ + γ
(σ − 1)fkj

] 1+γ
γ

1+γ
σ+γ (σ−1)

τ
1+γ
γ

kj .

Substituting this equation for φ∗
kj and equation (A.12) for φ∗

ij into equation (A.47), we
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obtain bilateral trade from i to j as a share of j’s expenditures (λij):

λij =

wiLifij

w̃(
1+γ
γ

)
( σ
σ−1)

i b
1+γ
γ

i τ
1+γ
γ

ij f

(
1

γ
σ+γ (σ−1)

)
ij

−θ

∑N
k=1wkLkfkj

w̃(
1+γ
γ

)
( σ
σ−1)

k b
1+γ
γ

k τ
1+γ
γ

kj f

(
1

γ
σ+γ (σ−1)

)
kj

−θ

=
A
θ
(

1+γ
γ

)
( σ
σ−1)

i Liw
1−θ

(
1+γ
γ

)
( σ
σ−1)

i b
−θ

(
1+γ
γ

)
i τ

−θ
(

1+γ
γ

)
ij f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

ij

∑N
k=1A

θ
(

1+γ
γ

)
( σ
σ−1)

k Lkw
1−θ

(
1+γ
γ

)
( σ
σ−1)

k b
−θ

(
1+γ
γ

)
k τ

−θ
(

1+γ
γ

)
kj f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

kj

. (A.48)

A.8 Wage Rates

We now determine aggregate revenue in equilibrium. First, total payments to production

workers, which we denote Lpi , must be equal to the difference between aggregate revenue and

aggregate profit such that wiL
p
i = Ri −Πi, where Πi ≡Miiπi. Second, in equilibrium, the

mass of successful entrants must be equal to the mass of firms forced to exit the industry. This

aggregate stability condition requires that [1−G(φ∗
ij)]M

e
i = δMii. Combining this last result

with the free entry condition (A.53) (provided later) implies that total payments to labor used

in entry equal total profits: wiL
e
i = wiM

e
i f

e = Πi. It follows that aggregate revenue, which

is the sum of total payments to labor and profits, is equal to payroll Ri = wiL
p
i +Πi = wiLi.

The equilibrium wage rate (wi) in each country can be determined from the requirement

that total revenue equals total expenditure on goods produced there:

wiLi =

N∑
j=1

λijwjLj .

Substituting in equation (A.48) yields the following system of N equations (one for each of

N countries):

wiLi =

N∑
j=1

 A
θ
(

1+γ
γ

)
( σ
σ−1)

i Liw
1−θ

(
1+γ
γ

)
( σ
σ−1)

i τ
−θ

(
1+γ
γ

)
ij f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

ij

∑N
k=1A

θ
(

1+γ
γ

)
( σ
σ−1)

k Lkw
1−θ

(
1+γ
γ

)
( σ
σ−1)

k b
−θ 1+γ

γ

k τ
−θ

(
1+γ
γ

)
kj f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

kj

wjLj
(A.49)

Equation (A.49) implies a system of N equations in the N unknown wage rates in each

country, wi. Note that this equation takes the same form as equation (3.14) on p. 1734 of
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Alvarez and Lucas (2007). Using equation (A.49), we can define the following excess demand

system:

Ξ(w) =
1

wi


N∑
j=1

A
θ
(

1+γ
γ

)
( σ
σ−1)

i Liw
1−θ

(
1+γ
γ

)
( σ
σ−1)

i b
−θ 1+γ

γ

i τ
−θ

(
1+γ
γ

)
ij f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

ij

∑N
k=1A

θ
(

1+γ
γ

)
( σ
σ−1)

k Lkw
1−θ

(
1+γ
γ

)
( σ
σ−1)

k b
−θ 1+γ

γ

k τ
−θ

(
1+γ
γ

)
kj f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

kj

− wiLi


(A.50)

where w denotes the vector of wage rates across countries.

Proposition 1. There exists a unique wage-rate vector w ∈ RN++ such that Ξ(w) = 0.

Proof. Note that Ξ(w) has the following properties:

1. Ξ(w) is continuous (by assumption on the parameters).

2. Ξ(w) is homogenous of degree zero.

3. w · Ξ(w) = 0 for all w ∈ RN++ (Walras Law).

4. There exists a constant s > 0 such that Ξi(w) > −s for each country i and all

w ∈ RN++.

5. If wm → w0 where w0 ̸= 0 and w0
i = 0 for some country i, then maxj{Ξj(w)} → ∞.

6. Ξ(w) satisfies the gross substitutes property

∂Ξi(w)

∂wj
> 0, i ̸= j, and

∂Ξi(w)

∂wi
< 0, ∀w ∈ RN++.

Under these conditions, Propositions 17.C.1 and 17.F.3 of Mas-Colell et al. (1995) or

Theorems 1-3 of Alvarez and Lucas (2007) hold, such that there exists a unique vector of

wage rates w ∈ RN++ that satisfies the clearing conditions Ξ(w) = 0.

A.9 Free Entry

There is an unbounded set of potential entrants in the industry. To enter the industry, firms

must incur a fixed entry cost of fe units of labor. That sunk entry cost provides the firm

with a blue print for a unique variety and also reveals the firm’s productivity, φ, a random

draw from a common distribution G(φ). Once the fixed entry cost is paid, firms can begin

production.

The value of a successful entrant with productivity φ is equal to the discounted sum of

lifetime profits. Following Melitz (2003), we assume that each period there is a probability
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δ ∈ (0, 1) that an incumbent firm will be hit by an adverse shock and be forced to exit the

industry. In that case, the value of a successful entrant in the industry can be expressed as:

Vi(φ) =

∞∑
t=1

(1− δ)tπit(φ) =
πi(φ)

δ
, (A.51)

where the second equality follows from the fact that profits are constant throughout the

lifetime of the firm, i.e., πit(φ) = πi(φ). Therefore, the value of entry as a function of

productivity is given by:

Vi(φ) = max

{
0,
πi(φ)

δ

}
. (A.52)

Firms with productivity above the domestic cutoff, φ∗
ii, will generate enough variable profits

to cover the fixed costs. As a result, they stay in the industry and earn a lifetime profit

proportional to their per-period profits. Firms with productivity lower than the domestic

cutoff would earn negative profits if they remain in the industry. Hence, they prefer to exit

the industry and get a null return.

In a free entry equilibrium, the expected value of entry, V e
i , must be equal to the cost of

entry such that:

V e
i = [1−G(φ∗

ii)]
πi
δ

= w̃if
e. (A.53)

The expected value of entry is defined as the product of the probability of successful entry,

1−G(φ∗
ii), and the lifetime profits of the average incumbent firm, πi/δ. The cost of entry is

defined as the product of w̃i and the fixed entry cost, fe, defined in units of labor.

By definition, the average profit of an incumbent firm is the sum of the average profits

from sales to each market (including the domestic market) multiplied by the probability of

entering each market conditional on producing for the domestic market:

πi =
N∑
j=1

[
1−G(φ∗

ij)

1−G(φ∗
ii)

]
πij(φ

∗
ij). (A.54)

To obtain an analytical solution, we follow the literature and assume that the productivity

distribution is Pareto, such that G(φ) = 1 − φ−θ. We can combine the zero-cutoff-profit

condition πij(φ
∗
ij) = 0, the optimal pricing function in equation (6), and the definition of

profits in equation (5), to express average total firm profit as:

πi =
(σ − 1) γ

σ+γ

θ − (σ − 1) γ
σ+γ

N∑
j=1

(
φ∗
ii

φ∗
ij

)θ
w̃ifij . (A.55)

Substituting this last result for average profits into equation (A.53), we obtain an expression
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for the free-entry condition that depends only on the productivity cutoffs and parameters of

the model:

V e
i =

(σ − 1) γ
σ+γ

θ − (σ − 1) γ
σ+γ

N∑
j=1

fij
(φ∗

ij)
θ
= δfe, (A.56)

where the wage rates have canceled in the expression above. This result shows that the value

of entry is proportionate to fixed entry costs (fe).

A.10 General Equilibrium

As in Bernard et al. (2011), we determine general equilibrium using the recursive structure

of the model. The system of equations (A.50) determines a unique equilibrium wage in

each country (wi). Furthermore, the mass of entrants M e
i is determined as a function of

parameters in equation (A.38). With these two equilibrium components, we can solve for all

the other endogenous variables as follows. The price index Pj follows from the wage rate

as explained in section A.6. The productivity cutoffs then follow from equation (9), the

wage rates, the price indexes, and that Ei = Ri = wiLi in equilibrium. The mass of firms in

each country i serving each destination country j, Mij , follows from equation (11) and the

productivity cutoffs. Finally, the trade shares λij follow directly from equation (A.47), the

wage rates, and the productivity cutoffs. This completes the characterization of the general

equilibrium.

A.11 Structural Gravity

In this section, we show how to derive the structural gravity equation from our theoretical

model. Substituting equation (A.12) for the ZCP productivity threshold in the solution for

bilateral trade flows in equation (A.45), we can solve for:

Xij = BA
θ
(

1+γ
γ

)
( σ
σ−1)

i Li

(
EjP

σ−1
j

)( 1+γ
γ

)
( θ
σ−1)

w
1−θ

(
1+γ
γ

)
( σ
σ−1)

i b
−θ

(
1+γ
γ

)
i τ

−θ
(

1+γ
γ

)
ij f

1−
θ
1+γ
γ

1+γ
σ+γ (σ−1)

ij .

(A.57)

where B is a constant and a function of parameters σ, γ, θ, δ, and fe. By the definition of

revenue, it follows that:

Ri =

N∑
j=1

Xij = BA
θ
(

1+γ
γ

)
( σ
σ−1)

i b
−θ

(
1+γ
γ

)
i Liw

1−θ
(

1+γ
γ

)
( σ
σ−1)

i Π̃
−θ

(
1+γ
γ

)
i (A.58)
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where

Π̃
−θ

(
1+γ
γ

)
i ≡ Π̃−ετ

i =
N∑
j=1

(
E

1
σ−1

j Pj

)θ( 1+γ
γ

)
ϕij ≡

N∑
j=1

(
E

1
σ−1

j Pj

)ετ
ϕij (A.59)

and

ϕij ≡ τ
−θ

(
1+γ
γ

)
ij f

1−
θ
1+γ
γ

1+γ
σ+γ (σ−1)

ij .

Rearranging equation (A.58) to solve for RiΠ̃
ετ
i (where ετ ≡ θ 1+γγ ) yields:

RiΠ̃
ετ
i = BA

θ
(

1+γ
γ

)
( σ
σ−1)

i b
−θ

(
1+γ
γ

)
i Liw

1−θ
(

1+γ
γ

)
( σ
σ−1)

i . (A.60)

Substituting the LHS term from above for the RHS term into equation (A.57) yields:

Xij =
Ri

Π̃−ετ
i

(
E

1
σ−1

j Pj

)ετ
ϕij . (A.61)

We can define Φ̃j such that:

EjΦ̃
ετ
j ≡

(
E

1
σ−1

j Pj

)ετ
. (A.62)

Substituting the LHS term for the RHS term in equation (A.61) yields:

Xij =
Ri

Π̃−ετ
i

Ej

Φ̃j
−ετ ϕij . (A.63)

Using the definition of Φ̃j in equation (A.62), we can rewrite the multilateral resistance term

Π̃i using equation (A.59) as follows:

Π̃−ετ
i =

N∑
j=1

Ej

Φ̃−ετ
j

ϕij . (A.64)

Finally, by definition of expenditure and equation (A.63) it follows that:

Ej =

N∑
i=1

Xij =
N∑
i=1

Ri

Π̃−ετ
i

Ej

Φ̃−ετ
j

ϕij . (A.65)

This result implies that:

Φ̃−ετ
j =

N∑
i=1

Ri

Π̃−ετ
i

ϕij . (A.66)
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If we define Πi ≡ Π̃−ετ
i and Φj ≡ Φ̃−ετ

j , the system of equations (A.63), (A.64), and (A.66)

forms a structural gravity-equation equivalent to equation (2) in Head and Mayer (2014).

A.12 Elasticity of Trade with respect to Ad Valorem Variable Trade Costs

First, we determine the elasticity of trade with respect to ad valorem variable trade costs.

By definition, aggregate bilateral trade flows are given by:

Xij ≡Mij

∫ ∞

φ∗
ij

rij(φ)µij(φ)dφ =Mij [1−G(φ∗
ij)]

−1

∫ ∞

φ∗
ij

rij(φ)g(φ)dφ. (A.67)

It follows that:

∂Xij

∂τij
=
∂Mij

∂τij

Xij

Mij
+Mij [1−G(φ∗

ij)]
−2
∂G(φ∗

ij)

∂φ

∂φ∗
ij

∂τij
[1−G(φ∗

ij)]
Xij

Mij

−Mij [1−G(φ∗
ij)]

−1rij(φ
∗
ij)g(φ

∗
ij)
∂φ∗

ij

∂τij

+Mij [1−G(φ∗
ij)]

−1

∫ ∞

φ∗
ij

∂rij(φ)

∂τij
g(φ)dφ. (A.68)

From this last result, it is straightforward to define the elasticity as follows:

ετ ≡ −∂Xij

∂τij

τij
Xij

=
∂Mij

∂τij

Xij

Mij

τij
Xij

+Mij [1−G(φ∗
ij)]

−2
∂G(φ∗

ij)

∂φ

∂φ∗
ij

∂τij
[1−G(φ∗

ij)]
Xij

Mij

τij
Xij

−Mij
τij
Xij

[1−G(φ∗
ij)]

−1rij(φ
∗
ij)g(φ

∗
ij)
∂φ∗

ij

∂τij

+Mij
τij
Xij

[1−G(φ∗
ij)]

−1

∫ ∞

φ∗
ij

∂rij(φ)

∂τij
g(φ)dφ

= −

{
∂Mij

∂τij

τij
Mij︸ ︷︷ ︸

extensive

+
g(φ∗

ij)φ
∗
ij

1−G(φ∗
ij)

[
1−

rij(φ
∗
ij)

Xij/Mij

]
∂φ∗

ij

∂τij

τij
φ∗
ij︸ ︷︷ ︸

compositional

+

∫ ∞

φ∗
ij

∂rij(φ)

∂τij

τij
Xij/Mij

µij(φ)dφ︸ ︷︷ ︸
intensive

}
, (A.69)

where the last equality follows from simplifying and rearranging terms.

We now calculate each component of equation (A.69) separately. From equation (9), we

have:
∂φ∗

ij

∂τij
=

(
1 + γ

γ

)
φ∗
ij

τij
, (A.70)
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which implies that:
∂φ∗

ij

∂τij

τij
φ∗
ij

=
1 + γ

γ
. (A.71)

Using equations (11) and (A.70), we have:

∂Mij

∂τij
= −θ

(
Mij

φ∗
ij

)
∂φ∗

ij

∂τij
= −θ

(
Mij

φ∗
ij

)(
1 + γ

γ

)
φ∗
ij

τij
= −θ

(
1 + γ

γ

)
Mij

τij
.

This last result implies that:

∂Mij

∂τij

τij
Mij

= −θ
(
1 + γ

γ

)
. (A.72)

Under the Pareto distribution assumption it follows that:

g(φ∗
ij)φ

∗
ij

1−G(φ∗
ij)

=
θ(φ∗

ij)
−θ−1φ∗

ij

(φ∗
ij)

−θ = θ, (A.73)

where the last equality uses equation (A.70).

Next, using the solution for the equilibrium mass of firms in equation (11) and cutoff-firm

revenue:

rij(φ
∗
ij) =

(
1 + γ

σ + γ

)
σw̃ifij , (A.74)

which, as shown in section A.4, is obtained from the zero profit condition, we can show that:

1−
rij(φ

∗
ij)

Xij/Mij
= 1− 1

θ

[
θ −

(
γ

σ + γ

)
(σ − 1)

]
=

1

θ

(
γ

σ + γ

)
(σ − 1). (A.75)

Finally, as shown in section A.4, it is possible to express firm revenue as a function of

the cutoff productivity as follows:

rij(φ) =

(
φ

φ∗
ij

)(σ−1) γ
σ+γ

rij(φ
∗
ij) =

(
φ

φ∗
ij

)(σ−1) γ
σ+γ

σw̃ifij .

Using this result, we get:

∂rij(φij)

∂τij
= −

[
σ

(
1 + γ

σ + γ

)
− 1

]
rij(φij)

φ∗
ij

∂φ∗
ij

∂τij
= −(σ − 1)

(
1 + γ

σ + γ

)
rij(φij)

τij
. (A.76)
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It then follows that:∫ ∞

φ∗
ij

∂rij(φ)

∂τij

τij
Xij/Mij

µij(φ)dφ = −
∫ ∞

φ∗
ij

(σ − 1)

(
1 + γ

σ + γ

)
rij(φij)

τij

τij
Xij/Mij

µij(φ)dφ

= −(σ − 1)

(
1 + γ

σ + γ

)(
1

Xij

)
Mij

∫ ∞

φ∗
ij

rij(φij)µij(φ)dφ

= −(σ − 1)

(
1 + γ

σ + γ

)
Xij

Xij
= −(σ − 1)

(
1 + γ

σ + γ

)
. (A.77)

Substituting results (A.71), (A.72), (A.73), (A.75) and (A.77) into equation (A.69), we get:

ετ = −

−θ
(
1 + γ

γ

)
︸ ︷︷ ︸

extensive

+(1− σ)

(
1 + γ

σ + γ

)
︸ ︷︷ ︸

intensive

+(σ − 1)

(
1 + γ

σ + γ

)
︸ ︷︷ ︸

compositional


= θ

(
1 + γ

γ

)
= θ

(
1 +

1

γ

)
,

which is the result in the paper.

A.13 Elasticity of Trade with respect to Fixed Trade Costs

The computations for the fixed-trade-cost trade elasticity are similar to those for the ad

valorem variable-trade-cost trade elasticity. From equation (A.67), we get:

∂Xij

∂fij
=
∂Mij

∂fij

Xij

Mij
+Mij [1−G(φ∗

ij)]
−2
∂G(φ∗

ij)

∂φ

∂φ∗
ij

∂fij
[1−G(φ∗

ij)]
Xij

Mij

−Mij [1−G(φ∗
ij)]

−1rij(φ
∗
ij)g(φ

∗
ij)
∂φ∗

ij

∂fij
(A.78)

+Mij [1−G(φ∗
ij)]

−1

∫ ∞

φ∗
ij

∂rij(φ)

∂fij
g(φ)dφ,

such that

εf ≡ −∂Xij

∂fij

fij
Xij

= −

{
∂Mij

∂fij

fij
Mij︸ ︷︷ ︸

extensive

+
g(φ∗

ij)φ
∗
ij

1−G(φ∗
ij)

[
1−

rij(φ
∗
ij)

Xij/Mij

]
∂φ∗

ij

∂fij

fij
φ∗
ij︸ ︷︷ ︸

compositional

+
fij

Xij/Mij

∫ ∞

φ∗
ij

∂rij(φ)

∂fij
µij(φ)dφ︸ ︷︷ ︸

intensive

}
. (A.79)
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Some of the “components” of this last result are the same as those in equation (A.69). So,

we calculate only the new components of equation (A.79). First, from equation (9), we have:

∂φ∗
ij

∂fij

fij
φ∗
ij

=

(
σ + γ

γ

)(
1

σ − 1

)
. (A.80)

Using this result and equations (A.73) and (A.75), it follows that the compositional margin

defined in (A.79) simplifies to 1:

g(φ∗
ij)φ

∗
ij

1−G(φ∗
ij)

[
1−

rij(φ
∗
ij)

Xij/Mij

]
∂φ∗

ij

∂fij

fij
φ∗
ij

= θ

[
1− 1 +

1

θ

(
γ

σ + γ

)
(σ − 1)

](
σ + γ

γ

)(
1

σ − 1

)
= 1. (A.81)

Next, using the definition of firm-level revenue in equation (A.76), we can show that:

∂rij(φij)

∂fij
= 0. (A.82)

This result implies that the intensive-margin component of the elasticity in (A.79) is equal

to 0. Finally, from the equilibrium mass of firms in equation (11), we have:

∂Mij

∂fij
= −θ

(
Mij

φ∗
ij

)
∂φ∗

ij

∂fij
= −θ

(
σ + γ

γ

)(
1

σ − 1

)(
Mij

φ∗
ij

)
φ∗
ij

fij

= −θ
(
σ + γ

γ

)(
1

σ − 1

)
Mij

fij
.

This last result implies that:

∂Mij

∂fij

fij
Mij

= −θ
(
σ + γ

γ

)(
1

σ − 1

)
. (A.83)

Substituting equations (A.81), (A.82), and (A.83) into equation (A.69), we get:

εf = −

− θ
γ

σ+γ (σ − 1)︸ ︷︷ ︸
extensive

+ 0︸︷︷︸
intensive

+ 1︸︷︷︸
compositional

 =
θ

γ
σ+γ (σ − 1)

− 1 =
θ 1+γγ

1+γ
σ+γ (σ − 1)

− 1,

which is the result in the paper.
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A.14 Welfare

In the model, welfare (Wj) is equal to purchasing power. Letting the consumption aggregate

Cj ≡ Uj , then by definition of the ideal price index it follows that:

PjCj = wj ⇔ Wj =
wj
Pj
. (A.84)

To compute welfare, we need to define each term of Wj . We begin with the price index.

From the zero-profit condition πij(φ
∗
ij) = 0 and the definition of profits in equation (A.6),

we have: (
σ + γ

1 + γ

)
rij(φ

∗
ij)

σ
= w̃ifij .

Substituting demand function (A.2) into the equation above for rij(φ
∗
ij) yields:(

σ + γ

1 + γ

)
EjP

σ−1
j b1−σi pij(φ

∗
ij)

1−σ

σ
= w̃ifij ⇒ b1−σi pij(φ

∗
ij)

1−σ =

(
1 + γ

σ + γ

)
σw̃ifij

EjP
σ−1
j

.

(A.85)

Substituting this result into equation (A.44), we obtain:

P 1−σ
j =

 θ

θ − (σ − 1)
(

γ
σ+γ

)
( 1 + γ

σ + γ

)
σ

EjP
σ−1
j

∑
i

Mijw̃ifij

⇔ 1 =

 θ

θ − (σ − 1)
(

γ
σ+γ

)
( 1 + γ

σ + γ

)
σ

Ej

∑
i

Mijw̃ifij . (A.86)

Substituting in the equation above with the mass of firms from equation (A.41) yields:

1 =

[
θ

θ − (σ − 1) γ
σ+γ

](
1 + γ

σ + γ

)
σ

Ej

∑
i

(
γ

1 + γ

)(
σ − 1

σ

)
AiLi

wi
Ai
fij

θδfe(φ∗
ij)

θ

which simplifies to:

1 =

[
γ

σ+γ (σ − 1)

θ − γ
σ+γ (σ − 1)

]
E−1
j

∑
i

wiLifij
δfe

(φ∗
ij)

−θ.
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Substituting in equation (A.12) for φ∗
ij in the equation above yields:

1 =

[
γ

σ+γ (σ − 1)

θ − γ
σ+γ (σ − 1)

]
E−1
j

δfe

∑
i

wiLifij



(
1+γ
γ

σ
σ−1 w̃i

)σ
EjP

σ−1
j b1−σi


1+γ
γ

σ−1 [
γ

σ + γ
(σ − 1)fij

] 1+γ
γ

1+γ
σ+γ (σ−1)

τ
1+γ
γ

ij


−θ

.

Solving the equation above for P
−θ 1+γ

γ

j on the LHS yields:

P
−θ

(
1+γ
γ

)
j = DE

θ
(

1+γ
γ

)
( 1
σ−1)−1

j

N∑
i=1

A
θ
(

1+γ
γ

)
( σ
σ−1)

i wiLiw
−θ

(
1+γ
γ

)
( σ
σ−1)

i b
−θ

(
1+γ
γ

)
i τ

−θ
(

1+γ
γ

)
ij f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

ij

where

D =

[
γ

σ+γ (σ − 1)

θ − γ
σ+γ (σ − 1)

]
(δfe)−1

[(
1 + γ

γ

)(
σ

σ − 1

)(
γ

σ + γ

)
(σ − 1)

] −θ
γ

σ+γ (σ−1)

is a constant that depends on parameters σ, γ, θ, δ and fe. It will be convenient to rewrite

the equation above as:

P
−θ

(
1+γ
γ

)
j = DE

θ
(

1+γ
γ

)
( 1
σ−1)−1

j

N∑
k=1

A
θ
(

1+γ
γ

)
( σ
σ−1)

k wkLkw
−θ

(
1+γ
γ

)
( σ
σ−1)

k b
−θ

(
1+γ
γ

)
k τ

−θ
(

1+γ
γ

)
kj f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

kj .

(A.87)

Having defined the first component of welfare (Pj), we turn to the second component:

wage rates. From equation (A.48), we have:

λjj =
wjLjw

−θ
(

1+γ
γ

)
( σ
σ−1)

j A
θ
(

1+γ
γ

)
( σ
σ−1)

j b
−θ

(
1+γ
γ

)
j f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

jj

∑N
k=1wkLkw

−θ
(

1+γ
γ

)
( σ
σ−1)

k A
θ
(

1+γ
γ

)
( σ
σ−1)

k b
−θ

(
1+γ
γ

)
k τ

−θ
(

1+γ
γ

)
kj f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

kj

where τjj = 1, as standard in the literature. Dividing both sides by λjj and multiplying both
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sides by w
θ 1+γ

γ

j yields:

w
θ
(

1+γ
γ

)
j =

(
1

λjj

)
wjLjw

−θ
(

1+γ
γ

)
( 1
σ−1)

j A
θ
(

1+γ
γ

)
( σ
σ−1)

j b
−θ

(
1+γ
γ

)
j f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

jj

∑N
k=1wkLkw

−θ
(

1+γ
γ

)
( σ
σ−1)

k A
θ
(

1+γ
γ

)
( σ
σ−1)

k b
−θ

(
1+γ
γ

)
k τ

−θ
(

1+γ
γ

)
kj f

1−
θ( 1+γ

γ )
γ

σ+γ (σ−1)

kj

,

(A.88)

Multiplying equations (A.87) and (A.88) yields:

W
θ
(

1+γ
γ

)
j = DE

θ
(

1+γ
γ

)
( 1
σ−1)−1

j

(
1

λjj

)
wjLjw

−θ
(

1+γ
γ

)
( 1
σ−1)

j A
θ
(

1+γ
γ

)
( σ
σ−1)

j b
−θ

(
1+γ
γ

)
j f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

jj .

Since Ej = wjLj , then:

W
θ
(

1+γ
γ

)
j = D

(
1

λjj

)
L
θ
(

1+γ
γ

)
( 1
σ−1)

j A
θ
(

1+γ
γ

)
( σ
σ−1)

j b
−θ

(
1+γ
γ

)
j f

1−
θ( 1+γ

γ )
1+γ
σ+γ (σ−1)

jj

or

W
θ
(

1+γ
γ

)
j = D

1

θ( 1+γ
γ )λ

− 1

θ( 1+γ
γ )

jj L
1

σ−1

j A
σ

σ−1

j b−1
j f

(
1

1+γ

)
( γ
θ
−σ+γ

σ−1 )
jj .

Hence, for any foreign shock (i.e., holding constant Lj , Aj , bj and fjj), then:

Ŵj = λ̂
− 1

θ( 1+γ
γ )

jj (A.89)

where the hat denotes the gross change, i.e., W ′
j/Wj and λ

′
jj/λjj , where W

′
j and λ

′
jj denote

the post-shock values of Wj and λjj , respectively.

Feenstra (2010) insightfully shows that one can interpret the gains from trade in a Melitz

model as a gain due to increase in “export variety” or “average productivity.” Importantly,

the gain reflects the increase in real wage rates due to the productivity improvement as new

exporting firms drive out less productive domestic firms, raising average productivity.47

To make this point, Feenstra (2010) derives a transformation curve between masses of

varieties for sale to different markets, Mij , and shows that trade increases real income by

allowing the economy to reach more productive output combinations. As shown below in

section A.15, we can solve for the concave transformation frontier between the (output-

47As Feenstra (2010) notes, because the gains from new imported varieties exactly offset the losses from
fewer domestic varieties (under the Pareto distribution assumption), there are no further gains from trade on
the consumption side.
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adjusted) masses of varieties, M̃ij , as follows:

Li = k1(f
e)

1
1+η

∑
j

f
η−θ
η

ij M̃
1+η
η

ij


η

1+η

, (A.90)

where k1 > 0 is a constant that depends only on parameters of the model (with the exact

definition of k1 provided later in section A.15). The economically important difference

between our result under IMC and that in Feenstra (2010) under CMC is that the constant-

elasticity-of-transformation (CET) in our model is η = θ
(

σ
σ−1

)(
1+γ
γ

)
− 1 > 0, whereas

Feenstra’s CET is ω = θ
(

σ
σ−1

)
− 1 > 0. All else equal, η ≥ ω because (1 + γ)/γ ≥ 1, with

strict inequality when γ <∞. Thus, with IMC, the CET curve will be flatter than under

CMC as long as γ <∞. In fact, we can show:

η = ω + (ω + 1)/γ,

which reveals the degree to which the CET under IMC is larger. As γ declines from ∞, η

increases relative to ω. As γ approaches ∞, η = ω, as in Feenstra (2010).

In section A.15 below, we show that aggregate income in our model is a linear function

of the (output-adjusted) masses of varieties:

Ri =
N∑
j=1

AijM̃ij , (A.91)

where, to be consistent (and tractable) with Feenstra (2010), the Aijs now denote demand-

shift parameters that depend only on parameters of the model; in the remainder of this

section and in the next, we omit any TFP shocks (labeled previously A) and preference

shocks (labeled previously b). As explained in Feenstra (2010), the welfare maximizing

combination of (output-adjusted) masses of varieties can be obtained by maximizing income

in equation (A.91) subject to the transformation curve in equation (A.90).

We can now evaluate the impact of trade liberalization on welfare. For simplicity, consider

the two-country case illustrated in Figure A.1 (an extended version of Figure 5 in Feenstra

(2010)). As shown in Figure A.1, our transformation curve (the dashed bowed-out line

from point A to point B) is flatter compared to that of Feenstra (2010) under CMC (the

solid bowed-out line from point A to point B). Point A represents the equilibrium under

autarky for both cases. At that point, the mass of (output-adjusted) varieties for sale in

the domestic market is positive, M̃ > 0, and the mass of (output-adjusted) varieties for sale

in the foreign market is null, M̃x = 0. Autarky income is represented by the straight line

closest to the origin, starting at point A. By opening up to trade, the economy can increase
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Figure A.1: CET Frontier with Increasing Marginal Costs and Constant Marginal Costs

its mass of (output-adjusted) varieties for sale in the foreign market and reduce its mass of

(output-adjusted) varieties for sale in the domestic market. Under CMC, the gain in income

is shown by the shift outward of the straight line through point A to the straight line tangent

to the (solid-line) transformation curve at point C. Under IMC, the transformation curve is

flatter which leads to smaller gains in income, as shown by the shift outward of the straight

line through point A to the straight line tangent to the (dashed-line) transformation curve

at point D. The difference between the income line tangent to point C and the income line

tangent to point D represents the welfare diminution effect associated with IMC.

The diminished welfare gains due to IMC can also be interpreted mathematically in

the context of Feenstra (2010). In a Melitz model with constant marginal costs, the change

in welfare (Ŵj) from a reduction in variable trade costs is proportionate to the change in

average productivity ( ˆ̃φij) and the change in the number of varieties (M̂ij), cf., Melitz (2003),

equation (17). Feenstra (2010) shows also that the change in welfare (Ŵj) can be simplified

further to be proportionate to the change in output of the zero-cutoff-profit firm (qij(φ̂
∗
ij)),

cf. Feenstra (2010). As seen in equation (8) in the paper, under IMC the output of the cutoff

productivity firm is proportional to the cutoff productivity according to:

qij(φ
∗
ij) =

[(
γ

σ + γ

)
(σ − 1)fijφ

∗
ij

] γ
1+γ

.

Because a property of the Pareto distribution is that the average productivity, φ̃ij , is

proportionate to cutoff productivity, φ∗
ij , changes in welfare will be proportional to (φ̂∗

ij)
γ

1+γ .

Under CMC, there is a linear relationship between the productivity cutoff and the output, i.e.,

as γ approaches ∞, γ
1+γ approaches 1. However, when we introduce IMC, this relationship
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becomes concave. As a result, a given change in φ∗
ij has a smaller effect on output, qij(φ

∗
ij),

under IMC than under CMC. This is the intuition underlying the “welfare diminution effect”

from increasing marginal costs.

A.15 Constant Elasticity of Transformation

In this section, we derive the constant-elasticity-of-transformation (CET) function for our

model. As a first step, we define aggregate revenue in our model. Using equations (A.45),

(A.46), and (A.47):

Ri =

N∑
j=1

Xij =

N∑
j=1

Mij

∫ ∞

φ∗
ij

rij(φ)µij(φ)dφ. (A.92)

In our model, we can solve for pij(φ) = qij(φ)
− 1

σ τ
1−σ
σ

ij P
σ−1
σ

j (wjLj)
1
σ . Since rij(φ) =

pij(φ)qij(φ) and assuming aggregate revenue (Ri) equals aggregate income (wiLi), we

can write:

Ri = wiLi =
N∑
j=1

AijMij

∫ ∞

φ∗
ij

qij(φ)
σ−1
σ µij(φ)dφ =

N∑
j=1

AijM̃ij (A.93)

where, analogous to Feenstra (2010):

Aij = τ
1−σ
σ

ij Pj

(
wjLj
Pj

) 1
σ

(A.94)

and we denote M̃ij as the “output-adjusted” mass of varieties produced in country i and

sold in market j:

M̃ij =Mij

∫ ∞

φ∗
ij

qij(φ)
σ−1
σ µij(φ)dφ. (A.95)

In the context of our model, we know from section A.4 that:

φ̃ij =

[∫ ∞

φ∗
ij

φ
γ

γ+σ
(σ−1)

µij(φ)dφ

] 1
γ

γ+σ (σ−1)

(A.96)

is a measure of average productivity (φ̃ij). Using equation (A.13) from section A.4, we can

write:

qij(φ) =

(
φ

φ̃ij

)σ γ
γ+σ

qij(φ̃ij). (A.97)
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Using equation (A.97) in the middle equality in equation (A.93) yields:

wiLi =

N∑
j=1

AijMij

∫ ∞

φ∗
ij

[(
φ

φ̃ij

)σ γ
γ+σ

qij(φ̃ij)

]σ−1
σ

µij(φ)dφ

=
N∑
j=1

AijMij [qij(φ̃ij)]
σ−1
σ φ̃

(1−σ) γ
γ+σ

ij

∫ ∞

φ∗
ij

φ
(σ−1) γ

γ+σµij(φ)dφ. (A.98)

Since the integral term in the equation above simplifies to φ̃
(σ−1) γ

γ+σ

ij , then:

wiLi =

N∑
j=1

AijMij [qij(φ̃ij)]
σ−1
σ =

N∑
j=1

AijM̃ij (A.99)

where

M̃ij =Mij [qij(φ̃ij)]
σ−1
σ .

Using the equations for output and average productivity (A.9) and (A.23), respectively, and

inverting equation (A.41) to solve for φ∗
ij as a function of Mij , we find:

M̃ij = k0f
γ

γ+1
σ−1
σ

ij

(
fe

Li

)− γ
1+γ

σ−1
θσ

M
1− γ

γ+1
σ−1
θσ

ij , (A.100)

where k0 is a constant that depends only on parameters σ, γ, θ, and δ:

k0 =

[
θ

θ − (σ − 1) γ
γ+σ

] [(
γ

γ + σ

)
(σ − 1)

]( γ
1+γ

)
(σ−1

σ ) [( γ

1 + γ

)(
σ − 1

σ

)
1

θδ

] 1
θ

(
γ

1+γ

)
(σ−1

σ )
.

We invert equation (A.100) to solve for the mass of firms as a function of the adjusted

mass:

Mij =

(
1

k0

) 1+η
η

f
− θ

η

ij

(
fe
Li

) 1
η

M̃
1+η
η

ij (A.101)

where η = θ
(
1+γ
γ

)(
σ
σ−1

)
− 1.

We can use equation (A.36), from section A.5, to express country i’s labor stock as a

linear transformation function of masses Mij :

Li =

(
1 + γ

γ

)(
σ

σ − 1

)[
θ(σ − 1) γ

γ+σ

θ − (σ − 1) γ
γ+σ

]
N∑
j=1

Mijfij . (A.102)

Substituting equation (A.101) into equation (A.102) yields country i’s labor stock as a
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concave CET function of the “output-adjusted” masses:

Li = k1(f
e)

1
1+η

∑
j

f
η−θ
η

ij M̃
1+η
η

ij


η

1+η

(A.103)

which is similar – but not identical – to (corrected) equation (3.24) in Feenstra (2010).48

Note that k1 is a constant that depends only parameters σ, γ, θ, and k0:

k1 =
1

k0

[(
1 + γ

γ

)(
σ

σ − 1

)
θ(σ − 1) γ

γ+σ

θ − (σ − 1) γ
γ+σ

]1− 1
θ

(
γ

1+γ

)
(σ−1

σ )

=
1

k0

 θσ
(

1+γ
γ+σ

)
θ − (σ − 1) γ

γ+σ

1− 1
θ

(
γ

1+γ

)
(σ−1

σ )

.

48The exponent for fij , 1− θ
η
, differs from, and is a corrected version of, that in Feenstra (2010). Under

CMC, the exponent in Feenstra (2010) should be 1− θ
ω
, not 1 + θ

ω

(
= 1 + (ω+1)(σ−1)

ωσ

)
, and was confirmed

with Robert Feenstra in email correspondence.
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B Appendix B

B.1 The Bergstrand (1985) Model with Increasing Marginal Costs

As noted in numerous studies and in prominent surveys of the gravity equation in international

trade, the first formal theoretical foundation for the gravity equation was Anderson (1979).

Assuming a frictionless world, Anderson (1979) established theoretically one of the most

enduring empirical relationships in international trade – that bilateral trade from i to j

(Xij) was proportional to the product of both countries’ national outputs (YiYj) – using

only four assumptions: every country i is endowed with a nationally differentiated output

(Yi), preferences are identical and homothetic across countries, the assumed absence of trade

costs allows all prices to be identical across countries, and trade is balanced multilaterally

(i.e., markets clear). The first three assumptions implied the demand for i’s output in j

was proportionate to j’s output, Xij = biYj , where bi is every importer’s demand for the

good of i as a share of its expenditures. Assuming all output of each country is absorbed

(i.e., markets clear), Xij = YiYj/YW , where YW is world output. However, once Anderson

(1979) introduced (positive) trade costs, he was unable to generate a transparent “structural”

gravity equation, such as in Anderson and van Wincoop (2003). In fact, throughout the

later sections including his appendix (using CES preferences), Anderson (1979) assumed

inappropriately “the convention that all free trade prices are unity” despite his incorporating

trade costs (cf., p. 115).

In contrast to Anderson (1979), the main motivation behind Bergstrand (1985) was to

address the role of prices in the gravity equation, both theoretically and empirically. Unlike

Anderson (1979), Bergstrand (1985) started with a CES utility function to emphasize that

products from various markets were imperfect substitutes, as originally hypothesized by

Armington. Moreover, he nested a CES utility function among importables inside a CES

utility function between importables and the domestic good. On the supply side, he chose

not to use the convention of constant marginal costs. Rather, he introduced a constant-

elasticity-of-transformation (CET) function for producing output in the domestic market

and foreign market, allowing a cost (in terms of labor) for output to be transformed between

home and foreign markets. He also used a CET function to allow a cost for foreign output to

be transformed between various export markets. He nested the latter CET function inside

the former CET function. This formulation motivated upward-sloping supply curves for each

bilateral market (including the domestic market). Assuming bilateral import demand values

equaled bilateral export supply values in general equilibrium, this generated a system of

4N2 + 3N equations in the same number of unknowns.

Assuming each bilateral market was small relative to the other N2 − 1 markets and

identical preferences and technologies across countries, Bergstrand (1985) derived the trade
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gravity equation:

Xij = Y
σ−1
γ+σ

i Y
γ+1
γ+σ

j (CijTij)
−σ γ+1

γ+σE
σ γ+1

γ+σ

ij

 N∑
k=1,k ̸=i

p1+γik

− (σ−1)(γ−η)
(1+γ)(γ+σ)

 N∑
k=1,k ̸=j

p1−σkj


(γ+1)(σ−µ)
(1−σ)(γ+σ)


 N∑
k=1,k ̸=i

p1+γik


1+η
1+γ

+ p1+ηii


− σ−1

γ+σ

 N∑
k=1,k ̸=j

p1−σkj


1−µ
1−σ

+ p1−µjj


− γ+1

γ+σ

,

(B.1)

where Cij ≥ 1 is the gross transport (or c.i.f./f.o.b.) factor, Tij ≥ 1 is the gross tariff rate,

Eij is the spot exchange rate (value of j’s currency in terms of i’s), pik is the (free-on-board,

or f.o.b.) price in i’s currency of i’s goods sold in k, p̄kj is the (cost-insurance-freight, or

c.i.f.) price of k’s good in j (including tariffs), σ (µ) is the elasticity of substitution in

consumption between importables (between importables and the domestic good), and γ

(η) is the elasticity of transformation of output between export markets (between foreign

markets and the domestic market).49 The limitation in Bergstrand (1985) was that – due to

the complexity of equation (B.1) – the market-clearing condition of Anderson (1979) could

not be imposed.

In the remainder of this appendix, we provide two theoretical results. First, we show that

a special case of gravity equation (14) in Bergstrand (1985) – labeled equation (B.1) above –

yields that the intensive-margin (and trade) elasticity with respect to τij is identical to the

intensive-margin elasticity in Section 3.1 of this paper (from our modified Melitz model).

Second, we show that – allowing the non-nested (single) constant-elasticity-of-transformation

in this case to equal infinity and assuming multilateral trade balance – a “structural gravity

equation” results.

B.2 Reconciling the Intensive-Margin Elasticity in Bergstrand (1985) with

Section 3.1’s Intensive-Margin Elasticity

Before we reconcile equation (B.1) with structural gravity, a special case of Bergstrand

(1985) yields an intensive-margin (and, in this homogeneous-firm context, trade) elasticity

identical to that in Section 3.2. We need only two assumptions. First, assume the elasticities

of substitution in consumption in equation (B.1) to be identical (σ = µ). Second, assume the

elasticities of transformation in equation (B.1) to be identical (γ = η). Simplifying notation

49We have replaced here some notation in the original article. We use Xij for the nominal trade flow
rather than PXij and we use pij rather than Pij to denote bilateral prices.
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in equation (B.1) by denoting τij = CijTij/Eij , these two assumptions yield:

Xij = Y
σ−1
γ+σ

i Y
γ+1
γ+σ

j (τij)
(1−σ) γ+1

γ+σ


 N∑
j=1

p1+γij

 1
1+γ


(1−σ) γ+1

γ+σ ( N∑
i=1

(pijτij)
1−σ

) 1
1−σ

−(1−σ) γ+1
γ+σ

.

(B.2)

From equation (B.2), the (positively-defined) intensive-margin (and trade) elasticity with

respect to τij is:

ετ = −∂Xij

∂τij

τij
Xij

= − 1 + γ

σ + γ
(1− σ) =

1 + γ

σ + γ
(σ − 1). (B.3)

This elasticity is identical to that in Section 3.1 of the current paper. Moreover, this trade

elasticity is scaled down by 1+γ
σ+γ relative to the constant marginal cost case in Anderson

(1979) (and analogously in Krugman (1980)). The intuitive explanation for this was provided

in the paper’s introduction, Section 1, and illustrated in Figure 1.

B.3 Reconciling the Gravity Equation in Bergstrand (1985) with Struc-

tural Gravity

The second theoretical result in this appendix is to show that a special case of gravity equation

(14) in Bergstrand (1985) is consistent with the structural gravity equation in Anderson and

van Wincoop (2003) and in Baier et al. (2017). Building upon the previous section B.2, add

two more assumptions. First, assume production is now costlessly transformable between

markets (γ = ∞). With this additional assumption, equation (B.2) above simplifies to:

Xij = Yj

(
piτij
Pj

)1−σ
(B.4)

where pij is replaced by pi since output is now costlessly transformed between markets and:

Pj ≡

[
N∑
i=1

(piτij)
1−σ

]1/(1−σ)
. (B.5)

Equation (B.4) is identical to equation (6) in Anderson and van Wincoop (2003) (ignoring

the arbitrary preference parameter βi in that paper) and to the bilateral import demand

functions in structural gravity equations discussed in Baier et al. (2017). Second, structural

gravity follows once one assumes also market clearance (trade balance), Yi =
∑N

j=1Xij .
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Following derivations in Anderson and van Wincoop (2003) and Baier et al. (2017):

Xij =
YiYj
YW

(
τij

ΠiPj

)1−σ
(B.6)

where:

Πi =

 N∑
j=1

Yj
YW

(
τij
Pj

)1−σ
1/(1−σ)

(B.7)

and:

Pj =

[
N∑
i=1

Yj
YW

(
τij
Πi

)1−σ
]1/(1−σ)

. (B.8)

Thus, the simplifications of equation (B.1) above from Bergstrand (1985) – along with adding

in the market-clearing condition – yield the same structural gravity equation as in Anderson

and van Wincoop (2003) and Baier et al. (2017).
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C Appendix C

The key distinguishing assumption of our model is that marginal costs are increasing in

output. There are many ways to implement this. In section 2.2 of the paper, we motivated

the case for marginal costs increasing with respect to destination-specific output. This is one

extreme of a range of models. At the other extreme, marginal costs could depend exclusively

on the overall output of the firm. In that case, all the destination-specific customization is

captured in the fixed export costs, as more common to Melitz models. In this appendix, we

develop a model that fits this type of increasing marginal costs, that is, marginal costs are

allowed to increase with total firm output.

If the marginal costs depend on overall firm output, which itself depends on the en-

dogenous set of countries to which the firm exports, we cannot solve analytically a model

with asymmetric country size and asymmetric bilateral trade barriers. As a consequence,

in this appendix we assume all countries are identical and develop an extension of the

symmetric-country Melitz (2003) model with increasing marginal costs in total firm-level

output and a Pareto distribution of firm productivity. We present only key results because

the solution method is similar to the one we used to solve the model in the main text; we

refer the reader to Appendix A for additional details.

Consider a world with 1 + J identical countries. The representative consumer in each

country has CES preferences defined over differentiated varieties. The representative consumer

maximizes utility subject to the standard income constraint. Hence, the optimal aggregate

demand function for each variety ν is given by:

c(ν) = EP σ−1pc(ν)−σ, with P =

[∫
ν∈Ω

pc(ν)1−σdν

] 1
1−σ

(C.1)

where E denotes aggregate expenditure, pc(ν) is the unit price of variety ν, and Ω is the set

of varieties available for consumption.50

Firms face fixed production costs and increasing marginal costs, such that the total labor

demand by a firm depends on its total output (q) and whether or not the firm exports as

follows:

l(φ) = f + IxJfx +
q
1+ 1

γ

φ
, (C.2)

where φ denotes the firm’s productivity and q is total output defined as:

q = qd + IxJqx,

50Different from the main text and Appendix A, we omit, for brevity, preference parameter b.
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where qd denotes domestic sales and qx denotes sales to a foreign market.51 The variable Ix

is an indicator function equal to 1 if the firm exports and 0 otherwise. It is important to note

that, because countries and (international bilateral) trade costs (τ and fx) are symmetric, if

a firm can export profitably to one market abroad, it will be able to export profitably to all

foreign markets.

Using the labor-demand function in equation (C.2), we can express firm-level profits as:

π(φ) = pdqd + IxJpxqx − w

[
f + IxJfx +

1

φ
(qd + IxJqx)

1+ 1
γ

]
, (C.3)

where w is the wage rate. It is important to emphasize that, in contrast to the benchmark

model, it is not possible to separate total profits into domestic and export components. This

key distinction is a direct consequence of the technology. As shown in equation (C.2), labor

demand is a non-linear function of total firm output such that it is not possible to separate

the costs associated with output for domestic sales from the costs associated with output

for foreign sales. As a result, the firm’s production costs must be expressed as a function

of total output as seen from the last term in square brackets. This implies that we cannot

solve for the optimal behavior of a given firm in each market separately, that is, without

also taking into account its behavior in other markets. Instead, we need to characterize the

optimal behavior of firm as a function of both its market (domestic vs. foreign) and its type

(domestic vs. exporter).

Markets are segmented, such that firms can charge different prices in the domestic and

foreign markets. Therefore, the firm-level profit maximization problem takes the following

form:

max
pd,px

π(φ) = pdqd + IxJpxqx − w

[
f + IxJfx +

1

φ
(qd + IxJqx)

1+ 1
γ

]
(C.4)

subject to the demand constraints defined in equation (C.1). The two first-order conditions

imply the following pricing rules:

pDd (φ) =

(
1 + γ

γ

)(
σ

σ − 1

)
w

φ
qDd (φ)

1
γ ,

pXd (φ) =

(
1 + γ

γ

)(
σ

σ − 1

)
w

φ

[(
1 + Jτ1−σ

)
qXd (φ)

] 1
γ ,

(C.5)

where pDd (φ) and q
D
d (φ) denote, respectively, the optimal domestic sales price and output of a

(pure) domestic firm (denoted with superscript D) with productivity φ producing and selling

in the domestic market (denoted with subscript d). Let pXd (φ) and qXd (φ) denote, respectively,

the optimal sales price and output of an exporting firm (denoted with superscript X) with

51Different from the main text and Appendix A, we omit, for brevity, the TFP factor A.
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productivity φ selling in the domestic market (denoted with subscript d). The results in

equation (C.5) imply that, conditional on productivity and total output, exporting firms

(located in country d) can charge higher, equal, or lower prices at home relative to (pure)

domestic firms, due to opposing effects from productivity differences versus scale effects. The

higher productivity of an exporter tends to lower pXd relative to pDd . However, an exporter

serves more markets, tending to raise pXd relative to pDd .

We define the profitability threshold φ∗ as the productivity level at which a (pure)

domestic firm makes zero profits: π(φ∗|Ix = 0) = 0, where the profit function π(·) is defined
in equation (C.3). Using this condition, we can solve for the output and the price of the

threshold pure domestic firm as follows:

qDd (φ
∗) =

[(
γ

σ + γ

)
(σ − 1)fφ∗

] γ
1+γ

,

pDd (φ
∗) =

(
1 + γ

γ

)(
σ

σ − 1

)[(
γ

σ + γ

)
(σ − 1)f

] 1
1+γ

w(φ∗)
−γ
1+γ .

(C.6)

Similarly, if we define the export profitability threshold as the level of productivity φ∗
x

required for an exporting firm to break even, π(φ∗
x|Ix = 1) = 0, we can solve for the domestic

price and output of the threshold exporting firm as follows:

qXd (φ∗
x) =

(
1

1 + Jτ1−σ

)[(
γ

σ + γ

)
(σ − 1)(f + Jfx)φ

∗
x

] γ
1+γ

,

pXd (φ
∗
x) =

(
1 + γ

γ

)(
σ

σ − 1

)[(
γ

σ + γ

)
(σ − 1)(f + Jfx)

] 1
1+γ

w(φ∗
x)

−γ
1+γ .

(C.7)

Note that, when J = 0, these last two solutions become equivalent to the domestic firms’

solutions in (C.6), as they should. Substituting the results in (C.6) and (C.7) into the

zero-profit conditions that define the productivity thresholds and rearranging, we obtain:

π(φ∗|Ix = 0) = 0 ⇔ rDd (φ
∗) =

(
1 + γ

σ + γ

)
σwf,

π(φ∗
x|Ix = 1) = 0 ⇔ rXd (φ∗

x) =

(
1 + γ

σ + γ

)(
σw

1 + Jτ1−σ

)
(f + Jfx) .

(C.8)

From the definition of revenues (r(φ) = p(φ)q(φ)) and the optimal demand function in

(C.1), it follows that

rDd (φ)

rDd (φ
∗)

=

[
pDd (φ)

pDd (φ
∗)

]1−σ
and

rXd (φ)

rXd (φ∗
x)

=

[
pXd (φ)

pXd (φ
∗
x)

]1−σ
. (C.9)

We can simplify these results using the definitions of prices in equations (C.6) and (C.7) to
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obtain analytical expressions for the revenue of any firm as a function of the revenue of the

threshold firm. Combining these expressions with equations (C.8), it is possible to express

the revenue of any domestic and exporting firms, respectively, as follows:

rDd (φ) =

(
1 + γ

σ + γ

)
σwf

(
φ

φ∗

)(σ−1)
(

γ
σ+γ

)
,

rXd (φ) =

(
1 + γ

σ + γ

)(
σw

1 + Jτ1−σ

)
(f + Jfx)

(
φ

φ∗
x

)(σ−1)
(

γ
σ+γ

)
.

(C.10)

Using equations (C.8), we can obtain a first expression for the ratio of domestic threshold

revenue and export threshold revenue,

rDd (φ
∗)

rXd (φ∗
x)

=
(
1 + Jτ1−σ

)( f

f + Jfx

)
. (C.11)

We can obtain a second expression for the ratio of domestic threshold revenue and export

threshold revenue using the definition of revenue and the optimal demand function as follows:

rDd (φ
∗)

rXd (φ∗
x)

=

[
pDd (φ

∗)

pXd (φ
∗
x)

]1−σ
. (C.12)

Using the definitions of prices in equations (C.6) and (C.7), we obtain:

rDd (φ
∗)

rXd (φ∗
x)

=

(
f

f + Jfx

) 1−σ
1−γ

(
φ∗

φ∗
x

)(σ−1)
(

γ
1+γ

)
. (C.13)

Combining our two expressions for the ratio of revenues, (C.11) and (C.13), we can solve

for the ratio of the productivity thresholds as follows:

φ∗
x

φ∗ =

(
1

1 + Jτ1−σ

)( 1
σ−1)

(
1+γ
γ

)(
f + Jfx

f

)( 1
σ−1)

(
σ+γ
γ

)
. (C.14)

When γ → ∞, the relationship between the two thresholds is analogous to that in the

benchmark Melitz (2003) model. We can use the definitions of revenue in (C.10) and the

ratio in (C.14) to express average profits as a function of parameters of the model and the

profitability threshold φ∗. Using the free entry condition that the expected value of entry is

equal to the cost of entry, we can show that there exists a unique equilibrium threshold φ∗.

We are interested in defining the trade elasticities in our model. For convenience, we

introduce the term XD to denote aggregate domestic absorption. As a first step, we can
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define aggregate domestic absorption as follows:

XD =M

∫ ∞

φ∗
rd(φ)µ(φ)dφ =M

[∫ φ∗
x

φ∗
rDd (φ)µ(φ)dφ+

∫ ∞

φ∗
x

rXd (φ)µ(φ)dφ

]
, (C.15)

where M is the equilibrium mass of firms in each country and µ(φ), defined as:

µ(φ) =

0 if φ < φ∗,

g(φ)
1−G(φ∗) if φ ≥ φ∗,

(C.16)

denotes the equilibrium distribution of firm productivities. We assume that the following

theoretical restriction on the parameters holds: θ > γ
σ+γ (σ − 1). Equation (C.15) shows

that domestic absorption depends on the mass of firms M and the average sales of firms

in their domestic market. The average sales per firm can be decomposed into the separate

contributions of domestic firms and exporting firms, the first and second terms in square

brackets, respectively.

To obtain an analytical solution, we assume that firms draw their productivity from a

Pareto distribution with parameter θ, such that G(φ) = 1−φ−θ. Using this assumption and

the definitions of revenue in equation (C.10), we can solve for aggregate domestic absorption

as:

XD =M

 θ

θ − (σ − 1)
(

γ
σ+γ

)
( 1 + γ

σ + γ

)
σθwf (C.17)

×

1− (φ∗
x

φ∗

) γ(σ−1)
σ+γ

−θ
+

(
1

1 + Jτ1−σ

)(
f + Jfx

f

)(
φ∗
x

φ∗

)−θ
 .

In a second step, we introduce, for convenience, the term XX to denote aggregate

expenditures on foreign goods, noting that – due to symmetry – aggregate imports (from

the rest of the world) equal aggregate exports (to the rest of the world). We define aggregate

expenditure on foreign goods as:

XX =MxJ

∫ ∞

φ∗
x

rXx (φ)µx(φ)dφ =MJ

∫ ∞

φ∗
x

rXx (φ)µ(φ)dφ, (C.18)

where Mx = [1−G(φ∗
x)]M is the equilibrium mass of exporting firms in each country and

µx(φ), defined as:

µx(φ) =

0 if φ < φ∗
x,

g(φ)
1−G(φ∗

x)
if φ ≥ φ∗

x,
(C.19)
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denotes the equilibrium distribution of exporting firms’ productivities, where µx(φ) =
1−G(φ∗)
1−G(φ∗

x)
µ(φ). Substituting with the definition of revenue in equation (C.10) and using the

fact that rXx (φ) = τ1−σrXd (φ) yields:

XX =M

 θ

θ − (σ − 1)
(

γ
σ+γ

)
( 1 + γ

σ + γ

)
σθw(f + Jfx)

(
Jτ1−σ

1 + Jτ1−σ

)(
φ∗
x

φ∗

)−θ
. (C.20)

We now have separate analytical expressions for expenditures on domestic and foreign goods.

Using E to denote aggregate expenditures (E = XD +XX), we can now compute the

share of aggregate expenditures on foreign goods (XX/E). Using equations (C.14), (C.17)

and (C.20), we obtain:

XX

E
=

XX

XD +XX
=

Jτ1−σ

1+Jτ1−σ

1 +
(

1
1+Jτ1−σ

)( θ
σ−1)

(
1+γ
γ

) (
f+Jfx
f

)( θ
σ−1)

(
σ+γ
γ

)
−1

−
(

1
1+Jτ1−σ

) 1+γ
σ+γ

.

(C.21)

We can use this last result to derive the trade elasticities. Note that:

ετ ≡ −∂(XX/JE)

∂τ

τ

XX/JE
= −∂(XX/E)

∂τ

τ

XX/E
, (C.22)

εf ≡ −∂(XX/JE)

∂fx

fx
XX/JE

= −∂(XX/E)

∂fx

fx
XX/E

. (C.23)

It is useful to introduce additional notation to simplify the presentation. Define the following

terms:

a =

(
1

1 + Jτ1−σ

)( θ
σ−1)

(
1+γ
γ

)(
f + Jfx

f

)( θ
σ−1)

(
σ+γ
γ

)
−1

, (C.24)

b =

(
1

1 + Jτ1−σ

) 1+γ
σ+γ

, (C.25)

c =
Jτ1−σ

1 + Jτ1−σ
. (C.26)

Then, it is possible to rewrite the share of expenditures on foreign goods (C.21) as follows:

XX

E
=

c

1 + a− b
. (C.27)
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After some tedious, but straightforward, algebra, we can show that:

ετ = θ

(
1 + γ

γ

)[
a

1 + a− b
−
(
σ − 1

θ

)(
γ

σ + γ

)
b

1 + a− b

]
c, (C.28)

εf =

[(
σ + γ

γ

)(
θ

σ − 1

)
− 1

](
a

1 + a− b

)
c. (C.29)

To gain some insight into these complex equations, we consider the case of a large number

of countries. In the limit, when J tends to infinity it can be shown that:52

lim
J→∞

b = 0, lim
J→∞

c = 1, and if θ > γ lim
J→∞

a = ∞. (C.30)

Together, it can be shown that these results imply:

lim
J→∞

a

1 + a− b
= 1, and lim

J→∞

b

1 + a− b
= 0. (C.31)

Using these results in the definition of the elasticities in (C.28) and (C.29), it follows that:

ετ = θ

(
1 + γ

γ

)
, (C.32)

εf =
θ
(
1+γ
γ

)
1+γ
σ+γ (σ − 1)

− 1. (C.33)

These results show that – as the number of countries increases – the trade elasticities in our

symmetric model with increasing marginal costs defined over total firm output converge to

the elasticities in our benchmark model with asymmetric countries and destination-specific

increasing marginal costs.

52We provide evidence in Section 5 of the paper, comparing Tables 3 and 4, that estimates of θ exceed
estimates of γ within the 10th-75th percentiles of the 568 four-digit industries.
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D Appendix D

In this appendix, we provide details on the derivations to establish the (structural) bilateral

import-demand equation, the (structural) bilateral import-unit value equation, and then the

(extended F/BW) reduced-form estimation equation (40) (which builds upon reduced-form

equation (38)).

D.1 Bilateral Import Demand

Because the price index
∫∞
φ∗
ij
pcij(φ)

1−σµij(φ)dφ in equation (23) is not observable, we cannot

use equation (23) to estimate the parameters of the model. To make progress, we express

the observable average cost-insurance-freight (or cif) import unit value pcijt as the ratio of

two unobservable price indexes (p̃cij , p̀
c
ij), as noted in equation (24):

pcij ≡
XD
ij

QDij
=

∫∞
φ∗
ij
pcij(φ)

1−σµij(φ)dφ∫∞
φ∗
ij
pcij(φ)

−σµij(φ)dφ
≡
p̃cij
p̀cij
. (D.1)

In what follows, we use the theoretical model to obtain analytical expressions for each

of the unobserved price indexes, p̃cij and p̀
c
ij . We then show that, by combining these two

expressions in conjunction with the Pareto distribution (and allowing for deviations from

Pareto, e.g., eP1
ij , etc.), we can express nominal bilateral import demand as a function of the

observable bilateral import unit value (pcij), e
P1
ij , etc.

We proceed in several steps. The first step is to solve for firm-level (bilateral) prices

pcij(φ) as functions of the productivity threshold φ∗
ij . Recalling qij(φ)/τij = cij(φ) and

pcij(φ) = τijpij(φ), we can use optimal demand equation (2) and optimal pricing rule (6) to

show:

qij(φ)

qij(φ∗
ij)

=

(
φ

φ∗
ij

)σ( γ
σ+γ

)
. (D.2)

Substituting into equation (D.2) using equation (8) for qij(φ
∗
ij) yields:

qij(φ) =

[(
γ

σ + γ

)
(σ − 1)fij

] γ
1+γ

(φ∗
ij)

−
(

γ
1+γ

)(
γ

σ+γ

)
(σ−1)

φ
σ
(

γ
σ+γ

)
. (D.3)

Substituting equation (D.3) for qij(φ) into optimal pricing rule (6) yields:

pij(φ) =

(
1 + γ

γ

)(
σ

σ − 1

)[(
γ

σ + γ

)
(σ − 1)fij

] 1
1+γ

(φ∗
ij)

−
(

1
1+γ

)(
γ

σ+γ

)
(σ−1)

w̃iφ
− γ

σ+γ

(D.4)

where recall that w̃i = wi/Ai.
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In the second step, we compute the two unobservable average prices p̃cij and p̀cij and

show that the observable import unit value pcij is proportional to the optimal price of the

break-even exporter, pcij(φ
∗
ij). Using equation (D.4), optimal pricing function (6), the Pareto

distribution assumption allowing deviations from Pareto, and recalling pcij(φ) = τijpij(φ),

we can solve for:

p̃cij =

[
θ(σ + γ)

θ(σ + γ)− γ(σ − 1)

]
pcij(φ

∗
ij)

1−σeP1
ij (D.5)

where ePij ̸= 1 implies deviations from the Pareto distribution for p̃cij . Using equation (D.1),

optimal pricing function (6), and the Pareto distribution assumption allowing deviations

eP2
ij , we can solve for:

p̀cij =

[
θ(σ + γ)

θ(σ + γ)− γσ

]
pcij(φ

∗
ij)

−σeP2
ij . (D.6)

Using these results and equation (D.1), we obtain:

pcij =

[
θ(σ + γ)− γσ

θ(σ + γ)− γ(σ − 1)

]
pcij(φ

∗
ij)

(
eP1
ij

eP2
ij

)
(D.7)

which shows that observable pcij is proportional to the optimal price of the zero-cutoff-profit

exporter and Pareto deviations.

The third step is straightforward. We can rewrite equation (D.7) with pcij(φ
∗
ij) as a

function of the observable price import unit value pcij :

pcij(φ
∗
ij) =

[
θ(σ + γ)− γσ + γ

θ(σ + γ)− γσ

]
pcij

(
eP2
ij

eP1
ij

)
(D.8)

and substitute this last result into equation (25) to obtain:

p̃cij =

[
θ(σ + γ)

θ(σ + γ)− γσ

] [
θ(σ + γ)− γσ

θ(σ + γ)− γ(σ − 1)

]σ−1

(pcij)
1−σ

(
eP2
ij

eP1
ij

)1−σ

eP1
ij . (D.9)

We can now use this last result to express the aggregate nominal bilateral import demand,

defined in equation (23), as a share of total expenditure as follows:

XD
ij

Ej
= k2MijP

σ−1
j (pcij)

1−σ

(
eP2
ij

eP1
ij

)1−σ

eP1
ij (D.10)

where k2 is a constant that depends only on the structural parameters σ, γ, and θ:

k2 =

[
θ(σ + γ)

θ(σ + γ)− γ (σ − 1)

] [
θ(σ + γ)− γσ

θ(σ + γ)− γ(σ − 1)

]σ−1

.
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In the fourth step, we remove the productivity threshold, φ∗
ij , using equation (8) and

the mass of firms, Mij , using an extended version of equation (11) allowing deviations from

Pareto to yield:

XD
ij

Ej
= k3A

1+θ
(

1+γ
γ

)
( σ
σ−1)

i Liw
−θ

(
1+γ
γ

)
( σ
σ−1)

i b
−θ

(
1+γ
γ

)
i E

θ
(

1+γ
γ

)
( 1
σ−1)

j

P
(σ−1)+θ

(
1+γ
γ

)
j τ

−θ
(

1+γ
γ

)
ij f

−θ( 1+γ
γ )

1+γ
σ+γ (σ−1)

ij (pcij)
1−σeDij (D.11)

where k3 is a constant that depends only on the structural parameters σ, γ, θ, δ, and fe:

k3 =
k2
δfe

[(
1 + γ

γ

)(
σ

σ − 1

)]θ( 1+γ
γ

)
( σ
σ−1)

[
γ

σ + γ
((σ − 1))

] −θ( 1+γ
γ )

1+γ
σ+γ (σ−1)

and eDij ≡ eP1
ij

(
eP2
ij

eP1
ij

)1−σ
eP3
ij . While the first two RHS terms of eDij were motivated above,

the Pareto deviation eP3
ij is associated with the mass of firms in the presence of deviations

from Pareto. Referring back to section A.5 of Online Appendix A, the mass of firms Mij

turns out to be an extension of equation (A.41) with eP3
ij appended to the RHS. Importantly,

eP3
ij has two components, one of which is eP4

ij which surfaces because 1−G(φ∗
ij) = (φ∗

ij)
−θeP4

ij

in the presence of deviations from Pareto. eP4
ij is important for eP3

ij , and hence eDij , because

of its particular influence on small exporters that tend to be near the cutoff productivity,

consistent with the evidence that deviations from Pareto tend to surface for small exporters.

The superscript D in eDij refers to the role of deviations from Pareto on the “demand” side

(sij ≡
XD

ij

Ej
).

This completes the derivation for the demand-side equation of the empirical model.53

53In reality, XD
ij on the LHS of equation (D.11) is unobservable. Beginning with Feenstra (1994), empirical

implementation has used actual industry-level bilateral trade flows, presumably reflecting (bilateral) partial
equilibrium, i.e., XD

ij = XS
ij . This literature has not incorporated the general equilibrium considerations

addressed in sections 2.4 and 2.5. However, the theoretical trade flows are determined under equilibrium
conditions; in particular, the framework in sections 2.4 and 2.5 assumes goods-market clearing Ri = Ei, i.e.,
multilateral trade balances. Observed trade flows may be influenced by deviations from multilateral trade
balances; in reality, multilateral trade imbalances exist at the aggregate level and at the industry level. In
order to allow for the fact that actual trade flows are not likely to equal equilibrium trade flows, we could
allow theoretical trade-flow shares to deviate from actual trade-flow shares (labeled sij) by an error term
eXij . However, this additional error term is unnecessary to obtain identification for estimation; hence, for
simplicity, we ignore it.
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D.2 Bilateral Export Supply

The derivations for the bilateral import-unit value equation are largely in the text and use

part of section D.1 above. In those derivations, we use a constant k4, defined as:

k4 ≡
[(

γ

1 + γ

)(
σ − 1

σ

)]γ [ θ(σ + γ)

θ(σ + γ)− γσ

] [
θ(γ + σ)− γσ + γ

θ(γ + σ)− γσ

]γ
. (D.12)

The full solution for the bilateral import-unit value equation in levels is:

pcij = k5A
−1−

(
θ−γ
γ

)
( σ
σ−1)

i L
− 1

1+γ

i w
γ

1+γ
+
(

θ−γ
γ

)
( σ
σ−1)

i b

(
θ−γ
γ

)
σ

i τ
θ−γ
γ

ij f

θ−γ
γ

1+γ
σ+γ (σ−1)

ij

× E
1

1+γ
+
(

θ−γ
γ

)
( σ
σ−1)

j P
−
(

θ−γ
γ

)
σ

j s
1

1+γ

ij eSij ,

(D.13)

where

k5 =

(
k4
δfe

)− 1
1+γ
[(

1 + γ

γ

)(
σ

σ − 1

)]( θ−γ
γ

)
( σ
σ−1)

[
γ

σ + γ
(σ − 1)

] θ−γ
γ

1+γ
σ+γ (σ−1)

. (D.14)

D.3 Reduced-Form Specification

In this subsection, we provide derivations associated with a complete specification of the-

oretical coefficients based upon the model that are associated with estimating equations

(38) or (40); in the interest of brevity, we provide this reduced-form equation where the

underlying variables include only Group 1 and Group 2 variables associated with Specification

2, “IMC-Partial.” Adapting equations (28) and (29) for this specification, ϵijt simplifies to:

ϵijt = ∆k ln sijt+(σ−1)∆k ln pcijt+θ

(
1 + γ

γ

)
∆k ln tarijt+θ

(
1 + γ

γ

)
∆k ln transijt, (D.15)

and adapting equations (36) and (37) for this specification, ψijt simplifies to:

ψijt = − 1

1 + γ
∆k ln sijt +∆k ln pcijt −

θ − γ

γ
∆k ln tarijt −

θ − γ

γ
∆k ln transijt. (D.16)

Taking the product of ϵijt and ψijt yields an equation with ϵijtψijt on the LHS and 16
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products on the RHS. Consolidating common RHS products yields:

ϵijtψijt = (σ − 1)
(
∆k ln pcijt

)2
− 1

1 + γ

(
∆k ln sijt

)2
+

(
1− σ − 1

1 + γ

)[(
∆k ln sijt

)(
∆k ln pcijt

)]
+

[
θ

(
1 + γ

γ

)
− θ − γ

γ
(σ − 1)

] [(
∆k ln pcijt

)(
∆k ln tarijt

)]
−
(
θ

γ
+
θ − γ

γ

)[(
∆k ln sijt

)(
∆k ln tarijt

)]
− θ

(
1 + γ

γ

)(
θ − γ

γ

)(
∆k ln tarijt

)2
+

[
θ

(
1 + γ

γ

)
− θ − γ

γ
(σ − 1)

] [(
∆k ln pcijt

)(
∆k ln transijt

)]
−
(
θ

γ
+
θ − γ

γ

)[(
∆k ln sijt

)(
∆k ln transijt

)]
− θ

(
1 + γ

γ

)(
θ − γ

γ

)(
∆k ln transijt

)2
− θ

(
1 + γ

γ

)(
θ − γ

γ

)[(
∆k ln tarijt

)(
∆k ln transijt

)]
. (D.17)

Rearranging terms to isolate (σ− 1)(∆k ln pcijt)
2 on the LHS and dividing through by (σ− 1)

yields the estimating equation (where ξijt = ϵijtψijt):(
∆k ln pcijt

)2
=

1

(1 + γ)(σ − 1)

(
∆k ln sijt

)2
+

(
σ − γ − 2

(1 + γ)(σ − 1)

)[(
∆k ln sijt

)(
∆k ln pcijt

)]
−
[

θ

σ − 1

(
1 + γ

γ

)
− θ − γ

γ

] [(
∆k ln pcijt

)(
∆k ln tarijt

)]
+

(
θ

γ(σ − 1)
+

θ − γ

γ(σ − 1)

)[(
∆k ln sijt

)(
∆k ln tarijt

)]
+ θ

(
1 + γ

γ(σ − 1)

)(
θ − γ

γ

)(
∆k ln tarijt

)2
−
[

θ

σ − 1

(
1 + γ

γ

)
− θ − γ

γ

] [(
∆k ln pcijt

)(
∆k ln transijt

)]
+

(
θ

γ(σ − 1)
+

θ − γ

γ(σ − 1)

)[(
∆k ln sijt

)(
∆k ln transijt

)]
+ θ

(
1 + γ

γ(σ − 1)

)(
θ − γ

γ

)(
∆k ln transijt

)2
+ θ

(
1 + γ

γ(σ − 1)

)(
θ − γ

γ

)[(
∆k ln tarijt

)(
∆k ln transijt

)]
+ ξijt.

(D.18)
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D.4 Moment and Identification Conditions’ Derivations

Estimation of equation (40) produces consistent coefficient estimates under two conditions.

The first is the moment condition, E(ξijt) ≡ E(ϵijtψijt) = 0; alternatively, the expectation

can equal a constant as long as equation (40) includes an intercept (β0). Recalling ϵijt ≡
∆k ln eP1

ijt + (1− σ)∆k ln eP2
ijt +∆k ln eP3

ijt and ψijt ≡ − 1
1+γ∆

k ln eP3
ijt − 1

1+γ∆
k ln eP5

ijt :

E(ϵijtψijt) = − 1

1 + γ

[
cov[∆k ln eP1

ijt ,∆
k ln eP3

ijt ] + [E(∆k ln eP1
ijt )][E(∆k ln eP3

ijt )]
]

− 1− σ

1 + γ

[
cov[∆k ln eP2

ijt ,∆
k ln eP3

ijt ] + [E(∆k ln eP2
ijt )][E(∆k ln eP3

ijt )]
]

− 1

1 + γ

[
var(∆k ln eP3

ijt ) + [E(∆k ln eP3
ijt )]

2
]

− 1

1 + γ

[
cov[∆k ln eP1

ijt ,∆
k ln eP5

ijt ] + [E(∆k ln eP1
ijt )][E(∆k ln eP5

ijt )]
]

− 1− σ

1 + γ

[
cov[∆k ln eP2

ijt ,∆
k ln eP5

ijt ] + [E(∆k ln eP2
ijt )][E(∆k ln eP5

ijt )]
]

− 1

1 + γ

[
cov[∆k ln eP3

ijt ,∆
k ln eP5

ijt ] + [E(∆k ln eP3
ijt )][E(∆k ln eP5

ijt )]
]

= −
(

1

1 + γ

)
var(∆k ln eP3

ijt ) ≡ −4

(
1

1 + γ

)
var(ln eP3

ijt ) ≡ −4

(
1

1 + γ

)
σ2
ln eP3

ij

(D.19)

where σ still represents the elasticity of substitution in consumption but σ2z represents the

variance over time of the variable z. Note that we assume the expected values of the time-

differenced (as well as reference-exporter-country differenced) deviations from the Pareto

distributions of the underlying variables are zero (e.g., E(∆k ln eP1
ijt ) = 0) and the double-

differenced deviations have constant variances. Accordingly, we assume the covariances are

zero as well (e.g., cov[∆k ln eP1
ijt ,∆

k ln eP3
ijt ] = 0). The moment condition is satisfied as the

RHS in the equation above, −
(

1
1+γ

)
var(∆k ln eP3

ijt ), is a constant.

The second condition necessary for consistent estimates of the coefficients is the iden-

tification condition. Following Feenstra (1994), this condition is equation (44) in the

text. In the context of our model in section 4.1.5 (ignoring ∆ ln fRijt), the necessary con-

dition for identification is equation (45). Equation (45) is obtained by recalling again

ϵijt ≡ ∆k ln eP1
ijt + (1 − σ)∆k ln eP2

ijt + ∆k ln eP3
ijt and ψijt ≡ − 1

1+γ∆
k ln eP3

ijt − 1
1+γ∆

k ln eP5
ijt .
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Using ϵijt:

var(ϵijt) = var
[
∆k ln eP1

ijt + (1− σ)∆k ln eP2
ijt +∆k ln eP3

ijt

]
= var(∆k ln eP1

ijt ) + (1− σ)2 var(∆k ln eP2
ijt ) + var(∆k ln eP3

ijt )

+ 2 cov
[
∆k ln eP1

ijt , (1− σ)∆k ln eP2
ijt

]
+ 2 cov

[
∆k ln eP1

ijt ,∆
k ln eP3

ijt

]
+ 2 cov

[
(1− σ)∆k ln eP2

ijt ,∆
k ln eP3

ijt

]
= σ2

∆k ln eP1
ij

+ (1− σ)2σ2
∆k ln eP2

ij
+ σ2

∆ ln eP3
ij
. (D.20)

The latter can be inserted into the LHS of equation (44) to produce the LHS of equation

(45). Using ψijt:

var(ψijt) = var

[
− 1

1 + γ
∆k ln eP3

ijt −
1

1 + γ
∆k ln eP5

ijt

]
=

(
1

1 + γ

)2

var(∆k ln eP3
ijt ) +

(
1

1 + γ

)2

var(∆k ln eP5
ijt )

+ 2 cov

[
− 1

1 + γ
∆k ln eP3

ijt ,−
1

1 + γ
∆k ln eP5

ijt

]
=

(
1

1 + γ

)2 [
σ2
∆k ln eP3

ij
+ σ2

∆k ln eP5
ij

]
. (D.21)

The latter can be inserted into the RHS of equation (44) to produce the RHS of equation

(45).

D.5 Moment and Identification Conditions’ Derivations Including ∆ ln fRijt

In section 4.1.5, we addressed fixed trade-costs measurement. In that section, we noted that

the majority of fixed trade costs are exporter specific or importer specific. However, for

estimation, a residual measurement error exists, which we labeled fRijt. With the introduction

of this additional error term, we can readily modify the moment and identification conditions

to accommodate this additional error term. As we will see, this has inconsequential effects

on the moment and identification issues addressed earlier.

In this case, we need to redefine ϵijt as:

ϵijt ≡ ∆k ln eP1
ijt + (1− σ)∆k ln eP2

ijt +∆k ln eP3
ijt + aD∆ ln fRijt (D.22)
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where aD is a constant, and redefine ψijt as:

ψijt ≡ − 1

1 + γ
∆k ln eP3

ijt −
1

1 + γ
∆k ln eP5

ijt + aS∆ ln fRijt (D.23)

where aS is another constant. Hence, the moment condition becomes:

E(ϵijtψijt) = − 1

1 + γ

[
cov[∆k ln eP1

ijt ,∆
k ln eP3

ijt ] + [E(∆k ln eP1
ijt )][E(∆k ln eP3

ijt )]
]

− 1− σ

1 + γ

[
cov[∆k ln eP2

ijt ,∆
k ln eP3

ijt ] + [E(∆k ln eP2
ijt )][E(∆k ln eP3

ijt )]
]

− 1

1 + γ

[
var(∆k ln eP3

ijt ) + [E(∆k ln eP3
ijt )]

2
]

− aD

1 + γ

[
cov[∆k ln fRijt,∆

k ln eP3
ijt ] + [E(∆k ln fRijt)][E(∆k ln eP3

ijt )]
]

− 1

1 + γ

[
cov[∆k ln eP1

ijt ,∆
k ln eP5

ijt ] + [E(∆k ln eP1
ijt )][E(∆k ln eP5

ijt )]
]

− 1− σ

1 + γ

[
cov[∆k ln eP2

ijt ,∆
k ln eP5

ijt ] + [E(∆k ln eP2
ijt )][E(∆k ln eP5

ijt )]
]

− 1

1 + γ

[
cov[∆k ln eP3

ijt ,∆
k ln eP5

ijt ] + [E(∆k ln eP3
ijt )][E(∆k ln eP5

ijt )]
]

− aD

1 + γ

[
cov[∆k ln fRijt,∆

k ln eP5
ijt ] + [E(∆k ln fRijt)][E(∆k ln eP5

ijt )]
]

+ aDaS
[
var(∆k ln fRijt) + [E(∆k ln fRijt)]

2
]

+ aS
[
cov[∆k ln eP1

ijt ,∆
k ln fRijt] + [E(∆k ln eP1

ijt )][E(∆k ln fRijt)]
]

+ (1− σ)aS
[
cov[∆k ln eP2

ijt ,∆
k ln fRijt] + [E(∆k ln eP2

ijt )][E(∆k ln fRijt)]
]

+ aS
[
cov[∆k ln eP3

ijt ,∆
k ln fRijt] + [E(∆k ln eP3

ijt )][E(∆k ln fRijt)]
]

= −
(

1

1 + γ

)
var(∆k ln eP3

ijt ) + aDaS var(∆k ln fRijt) (D.24)

which still satisfies the moment condition.

The second condition necessary for consistent estimates of the coefficients is the identifi-

cation condition. The extension has inconsequential effects on the identification condition.
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Using the redefined ϵijt from above:

var(ϵijt) = var
[
∆k ln eP1

ijt + (1− σ)∆k ln eP2
ijt +∆k ln eP3

ijt + aD∆k ln fRijt

]
= var(∆k ln eP1

ijt ) + (1− σ)2 var(∆k ln eP2
ijt ) + var(∆k ln eP3

ijt ) + (aD)2 var(∆k ln fRijt)

+ 2 cov
[
∆k ln eP1

ijt , (1− σ)∆k ln eP2
ijt

]
+ 2 cov

[
∆k ln eP1

ijt ,∆
k ln eP3

ijt

]
+ 2 cov

[
(1− σ)∆k ln eP2

ijt ,∆
k ln eP3

ijt

]
+ 2 cov

[
∆k ln eP1

ijt , a
D∆k ln fRijt

]
+ 2 cov

[
(1− σ)∆k ln eP2

ijt , a
D∆k ln fRijt

]
+ 2 cov

[
∆k ln eP3

ijt , a
D∆k ln fRijt

]
= σ2

∆k ln eP1
ij

+ (1− σ)2σ2
∆k ln eP2

ij
+ σ2

∆ ln eP3
ij

+ (aD)2σ2
∆k ln fRij

. (D.25)

Using the redefined ψijt from above:

var(ψijt) = var

[
− 1

1 + γ
∆k ln eP3

ijt −
1

1 + γ
∆k ln eP5

ijt + aS∆k ln fRijt

]
=

(
1

1 + γ

)2

var(∆k ln eP3
ijt ) +

(
1

1 + γ

)2

var(∆k ln eP5
ijt ) + (aS)2var(∆k ln fRijt)

+ 2 cov

[
− 1

1 + γ
∆k ln eP3

ijt ,−
1

1 + γ
∆k ln eP5

ijt

]
+ 2 cov

[
− 1

1 + γ
∆k ln eP3

ijt , a
S∆k ln fRijt

]
+ 2 cov

[
− 1

1 + γ
∆k ln eP5

ijt , a
S∆k ln fRijt

]
=

(
1

1 + γ

)2

σ2
∆k ln eP3

ij
+

(
1

1 + γ

)2

σ2
∆k ln eP5

ij
+ (aS)2σ2

∆k ln fRij
. (D.26)

The latter two results can be inserted into the RHS of equation (44) to produce an easily

adjusted version of the RHS of equation (45).
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