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Abstract

Gravity-equation estimates of the elasticity of trade with respect to bilateral trade
costs – or of coefficient estimates of binary variables for the presence or absence of
economic integration agreements (EIAs) – are central to determining quantitatively
economic welfare impacts of trade-policy liberalizations. Despite six decades of use,
trade economists have focused almost entirely on conditional mean estimates of the
trade elasticity or of EIA dummy variable effects, recently using three-way fixed effects
and using Poisson pseudo maximum likelihood (PPML) to avoid the heteroskedasticity
bias from “Jensen’s Inequality.” However, effects of a trade liberalization likely vary
across the distribution of trade flows; for instance, no one has shown systematically – as
the extension of the Melitz model in Arkolakis (2010) suggests – that the “growth rate of
the volume of trade is larger (from an EIA) the lower the initial sales of goods.” Among
several potential contributions, we provide first a novel panel-data quantile regression
approach to estimating EIAs’ partial effects across (conditional) quantiles that avoids
Jensen’s Inequality, avoids the incidental parameters problem associated with three-way
fixed effects, and allows zeros. Second, we provide systematic evidence consistent with
the Arkolakis (2010) proposition; trade-flow growth effects of any type of EIA are larger
at lower (conditional) quantiles, with or without zeros in trade. Third, we show also
that the marginal effects of EIAs on trade flows are larger for developing countries’
exporters across such quantiles.
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“Comparative statics of trade liberalization predict a large increase in trade for goods with
positive but low volumes of previous trade.” (Arkolakis (2010), p. 1151; boldface added)

“From an empirical point of view, we would like to have substantially richer evidence on
the magnitude of the trade elasticity based on trade policy variation, and most importantly,
on the question of whether the trade elasticity ... is dependent on the particular setting.
(Goldberg and Pavcnik (2016), p. 31; boldface added)

“In cases where either the requirements for mean regression, such as homoscedasticity,
are violated or interest lies in the outer regions of the conditional distribution, quantile
regression can explain dependencies more accurately than classical methods.” (Waldmann
(2018), p. 1)

1 Introduction and Motivation

One of the hallmarks of the New Quantitative Trade models in international trade is the abil-
ity to estimate the economic welfare gains from trade-policy liberalizations using medium-
sized general equilibrium structures and minimal parameter estimates. Indeed, gravity-
equation estimates of the elasticities of trade with respect to ad valorem variable trade costs
– or of coefficient estimates of binary variables for the presence or absence of an economic in-
tegration agreement (EIA) – are central to determining quantitatively the economic welfare
impacts of trade-policy liberalizations using the New Quantitative Trade models, cf., Head
and Mayer (2014).1 As an example, there is now an entire sub-literature using gravity equa-
tions to estimate the welfare impacts on the United Kingdom – as well as other countries
– of Brexit using EIA dummies’ partial effects.2 Even the 2016 and 2021 comprehensive
analyses of the U.S. economic effects of U.S. free trade agreements by the U.S. Interna-
tional Trade Commission employed EIA dummy variable coefficient estimates to analyze
their trade and economic welfare effects, cf., United States International Trade Commission

1The gravity equation has been the “workhorse” for explaining empirically determinants of international
trade flows for over 60 years. Neglected early on for its absence of theoretical foundations, the trade
gravity equation became more accepted with formal theoretical foundations in Anderson (1979), Helpman
and Krugman (1985), Bergstrand (1985), Bergstrand (1989), and Bergstrand (1990). The trade gravity
equation’s embrace by the trade literature was solidified in influential papers such as Baier and Bergstrand
(2001), Eaton and Kortum (2002), Anderson and van Wincoop (2003), Redding (2011), Arkolakis et al.
(2012), Head and Mayer (2014), and Costinot and Rodriguez-Clare (2014). For an excellent recent discussion
of the influence of the gravity equation, see Carrere et al. (2020). While for implementation in this study
we will focus on EIA (dummy variable) partial effect estimates, the methodology in this paper can be used
also for estimating partial effects of ad valorem tariff rates or transport-cost factors. The use of EIA dummy
variables captures difficult-to-measure policy-related fixed trade costs alongside tariff rates, cf. United States
International Trade Commission (2016).

2See HM Treasury (2016), Brakman et al. (2018), Dhingra et al. (2017), Felbermayr et al. (2017), Gudgin
et al. (2017), and Oberhofer and Pfaffermayr (2021).
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(2016) and United States International Trade Commission (2021).
The vast bulk of these empirical studies uses some variant of the specification established

in Baier and Bergstrand (2007) – “Do Free Trade Agreements Actually Increase Members’
International Trade?” – to estimate the conditional mean (partial) effect of an EIA on
bilateral trade flows. While that paper employed OLS for estimation with three-way fixed
effects, the literature has now moved to a three-way fixed-effects specification employing
Poisson pseudo maximum likelihood (PPML) to estimate the conditional mean effect. Santos
Silva and Tenreyro (2006) questioned the long-standing use of OLS to estimate trade gravity
equations, citing Jensen’s Inequality that E(lnX|Z) ̸= lnE(X|Z). They suggested instead a
PPML estimator to resolve the issue, as well as to accommodate zeros in trade. Though some
economists have suggested other distributions (such as the Gamma and Negative Binomial
distributions), PPML has surfaced in recent years as the new workhorse estimator, cf., Baier
et al. (2018b) and Baier et al. (2019).

However, recent theory and evidence using panel data and conditional mean estimation
suggests that EIAs may have heterogeneous effects across the distribution of trade, cf., Baier
et al. (2015), Egger and Nigai (2015), Baier et al. (2018a) and Baier et al. (2019). Yet, there
are few studies that have researched the differential effects of a trade liberalization across the
entire (conditional) distribution of trade flows of country pairs. One of the first studies to
draw attention to these differential effects on the distribution of the trade flows was Kehoe
and Ruhl (2003).3 This paper examined the distribution of trade flows from the formation
of NAFTA, organizing trade flows from the “least traded” goods (labeled, in their paper,
the extensive margin) to total trade (combining the extensive and intensive margins). The
authors found that the largest share of the growth in trade from NAFTA was in the least
traded goods, that is, at the lowest trade flows, implying that growth was predominantly
at the extensive margin. Arkolakis (2010) provided a theoretical model for the differential
growth effects on the trade expansion between partners from a free trade agreement (FTA)
across the trade-flow distribution and the paper made two significant contributions. First, on
the theoretical side, Arkolakis (2010) extended the canonical Melitz model of trade, with ad
valorem variable trade costs and fixed trade costs, to allow for increasing marginal market-
penetration (IMMP) costs. Second, in the presence of IMMP costs, Arkolakis (2010) showed,
using a calibration exercise, that the effect on trade flows from a trade liberalization was
largest for the least productive firms that had the smallest level of (previously traded) goods;
moreover, the trade-expansion effect declined monotonically as the levels of previous trade
increased. More recently, Carrere et al. (2020) showed that the positive effect on bilateral

3This paper was later published as Kehoe and Ruhl (2013).
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trade of a decline in bilateral distance (which reduces bilateral trade costs, like a trade
liberalization) also declined monotonically with an increase in the size of the (conditional)
trade flows.4 To our knowledge, this is the first paper to examine the Arkolakis hypothesis
systematically using quantile regression.

The potential implications of this study for evaluating the economic welfare gains for
EIAs among developing countries are also significant. Many new EIAs are among developing
countries. The recently completed African Continental Free Trade Agreement (FTA) spans
nearly all of Africa, including 54 of the 55 countries. Yet reliance upon previous condi-
tional mean partial effect estimates of EIAs may underestimate considerably the consequent
estimated measures of the economic welfare effects. Baier et al. (2018a) examined the influ-
ence of levels of development using conditional mean (OLS and PPML) estimation. While
that study could not find significant interaction effects of EIA dummies with exporter and
importer per capita incomes – or the differences in per capita incomes – using conditional
mean estimation, they did find evidence that the estimated partial effects were significantly
negatively related to average per capita incomes of country-pairs. However, that study did
not provide comparable partial effects for developing versus developed countries. To our
knowledge, this is the first paper to examine heterogeneous effects of EIAs across levels of
development using quantile regression.

The purpose of this study is to introduce an established econometric approach – quan-
tile regression (or QR) – to address these issues. However, to do so, we introduce a novel
approach to estimating EIA partial effects with QRs to avoid the well-known “incidental
parameters problem” associated with three-way fixed effects and to address zeros. First,
as background, QRs can allow estimation of EIA effects across the entire (conditional) dis-
tribution of trade flows. Second, QRs are invariant to monotonic transformations, such as
logarithmic transformations; consequently, the concern over Jensen’s Inequality raised in
Santos Silva and Tenreyro (2006) becomes moot. Third, QR estimation is now as easily
handled in Stata as PPML. Fourth, in the case with positive trade flows, we use an estab-
lished alternative procedure (i.e., correlated random effects) to the three-way fixed effects
used in the well established Baier and Bergstrand (2007) specification to avoid the inciden-
tal parameters problem associated with QR estimation with multiple fixed effects. Fifth,
to account for zeros in trade, we introduce a novel (three-step) QR approach (employing
Chamberlain-Mundlak correlated random effects in the second and third stages). Among
numerous findings in our results, we note now just two. First, our three-step QR approach

4Baier et al. (2019) provided some evidence (using conditional mean estimates) supporting Kehoe and
Ruhl (2013) and Arkolakis (2010) that the smaller the extensive margin of trade (in the previous period)
the larger the EIA partial effect, cf., their section 5.2.2 and Table 3, columns (4) and (8).
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(accounting for unobserved heterogeneity) yields – at the median conditional quantile of all
non-negative trade flows – an EIA partial effect of 0.54, which is four to five times the size
of typical (conditional mean) PPML partial effects using three-way fixed effects. However,
at the 90th conditional quantile, our three-step QR approach yields (after accounting for
zeros in the first step) an EIA partial effect of 0.17, which is closer to historical conditional
mean estimates of 0.11 using PPML with three-way fixed effects (with or without zeros).

Second, as discussed above, in the canonical Melitz model with exogenous fixed trade
costs and constant marginal costs of reaching the “first consumer” in a country, the percent-
age increase in trade from a trade liberalization across the distribution of bilateral trade flows
(and productivities) is constant. However, as Arkolakis (2010) showed, in the presence of in-
creasing marginal market-penetration costs in a market (to reach additional consumers), the
percentage increases in trade from a liberalization should decline across quantiles as bilateral
trade flows increase in size. Using either positive trade flows alone or our novel three-step
QR estimator accounting for zeros, we find strong evidence of declining EIA partial effects
with increases in the size of trade flows (more accurately, with increases in either conditional
or unconditional quantiles). Moreover, in a robustness analysis, we find these results hold
up to a logit, Cloglog, or linear probability model in the first stage, across various types
of EIAs (such as free trade agreements and deeper agreements), inclusion or exclusion of
intra-national trade, to various levels of cutoffs for the “least traded” goods as emphasized in
Kehoe and Ruhl (2013), and to 2-digit SITC disaggregated trade flows including interactions
of EIA dummies with previous period exporter shares as a percentage of total exports.

Third, a differentiating aspect of our novel (Chamberlain-Mundlak-based) three-stage
QR estimator is that – unlike fixed-effects estimators (which suffer from the incidental pa-
rameters problem in QRs) – we are able to estimate also across all quantiles the coefficients
associated with standard time-invariant gravity-equation variables such as bilateral dis-
tance, adjacency, common legal origin, etc., which are typically omitted in modern OLS and
PPML specifications owing to the presence of time-invariant country-pair fixed effects. Fur-
thermore, using our QR approach, we are able to examine the interactions of EIA dummies
with levels of development. Notably, we find systematic evidence of higher partial EIA ef-
fects across conditional quantiles for developing countries’ trade flows and for trade flows of
developing-country exporters. Furthermore, unlike previous studies we show quantitatively
the differences between partial effects of developing countries versus developed countries.

Additionally, we conduct two Monte Carlo simulation analyses to evaluate the biases
associated with various estimators under alternative error structures. First, using a two-
stage approach (which is based upon an extensive-margin decision first, followed by an
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intensive-margin decision), we examine biases associated with alternative estimation ap-
proaches. Among numerous results, we find that PPML with zeros has less bias relative to
our three-step QR approach when the conditional variance of the trade flows is a constant
or when the conditional variance of the flows is equal to its conditional mean (scaled by the
index of dispersion) as in the Poisson distribution, the latter in accord with our expectation.
By contrast, if the conditional variance of the flows is equal to the (scaled) square of the
conditional mean or is a quadratic function of the conditional mean, our three-stage QR
approach has less bias. In a sensitivity analysis of these simulation results, our results are
robust to adding ones to all trade flow values (not just to zeros), to increasing or decreasing
the percentage of zeros by 25 percent, to altering the cutoff value for least-traded goods,
and to increasing or decreasing the overdispersion index. Second, the PPML estimation
assumes an underlying single data-generating process (DGP); by contrast, the three-stage
QR results are premised upon the two-stage DGP discussed just above. Consequently, we
also provide a simulation analysis in the spirit of Santos Silva and Tenreyro (2011), which
is based upon a one-stage DGP. An interesting outcome from this simulation is that PPML
estimates have the least bias when firms are homogeneous (say, in productivities); however,
with heterogeneous firms, our three-stage QR estimator has lower bias.

The remainder of this paper is as follows. Section 2 summarizes the related literature.
Section 3 provides theoretical context for our econometric analysis. Section 4 summarizes
aspects of alternative estimation techniques. Section 5 provides econometric specifications, a
data description, and a summary of estimates of average (partial) treatment effects of EIAs
on bilateral trade flows using conditional mean estimators OLS and PPML (for comparison
later to our QR estimates). Section 6 provides empirical results using QR and positive trade
flows only, as well as our novel three-step QR approach accounting for zeros. Section 7 pro-
vides a robustness analysis. Section 8 examines the Arkolakis proposition using disaggregate
trade data and previous period’s sales shares. Section 9 demonstrates that developing coun-
try exporters have benefited significantly more from EIAs than developed exporters. Section
10 illustrates the relationship between conditional and unconditional quantile predictions.
Section 11 provides a Monte Carlo analysis evaluating the biases of alternative estimators
under various error structures assuming a two-part DGP. In section 12, we provide Monte
Carlo results assuming a one-part DGP. Section 13 concludes.
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2 Related Literature

Two influential papers in the mid-2000s questioned the assumption of assuming a log-normal
distribution for error terms underlying the standard trade gravity equation’s OLS specifica-
tion and using only positive trade flows. First, Santos Silva and Tenreyro (2006) questioned
the long-standing use of OLS to estimate trade gravity equations citing Jensen’s Inequality
that E(lnX|Z) ̸= lnE(X|Z). Much of the subsequent literature inferred inappropriately
that an implication of Jensen’s Inequality is that the coefficient estimates of log-linear grav-
ity equations using OLS would be biased in the presence of heteroskedasticity. However, as
Santos Silva and Tenreyro (2006) correctly pointed out, OLS will still produce consistent
estimates of the parameters of E(lnX|Z) as long as E(lnX|Z) is a linear function of the
regressors; the limitation is that these estimated parameters may not be able to identify
correctly the parameters of E(X|Z). Santos Silva and Tenreyro (2006) proposed a Poisson
pseudo-maximum likelihood (PPML) estimator using the multiplicative version of the grav-
ity equation in levels to avoid heteroskedasticity bias in parameter estimates of E(X|Z).
Moreover, such a specification accommodated zeros in estimation. Using a Monte Carlo
analysis, they demonstrated that the biases under PPML are “always small.” This led San-
tos Silva and Tenreyro (2006) to conclude that the “Poisson PML estimator has the essential
characteristics needed to make it the new workhorse for the estimation of constant-elasticity
models” (p. 649).5

A second influential paper was Helpman et al. (2008), which noted the possibility that
OLS estimates ignoring zeros led to possible selection bias in coefficient estimates. A second
concern was that heterogeneity in firms’ productivities could further bias coefficient esti-
mates. Consequently, Helpman et al. (2008) proposed a two-step estimator that first used
probit estimation to account for selection into trade, and then OLS on the logs of positive
bilateral trade flows in the second stage; the latter stage included controls for potential
selection bias and firm-heterogeneity bias.

Hence, since 2010, various papers have emphasized alternative conditional mean estima-
tors, but most have used PPML estimation of the well established Baier and Bergstrand
(2007) gravity econometric specification. However, as noted above, most studies using PPML
find considerably smaller EIA partial effects on trade than ones estimated using OLS, a re-
sult we confirm shortly. As noted earlier, PPML estimates of the average partial effect of an
EIA – using positive trade flows or non-negative trade flows – are about 13 percent, which

5The literature has alternated between the terms Poisson pseudo-maximum-likelihood (PPML) and Pois-
son quasi-maximum-likelihood (PQML).
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is only one-quarter of the average effect estimated historically using OLS.6

To differentiate our study from the small number of previous QR trade analyses, we
briefly summarize their approaches. In an unpublished paper, Cairns and Ker (2013) used
QRs to estimate the variation in income elasticities among six highly disaggregated agri-
cultural products’ trade flows, limiting the generality of the findings. Though they in-
cluded exporter and importer fixed effects, the panel approach adopted was subject to mis-
specification bias due to not accounting for the time variation in multilateral prices, an issue
we will address. Moreover, the paper did not include pair fixed effects to account for endo-
geneity bias of EIAs, as emphasized in Baier and Bergstrand (2007). As will be addressed
shortly, the workhorse (fixed effects) specification for estimating partial effects of EIAs on
bilateral trade flows incorporates exporter-year, importer-year, and pair fixed effects, cf.,
Baier and Bergstrand (2007). By contrast, QRs with numerous fixed effects suffer from the
“incidental parameters problem”; we will address this issue. Baltagi and Egger (2016) focused
only on a cross-section from 2008 to examine heterogeneity across quantiles in the effects
of various time-invariant trade-cost proxies such as distance and dummies for adjacency, a
common language, and a common colonial history. However, they excluded EIA dummies
in their analysis and did not use panel data; hence, their focus was quite different from ours.
In a series of papers, Erik Figueiredo and Luiz Renato Lima have used QRs to analyze trade
and migration flows using panel data, typically examining the effects of EIAs on such flows.
Figueiredo et al. (2016b) focused on estimating the Euro’s impact on European Union trade
along with an EIA dummy using a panel and a specification that accounted for time-varying
multilateral price terms. However, the study did not account for the potential endogeneity
bias from the Euro and EIA dummies by using pair fixed effects, as raised in Baier and
Bergstrand (2007); instead they included standard bilateral gravity variables such as bilat-
eral distance and time-invariant dummies. In their study of the effects of EIAs on bilateral
migration flows using panel data, Figueiredo et al. (2016a) also do not account for endo-
geneity of EIAs using pair fixed effects, using instead bilateral distance and time-invariant
dummies. However, Figueiredo and Lima (2020) use a new three-stage technique to estimate
the effects of EIAs on improving trade predictability that involves computations of internal
instrumental variables for the EIA variable used in the group QRs. The goal is to account
effectively for exporter-year, importer-year, and pair fixed effects using a three-step method;

6We will present this specification later. Weidner and Zylkin (2021) show that point estimates (partial, or
average treatment, effects) using three-way PPML gravity equations are asymptotically consistent for small
T . However, for fixed T , point estimates are asymptotically biased as N → ∞ and standard error estimates
are biased due to the incidental parameters problem. Their paper provides methods for addressing these
shortcomings.
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however, this particular paper omits zeros in trade. Finally, Figueiredo et al. (2014) use a
three-step panel approach suggested by Galvao et al. (2013), or GLL, to address jointly the
issues of unknown error structure, time-varying multilateral price terms, country-pair fixed
effects, and zeros in trade. The first step predicts the probability of observations with zeros
using a logit regression with all three types of fixed effects and any time-varying bilateral
variables (such as an EIA dummy) to create propensity scores. Using sub-samples of the
propensity score observations for which the probabilities of zeros are low, the second step
estimates a linear fixed-effects QR to obtain fixed-effects estimates and partial effects of
the time-varying bilateral variables. Step 3 re-estimates the step-2 parameters to guarantee
efficiency using a reduced subset of observations from step 2.

Note that the three-stage GLL technique as applied in Figueiredo et al. (2014) uses a
linear three-way fixed-effects QR specification in the second and third stages.7 Researchers
have long questioned the consistency of results using multiple fixed effects in QR estimation
due to the incidental parameters problem (IPP), cf., Wooldridge (2010), Galvao and Monte-
Rojas (2017), and Santos Silva (2019). Galvao and Monte-Rojas (2017) provide guidance
as to consistency of estimates under various cases with three dimensions; in all 4 three-
dimensional cases, at most only two effects can be controlled for. To the authors’ knowledge,
consistency has not yet been proven in QR panel cases with three dimensions and three-
way effects. As Santos Silva (2019) notes, there is no transformation in the context of
QRs with fixed effects that can be used to eliminate the incidental parameters (with small
T ); he states “due to the incidental parameter problem, consistency requires N → ∞ and
T → ∞.” Accordingly, our novel approach is to combine a first-stage logit (or Cloglog or
linear probability) model to predict the probability of observations being zeros – using all
three types of fixed effects and any time-varying bilateral variables – to create propensity
scores. Using a sub-sample of the observations for which the probabilities of zeros are
low, the second step uses a Chamberlain-Mundlak-based correlated-random-effects (CRE)
approach to account for unobserved heterogeneity in the estimation of the parameters of
interest – notably, EIA partial effects – at various quantiles. The third-step re-estimates
step 2 (with an adjusted sample) to guarantee efficiency. As Santos Silva (2019) concludes,
to avoid the incidental parameters problem (with small T ) the “only realistic option is the

7In Figueiredo et al. (2014), the authors actually have two components to the second stage. First, they
estimate an OLS specification with three-way fixed effects. Then, to avoid the explicit inclusion of the large
number of pair fixed effects, they use the Canay (2011) procedure; this procedure de-means the LHS variable
for the second stage to avoid including the pair fixed effects in the second step. However, a limitation of
the Canay procedure is that it imposes a common pair fixed effect across all quantiles. Moreover, this
procedure’s validity has been questioned as it ignores asymptotic bias of estimates, cf., Besstremyannaya
and Golovan (2019) and Chen and Huo (2021).
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correlated random effects (Mundlak) estimator.”

3 Theoretical Context

This section has three parts. First, we review the structural gravity equation theoretical
foundations excluding bilateral export fixed costs. This sets the stage for conditional mean
estimation of gravity equations based upon a single-stage DGP. Second, we review the
structural gravity equation theoretical foundations including bilateral export fixed costs.
This sets the stage for conditional mean estimation of gravity equations based upon a two-
stage DGP, accounting for zeros in trade in the first stage. Third, we review the structural
gravity equation theoretical foundations including bilateral export fixed costs and increasing
marginal market-penetration (IMMP) costs. This sets the stage for estimating (three-stage)
conditional quantiles of the gravity model, accounting for zeros in trade in the first stage. For
brevity, we cite Baier et al. (2018b) extensively for details related to the following discussion.

3.1 Theoretical Gravity Equations without Export Fixed Costs

From 1962 until the early 2000s, gravity equations were typically estimated: (1) using
log-log specifications in LHS and RHS variables (except for binary variables); (2) using
OLS; and (3) ignoring “zeros” in trade flows. Formal theoretical foundations in Anderson
(1979), Bergstrand (1985), Bergstrand (1989), and Bergstrand (1990) focused on explaining
positive trade flows based upon a multiplicative reduced-form function of (levels of) exporter
economic size (typically, gross domestic product or GDP), importer economic size, and
the price of the bilateral flow relative to a non-linear importer “multilateral” price term.8

These four papers provided the first formal theoretical economic foundations for estimating
bilateral trade-flow gravity equations.

In the early 2000s, several papers provided further theoretical foundations. Baier and
Bergstrand (2001) provided further theoretical foundations based upon the Krugman mo-
nopolistic competition model to study the growth of world trade. Eaton and Kortum (2002)
provided a theoretical foundation based upon a Ricardian model with firms having hetero-
geneous productivities. Anderson and van Wincoop (2003) developed further the theoretical
foundations using an Armington framework with nationally differentiated products to focus
on structural gravity. Although all three papers incorporated ad valorem variable trade
costs (in the form of iceberg costs), none included export fixed costs.9 In the spirit of Baier

8See, for example, Anderson (1979), pp. 114-115, and Bergstrand (1985), p. 477.
9The next section deals with the Melitz model with bilateral export fixed costs.

9



et al. (2018b), all three models just cited can be subsumed in the following structural gravity
system of equations:

Xijt = (WitLit)(WjtLjt)

(
τijt

ΠitΦjt

)−ϵτ

(1)

Πi =

 N∑
j=1

WjtLjt

(
τij
Φjt

)−ϵτ

−1/ϵτ

(2)

Φjt =

[
N∑
i=1

WitLit

(
τij
Πi

)−ϵτ
]−1/ϵτ

(3)

where Xijt is the nominal trade flow from exporter i to importer j in year t, WitLit (WjtLjt)
is nominal aggregate income (expenditure) in country i (j) in year t, τijt (>1) represents ad
valorem (iceberg) bilateral trade costs (including time-invariant and time-varying elements),
Πit is country i’s “outward” multilateral price (or resistance) term in year t, Φjt is country
j’s “inward” multilateral price term in year t, and ϵτ is the ad valorem trade-cost “trade
elasticity.” In the cases of the Anderson-van Wincoop (Armington) and Baier-Bergstrand
(Krugman) models, ϵτ = σ − 1, where σ is the elasticity of substitution in a constant-
elasticity-of-substitution (CES) utility function. In the case of the Eaton-Kortum (Ricar-
dian) model, ϵτ = θ, where θ is the (inverse) index of heterogeneity of firms’ productivities.10

Using PPML, equation (1) potentially can be estimated both in its multiplicative form
and allowing zeros in trade flows, assuming implicitly a single-stage DGP. In the case of using
exporter-year, importer-year, and country-pair fixed effects (i.e., three-way fixed effects), the
conditional mean of the trade elasticity (ϵτ ) is typically estimated given data on ad valorem
tariff rates. Also, the conditional mean of the average treatment effect of EIAs is typically
estimated replacing τ−ϵτ

ijt with a time-varying binary variable, EIAijt, cf., Bergstrand et al.
(2015), Baier et al. (2018b), and Baier et al. (2019).

3.2 Theoretical Gravity Equations with Export Fixed Costs

Melitz (2003) provided a theoretical foundation for the gravity equation in a setting with
Krugman-type monopolistically competitive firms selling slightly differentiated products pro-

10This model assumes one factor of production, labor (L), where the wage rate per worker (W ) is endoge-
nous and a fourth equation provides its determinants. For brevity, we refer the reader to Baier et al. (2018b)
for the relevant specification of the wage-rate equations, noting here that – in each of the three models – W
is a negative function of Π, i.e., Wjt = f(Πjt) with ∂Wjt/∂Πjt < 0.

10



duced under increasing returns to scale (internal to the firm). One of two distinguishing
features of Melitz (2003) was introducing heterogeneity of firms’ productivities, providing
closed-form solutions by assuming a Pareto distribution for productivities; Eaton and Kor-
tum (2002) introduced firm heterogeneity using instead a Frechet distribution. The second
distinguishing feature was the incurring of bilateral export fixed costs to enter any market,
based upon the expected profitability of sales to another market. The key economic insight
is that entrance into any foreign market depends first upon expected variable profits of firm
φ in country i exporting to country j exceeding export fixed costs; conditional on such
variable profits less export fixed costs being positive, the second-stage, or intensive-margin,
decision was to determine the value of this trade flow. Empirically, this suggests a two-stage
DGP.

In the context of equations (1)-(3) above and Baier et al. (2018b), we can rewrite the
(second-stage) equations as:

Xijt = (WitLit)(WjtLjt)

(
τijt

ΠitΦjt

)−ϵτ

f
−ϵf
ijt (4)

Πi =

 N∑
j=1

WjtLjt

(
τij
Φjt

)−ϵτ

f
−ϵf
ijt

−1/ϵτ

(5)

Φjt =

[
N∑
i=1

WitLit

(
τij
Πi

)−ϵτ

f
−ϵf
ijt

]−1/ϵτ

(6)

where fijt represents (bilateral) export fixed costs (conceptually, measured in terms of units
of labor) and, in Melitz (2003), ϵτ = θ, ϵf = θ

σ−1 − 1, and σ and θ are defined as above.
This theoretical foundation undergirded the two-stage estimator in Helpman et al. (2008).
That paper assumed a two-stage DGP with the first stage determined by whether variable
profits less export fixed costs of some firm φ were non-negative or not; the latter condition
was determined by whether the productivity of firm φ was greater (or equal) to the cutoff
productivity, φ∗

ijt. The second stage of the two-stage DGP – conditional upon positive trade
– explained the value of trade.

Finally, for empirical work on estimating the partial effects of economic integration
agreements (EIAs), using ad valorem tariff rates creates a potential mis-specification bias
as a result of omitting a measure of the reduction (or increase) in export fixed costs. The
difficulty of measuring changes in fijt from EIAs has led researchers increasingly to use
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binary variables to capture the changes in τ−θ
ij f

1− θ
σ−1

ijt resulting from EIAs.

3.3 Theoretical Gravity Equations with Export Fixed Costs and Increas-
ing Marginal Market-Penetration Costs

Motivated by the empirical observation that many more small exporters are present in
foreign markets than is consistent with a Pareto distribution, Arkolakis (2010) extended
the canonical Melitz model of international trade to allow for increasing marginal market-
penetration costs. One implication from his extended Melitz model is that a given trade
liberalization should have a larger impact on trade in goods with “low volumes of previous
[or initial] trade” (p. 1151). To support his case empirically, Arkolakis (2010) reported by
deciles (of previously traded goods) the actual ratios of U.S. imports from Mexico in the
post-NAFTA period 1998-2000 relative to that in the pre-NAFTA period of 1991-1993. As
shown by the bars in Figure 1 (which is Figure 13 from Arkolakis (2010)), the larger the
volume of trade (along the x-axis) the smaller the percentage effect on trade of NAFTA.

The novelty of the Arkolakis model is the introduction of increasing marginal market-
penetration (IMMP) costs. As in the Melitz model described above, a firm (or country)
enters a foreign market if it is profitable to reach the first consumer; this is the first stage of
the DGP. In the second stage of the DGP, the extension of Arkolakis is simply to consider a
foreign market that is composed of many consumers, with the firm facing increasing marginal
(marketing) costs with “the number of consumers reached” (p. 1152); this is in line with
empirical evidence on decreasing returns to advertising spending in markets.

The intuition behind this theoretical conjecture is the following. The typical Melitz
model with constant-elasticity-of-substitution (CES) preferences and exogenous (bilateral)
variable and fixed trade costs implies a uniform elasticity of substitution between goods;
consequently, a given percent tariff reduction implies a uniform percentage increase in bi-
lateral trade. However, in the Arkolakis model with IMMP costs, the number of consumers
reached (beyond the first) with each “additional marketing effort” becomes smaller at a geo-
metric rate (i.e., diminishing marginal returns); the marginal cost of serving each additional
consumer has increasing “convexity.” This implies that the the elasticity of bilateral trade
with respect to a given percentage tariff reduction will decline with the increase in the size
of trade flows.11

11Recently, Carrere et al. (2020) illustrated a possible “demand-side” rationale for the possible sensitivity
of the trade elasticity with respect to (w.r.t.) ad valorem variable trade costs. Under the assumption
of additively separable preferences, Carrere et al. (2020) show that the trade elasticity w.r.t. ad valorem
variable trade costs is sensitive to the level of a pair of countries bilateral trade. In Carrere et al. (2020),
there was empirical evidence that the bilateral distance elasticities (in absolute terms) were smaller the
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In the context of this model, allowing IMMP costs causes the elasticity of trade flows
with respect to a fall in tariffs to decrease as initial export sales increase.12 Specifically,
the Arkolakis model motivates the elasticity of trade flows (Xijt) with respect to τijt, or ϵτ ,
to be a function of the level of (initial) trade. Hence, ϵτ can vary across quantiles. In the
context of the notation above, we can rewrite equation (4) as:

Xq
ijt = (WitLit)

q(WjtLjt)
q

(
τ qijt

Πq
itΦ

q
jt

)−ϵqτ

f
−ϵqf
ijt (7)

and rewrite equations (5) and (6) accordingly, where q denotes the conditional quantile.
Moreover, we note that the underlying DGP undergirding this framework shares with the
preceding section that it is a two-stage process. As in the preceding section, firms first
decide whether or not to enter a market, based upon expected variable profits less export
fixed costs. In the second stage, firms decide the value of positive trade flows.

Returning to Figure 1, the lines illustrate the alternative theoretical cases. Note that the
model with IMMP (i.e., labeled “Endogenous Cost”) has a downward sloping relationship
relative to the model ignoring IMMP (i.e., labeled “Fixed Cost”). Furthermore, note that
the actual ratios (represented by bars) are declining with an increase in decile, but are not
perfectly correlated with the theoretical ratios (represented by the Endogenous-Cost dots).

4 Alternative Estimation Techniques

This section has two parts. First, we review briefly the OLS and PPML approaches for
estimating trade gravity equations. Second, we examine the relative benefits of using a
quantile-regression (QR) approach.

4.1 Conditional Mean Estimation Approaches

Head and Mayer (2014) provide one of the few detailed surveys of alternative conditional
mean approaches toward estimating gravity equations. Moreover, they provide a Monte
Carlo analysis of the alternative approaches that complements the Monte Carlo analysis
in Santos Silva and Tenreyro (2006). The penultimate section of Head and Mayer (2014)
addresses “Frontiers of Gravity Research.” In that section, the first two (of three) topics
concern (i) the statistical distribution of “gravity’s errors” and (ii) accounting for “zeros” in

larger the bilateral trade flows, as their theory suggested. However, an econometric shortcoming of Carrere
et al. (2020) is the absence of zeros and omission of accounting for unobserved heterogeneity.

12See Proposition 2 in Arkolakis (2010).
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trade flows. To some extent, the present paper picks up where Head and Mayer (2014) left
off.

4.1.1 Heteroskedasticity Bias and Log-Linear OLS Specifications

We summarize first the main concerns regarding the statistical distribution of gravity’s
errors. Equation (8) below provides a standard trade gravity equation estimated historically
by ordinary least squares (OLS):

lnXij = Z
′
ijβ + ln ηij (8)

where lnXij is an N(= n2) length vector of trade flows (including, in principle, intra-
national trade) among n countries, Zij is a k × N matrix of explanatory variables (which
may include logarithms of exporter and importer national incomes, logarithm of bilateral
distance, dummy variables, etc.), β is a k-length vector of parameters, and ln ηij is an N -
length vector of error terms. Historically, heteroskedasticity of ln ηij was of minor concern
as it would just influence the size of the coefficient estimates’ standard errors, but would not
bias the coefficient estimates. In fact, Santos Silva and Tenreyro (2006) still confirm that
OLS will produce consistent estimates of the parameters of E(lnX|Z), as long as E(lnX|Z)
is a linear function of the regressors.

The issue that Santos Silva and Tenreyro (2006) raised is that OLS estimation of equation
(8) will not provide consistent estimates of the parameters of E(X|Z). The reason is that, if
the variance of ηij is correlated with Zij , then the log transformation will prevent ln ηij from
having a zero conditional expectation. To illustrate, suppose economic theory suggests the
relationship Xij = eZ

′
ijβ . Because Xij = eZ

′
ijβ holds only on average, then there is an error

term (ϵij) associated with each observation such that ϵij = Xij −E(Xij |Zij). Therefore, the
stochastic version of the model is:

Xij = eZ
′
ijβ + ϵij = eZ

′
ijβηij . (9)

where ϵij is an additive error term and ηij is a multiplicative error term such that ηij =

1 + ϵij/ exp(Z
′
ijβ) and E(ηij |Zij) = 1. Assuming Xij is positive, the model can be made

linear by taking the natural logarithms of both sides to yield equation (8) above. OLS is
consistent for β if ln ηij is uncorrelated with Zij . However, since ηij = 1 + ϵij/ exp(Z

′
ijβ),

that will be met only under very restrictive assumptions on the distribution of ϵij . Hence,
OLS on equation (8) will, in general, yield inconsistent estimates of β.13

13Also, see section 3 of Baier et al. (2018b).
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4.1.2 Poisson Pseudo Maximum Likelihood

Santos Silva and Tenreyro (2006) suggest estimating equation (9) using a Poisson pseudo
maximum likelihood (PPML) estimator. PPML will generate consistent estimates of β as
long as E(Xij) = eZ

′
ijβ . One of the advantages of the PPML estimator is that it is valid

under “mild” assumptions, as long as the underlying gravity equation is correctly specified.
A second advantage is that it gives the same weight to all observations. A third advantage is
that PPML does not suffer from the incidental parameters problem in a panel setting with
a single fixed effect. Though with three-way fixed effects gravity models, the consistency of
the PPML estimator does not follow from the (two-way fixed effects) results in Fernandez-
Val and Weidner (2016). However, Weidner and Zylkin (2021) have shown that PPML can
provide consistent estimates using three-way fixed effects.

However, a caveat is worth emphasizing. In a Monte Carlo simulation analysis later, we
will introduce several error structures, e.g., V ar(Xij |Zij) = hE(Xij |Zij)

λ, where h and λ can
take on a wide array of values. For instance, under a Poisson distribution V ar(Xij |Zij) =

E(Xij |Zij). Another PML estimator is the Gamma PML. Under Gamma, V ar(Xij |Zij) =

hE(Xij |Zij)
λ where λ = 2. Note that the assumption under Gamma that V ar(Xij |Zij) is

proportional to [E(Xij |Zij)]
2 is similar to that of the log-linear model. Using MaMu tests,

researchers have typically found estimates of λ between 1 and 2; hence, one should be wary
of assuming with certainty that λ = 1 or that λ = 2.

4.2 Quantile Regressions

We offer an alternative econometric approach to evaluating the partial treatment effect of
an EIA. As noted in section 2, this study is not the first to employ QRs to estimate gravity
equations. However, we are the first to use QRs to generate consistent EIA treatment
effects across quantiles, robust to various levels of economic integration, heteroskedasticity
bias, endogeneity bias, mis-specification bias (owing to accounting for unobserved effects),
and – as addressed in later sections – to censoring at zero.14 Furthermore, as noted in
the introduction, QRs allow us to estimate EIA partial effects at various quantiles of the
trade-flow distribution, and we provide the first systematic empirical examination of the
theoretical conjectures of Arkolakis (2010) that trade liberalizations should have declining
effects on the percentage increase of trade as the size of flows increase (more accurately, as
conditional quantiles increase).

Since many trade researchers may be unfamiliar with QRs, we provide a brief overview
14We address the issue of interpreting zeros as censoring or “corners” later.
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of the benefits of QRs relative to conditional mean estimators.15 QRs split the data (here,
bilateral trade flows) into proportions q below and 1 − q above conditional quantile q. QR
then minimizes the least absolute deviations, i.e.,

∑
ij |ϵij |. QR minimizes a sum that gives

asymmetric penalties (1− q)|ϵij | for overprediction and q|ϵij | for underprediction.
The first advantage is that QR is invariant to monotonic transformations, such as loga-

rithmic transformations. Given the earlier discussion, the importance of this consideration
cannot be overstated. The quantiles, Qq, of ln(Xij) – a monotonic transform of Xij – are
ln(Qq(Xij)). Moreover, the inverse transformation may be used to translate the results back
to (conditional) Xij . Hence, the limitation of Jensen’s inequality – the primary motivation
for the Santos Silva and Tenreyro (2006) introduction of PPML to gravity equations – is
removed.

Second, standard conditional mean estimators summarize the average relationship be-
tween a set of regressors and the outcome variable based on the conditional mean function
E(Xij |Zij). QRs provide an opportunity to examine the relationship at different points in
the conditional distribution of Xij . This will be useful later to address the hypothesis in
Arkolakis (2010).

Table 1, reproduced (with minor modifications) from Rodriguez and Yao (2017), high-
lights several factors that suggest why QRs may be very useful for the context of gravity
equations with large data sets. First, as just mentioned above, OLS and PPML can only
predict conditional means of the trade flows; QRs can predict conditional quantiles of the
trade flows across an array of quantiles. Second, linear regression cannot preserve E(X|Z)

under monotonic transformations, such as logarithmic transformations, whereas QR can
preserve quantiles of X conditional on Z under monotonic transformations. Third, linear
regression is much more sensitive to outliers, whereas QR is less sensitive. The last two lines
of Table 1 highlight the shortcomings of QRs relative to linear regressions; however, neither
of these is a problem for our context. Linear regression applies even when the sample size
is small, whereas QRs require a large number of observations. In our case, our data will
potentially have over 250,000 observations, using unidirectional bilateral trade flows among
(potentially) 184 countries with 10 years of data at 5-year intervals. QRs are more compu-
tationally intensive than linear regressions. However, with modern techniques introduced in
Stata, this is not a severe impediment, as we will discuss.

15Baier and Bergstrand (2009b) introduced (nonparametric) matching econometrics to the analysis of
EIAs.
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5 Conditional Mean Gravity Estimates

With the exception of the QR trade papers cited in section 2, most gravity-equation estimates
have used conditional mean approaches such as OLS and PPML, cf., Head and Mayer (2014)
and Baier et al. (2018b). Moreover, most recent studies have followed the three-way fixed
effects specifications in Baier and Bergstrand (2007), Baier et al. (2014), Baier et al. (2018a),
Baier et al. (2018b), Baier et al. (2019), and Weidner and Zylkin (2021).16 For trade-policy
purposes, conditional mean estimators provide an average treatment – or partial – effect
using information from the distributions of bilateral trade flows and the various right-hand-
side (RHS) variables. To generate unbiased estimates of these partial effects, one needs a
correct specification of the conditional expectation.

For context, the first subsection motivates traditional OLS and PPML conditional mean
econometric specifications of the gravity equation for positive trade flows and – for PPML
only – for non-negative trade flows, using panel data. The second subsection describes the
data set used for our analysis. The third subsection provides a summary of these conditional
mean estimates, for which we will provide contrasting estimates using QR methodology later
in the paper.

5.1 Conditional Mean Specifications

In reality, the world is not so generous as to provide precise measures of Πit,Φjt, τijt and fijt

for a large sample of nearly 200 countries (and 40,000 unidirectional flows) over a 50-year
period. Consequently, researchers have either used proxies for these variables or introduced
various fixed effects, applying various estimators. Traditional proxies for τijt and fijt include
the logarithm for bilateral distance (lnDISTij) and dummy variables for the presence or ab-
sence of an EIA (EIAijt), common land border (CONTIGij), common language (LANGij),
common legal origin (LEGALij), common official religion (RELIGij), and common colonial
background (COMCOLij).

Head and Mayer (2014) offered a second Monte Carlo analysis to conduct a “horse race”
between seven alternative (conditional mean) methods introduced over the years to generate
consistent estimates of coefficients of various traditional proxies for variables identified in
theoretical equation (1), such as the logarithm of bilateral distance (lnDISTij) and a dummy
variable for the presence or absence of an EIA (EIAij).17 Although the Monte Carlo horse

16As noted in the introduction, this specification has been used for numerous studies of the effects of
Brexit and of free trade agreements.

17See Head and Mayer (2014), Section 3.6. Note that this was a different Monte Carlo experiment relative
to the one discussed earlier for error distributions, i.e., “Gravity’s Errors”.
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race of Head and Mayer (2014) considered seven methods, they noted only three methods
– least squares with country dummy variables (LSDV), double de-meaning of LHS and
RHS variables (DDM), and the Baier and Bergstrand (2009a) and Baier and Bergstrand
(2010) theory-motivated method of (unweighted) de-meaning of RHS variables described as
“Bonus Vetus OLS” (BVU) – had consistent estimates of distance and EIA elasticities, even
after random censoring of up to 50 percent of the observations.18 However, all three of the
methods LSDV, DDM, and BVU are effectively “de-meaning” approaches.19

We divide the remainder of this section into two parts. The first part addresses OLS and
PPML specifications ignoring unobserved heterogeneity. The second part addresses OLS
and PPML specifications accounting for unobserved heterogeneity.

5.1.1 Specifications Ignoring Unobserved Heterogeneity

In our empirical work below, it will prove useful to initially provide three specifications for
each of OLS and PPML. In this section, we ignore unobserved heterogeneity and so focus on
one OLS and one PPML specification. First, we will apply the (unweighted) BV technique
of Baier and Bergstrand (2010) – which yielded virtually identical consistent estimates to
those of LSDV and DDM with either no censoring or random censoring in Head and Mayer
(2014) – using the OLS and PPML estimators. In the traditional BV approach, all bilateral
(trade-cost) variables are de-meaned as described below. This particular de-meaning ac-
counts for the influences of the exporter and importer “multilateral price (resistance) terms”
at the cross-sectional level, as explained in Baier and Bergstrand (2009a) and Baier and
Bergstrand (2010); these two papers provide general equilibrium foundations for the “BV”
approach using a first-order Taylor-series expansion of the Anderson-van Wincoop model
and structural gravity equation (1).20 For the BV approach, we consider first a “traditional”
BV approach, as suggested in Baier and Bergstrand (2010), ignoring here unobserved hetero-
geneity. For the OLS regression (with only positive trade flows), this specification (labeled

18It should be noted though that, after various percentages of the smallest trade flows were censored, the
tetrad method of Head et al. (2010) had the least inconsistent estimates.

19See Table 3.3 in Head and Mayer (2014).
20As discussed in Baier and Bergstrand (2010), unweighted BV (or BVU) yields consistent estimates for

estimation (as coefficient estimates are associated with deviations of variables from their means), whereas
GDP-share-weighted BV (or BVW) best addresses comparative statics (for small changes). The principle
behind the BV approach is that a first-order Taylor-series expansion of equation (1) above generates an
equation that is a linear function of observables described shortly. However, every Taylor-series expansion
needs to be “centered” around a value. In Baier and Bergstrand (2009a), the expansion was centered around
symmetric trade costs (t), yielding RHS variables that were GDP-share weighted (BVW). However, Baier
and Bergstrand (2010), section 4, show that a centering around symmetric trade costs and symmetric country
sizes yields RHS variables that use simple weights (BVU). The latter leads to consistent coefficient estimates,
as shown in Bergstrand et al. (2013) and Head and Mayer (2014).
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“BVOLS ”) takes the following form:

lnXijt = β0 + β1 lnGDPit + β2 lnGDPjt + β3EIAMRijt + β4DISTMRij (10)

+β5CONTIGMRij + β6LANGMRij + β7LEGALMRij + β8RELIGMRij

+β9COMCOLMRij +

T∑
t=1

αtY EARt + ln ηijt

where EIAMRijt = EIAijt − 1
N

∑N
k=1EIAikt − 1

N

∑N
l=1EIAljt +

1
N2

∑N
k=1

∑N
l=1EIAklt,

DISTMRij = lnDISTij− 1
N

∑N
k=1 lnDISTik− 1

N

∑
l=1 lnDISTlj+

1
N2

∑N
k=1

∑N
l=1 lnDISTkl,

etc. The specification above includes year dummies (Y EARt) to capture time-varying world
GDP and other time-varying world-related factors.

Following Baier et al. (2018b), the analogue PPML specification is:

Xijt = eβ0+β1 lnGDPit+β2 lnGDPjt+β3EIAMRijt+β4DISTMRij+β5CONTIGMRij (11)

×eβ6LANGMRij+β7LEGALMRij+β8RELIGMRij+β9COMCOLMRij+
∑T

t=1 αtY EARtηijt.

5.1.2 Specifications Accounting for Unobserved Heterogeneity

Three-Way Fixed Effects
Although specifications (10) and (11) account for the (unobservable) MR terms from theory,
the specifications cannot account for general “unobserved heterogeneity.” The second set of
specifications uses an exhaustive set of exporter-year, importer-year, and pair fixed effects
applying the well established gravity expression for estimating partial EIA effects in Baier
and Bergstrand (2007) and Baier et al. (2014). Baier and Bergstrand (2007), or BB, re-
evaluated usage of the gravity equation econometrically for estimating partial effects of
EIAs on pairs of countries’ trade flows using OLS. The first of two main contributions was
that self-selection of country-pairs into EIAs likely created a significant endogeneity bias
in previous gravity-equation estimates of the (partial) effects of EIAs on trade flows; for
instance, the observed variable trade-cost measure may be correlated with unobservable
trade costs hidden in the gravity equation’s error term. If the determination of EIAs is
“slow-moving,” gravity equation estimation could use panel techniques and data to avoid
endogeneity bias. However, a second important contribution of the BB technique is that
– if firms’ selection into exporting (determined by comparing destination-specific variable
profits against destination-specific fixed trade costs) is also “slow-moving” – then the pair
fixed effects will also control for selection into positive trade flows (as well as controlling for
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firm heterogeneity).21

Given the problems associated with accounting for endogeneity of EIAs using instru-
mental variables and cross-section data, BB argued that a better approach to eliminate
endogeneity bias of EIAs is to use panel techniques. In the context of the theory and en-
dogenous self-selection of country pairs into EIAs, BB argued that one method to obtain
consistent estimates of the partial effect of EIAs is by fixed effects estimation of:

lnXijt = γ0 + β1EIAijt + ςit + ϑjt + ϱij + ln ηijt (12)

where ϱij is still the country-pair fixed effect to capture all time-invariant unobservable bilat-
eral factors influencing nominal trade flows and ςit and ϑjt are exporter-time and importer-
time fixed effects to capture, respectively, time-varying exporter and importer GDPs as well
as all other time-varying country-specific unobservables in i and j influencing trade, includ-
ing the exporters’ and importers’ “multilateral price (resistance)” terms. Note also here that
one can use EIAijt or EIAMRijt in equation (12) because the exporter-year and importer-
year fixed effects capture all of the “multilateral resistance” elements inside EIAMRijt,
suggesting:

lnXijt = γ0 + β1EIAMRijt + ςit + ϑjt + ϱij + ln ηijt. (13)

We estimate both later and confirm this argument empirically. We will also estimate the
the specification above using PPML:

Xijt = eβ0+β1EIAMRijt+ςit+ϑjt+ϱijηijt. (14)

Correlated Random Effects
The widespread acceptance of the three-way FE specification is premised upon the liter-
ature’s focus on evaluating empirically the relationship between bilateral trade costs and

21As evidence for the latter, Baier et al. (2014) provided a robustness analysis using a panel adaptation
of the Helpman et al. (2008), or HMR, two-stage cross-section technique to account for selection bias into
exporting and for firm-heterogeneity bias. Baier et al. (2014) showed that pair fixed effects not only accounted
for potential endogeneity bias of EIAs but also for selection-into-exporting bias. With pair fixed effects, the
OLS results for positive trade flows in Baier et al. (2014) were virtually identical to their online supplementary
results using a two-stage panel HMR approach; pair fixed effects accounted for selection into exporting.
Moreover, a panel approach offers an alternative approach to instrumental variables using cross-sectional
data (and potentially avoids possible shortcomings of the latter approach). As argued in BB, the problem
with using cross-section data and consequently having to employ IV techniques to account for EIA selection
bias is the inability practically of satisfying the “exclusion restriction” with confidence. Most variables that
influence trade flows also explain selection into EIAs, and it is difficult to find a variable that explains EIAs
that does not also explain trade flows.
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(bilateral) trade flows. Yet, often trade costs can only be measured on a country-specific
level. For instance, countries’ institutional governance indexes are often reported as coun-
try specific. Also, researchers may be interested in the effects of an exporting country’s
or importing country’s per capita income on bilateral trade. The three-way FE specifica-
tion cannot accommodate such questions; by contrast, the BV specifications can address
country-specific effects in a manner founded upon the formal theoretical foundation in Baier
and Bergstrand (2009a) and Baier and Bergstrand (2010). Furthermore, while OLS can
easily accommodate three-way fixed effects, only recently did Weidner and Zylkin (2021)
show the conditions under which PPML with three-way fixed effects will generate unbiased
estimates of the partial effects of EIAijt.

Moreover, although OLS and PPML do not suffer from the incidental parameters prob-
lem associated with the large number of pair fixed effects in a large sample with T < N ,
researchers using quantile regressions have yet to establish that QRs with three-way fixed
effects can provide unbiased coefficient estimates. QRs suffer from the IPP with a large
number of fixed effects. We address this in more detail later.

Accordingly, as discussed in Cameron and Trivedi (2005), Wooldridge (2010) and Baier
et al. (2018b), an alternative approach to three-way fixed effects to generate unbiased es-
timates of the EIA partial effect using OLS and PPML is to incorporate the time aver-
ages of all the RHS variables in equations (10) and (11). Since several RHS variables are
time-invariant, their time averages are subsumed in the intercept. Consequently, our third
(alternative) approach uses correlated random effects, or CRE, specifications. Hence, the
analogue to equation (10) is:

lnXijt = β0 + β1 lnGDPit + β2 lnGDPjt + β3EIAMRijt + β4DISTMRij (15)

+β5CONTIGMRij + β6LANGMRij + β7LEGALMRij

+β8RELIGMRij + β9COMCOLMRij +
T∑
t=1

αtY EARt

+β10lnGDPi + β11lnGDPj + β12EIAMRij +
T∑
t=1

γtY EAR+ ln ηijt

where bars over the variables denote the time-averaged means of the underlying variable.22

22The variation in the nine Y EAR variables arises from country pairs entering and leaving the domain of
country pairs, i.e., we have an unbalanced panel. In the case of a balanced panel, these variables would be
subsumed.
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The analogous PPML specification is:

Xijt = eβ0+β1 lnGDPit+β2 lnGDPjt+β3EIAMRijt+β4DISTMRij+β5CONTIGMRij (16)

×eβ6LANGMRij+β7LEGALMRij+β8RELIGMRij+β9COMCOLMRij

×e
∑T

t=1 αtY EARt+β10lnGDPi+β11lnGDPj+β12EIAMRij+
∑T

t=1 γtY EARηijt.

5.2 Data

The data on nominal bilateral trade flows comes from the UN Comtrade data base (in thou-
sands of U.S. dollars).23 We converted these data into (actual) U.S. dollars by multiplying
positive flows by 1000. Following Baier and Bergstrand (2007), Baier et al. (2014), and Baier
et al. (2018a), we use annual trade flows for every 5 years: 1965, 1970, ..., 2010. Hence,
in our sample T = 10. The potential number of countries in our sample in 2010 is 184;
however, the number of countries in a previous year may be smaller because some of these
184 countries are not recognized under the Soviet Union and some African countries did not
report trade flows or other information until later in the sample. Excluding intra-national
trade flows (which we will address in a robustness analysis), the number of uni-directional
nominal bilateral trade-flow observations for the 10 years is 248,123.

The data for the dummy variable for economic integration agreements is from the Na-
tional Science Foundation-Kellogg Institute for International Studies Database on Economic
Integration Agreements constructed by Jeffrey Bergstrand and Scott Baier and available at
https://sites.nd.edu/jeffrey-bergstrand/. This database provides a unidirectional
multichotomous index of EIAs for pairings of 195 countries annually from 1950-2012 (April
2017 version). The index is defined as: no EIA (0), one-way preferential trade agreement
(1), two-way preferential trade agreement (2), free trade agreement (3), customs union (4),
common market (5), and economic union (6). For this study, we use “EIA” to denote a free
trade agreement, customs union, common market, or economic union. The definitions are
conventional, based upon Frankel (1997), and are defined explicitly in the data set.

Table 2 provides useful summary statistics for the data employed. Table 3 provides a
useful decomposition of EIAs by type of agreement, which will be addressed in later results.

23The data was downloaded from CEPII (http://www.cepii.fr/CEPII/en/bdd_modele/presentation.
asp?id=8) October 2021. The CEPII data set has an indicator for whether a country exists in year t and
keep only country pairs where both countries existed.
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5.3 Results

Tables 4 summarizes the empirical results associated with the specifications discussed above.
Subsequent sections of the paper provide the main empirical QR results and an extensive
robustness analysis.

Table 4 is organized according to ten columns, with the first column providing identi-
fication of the right-hand-side (RHS) variables. Columns labeled (2)-(4) report the results
of OLS specifications (10), (15), and (13), respectively, using only positive trade flows.24

Columns labeled (5)-(7) report the results of PPML specifications (11), (16), and (14), re-
spectively, using only positive trade flows. Columns labeled (8)-(10) report the results of
PPML specifications (11), (16), and (14), respectively, using positive trade flows and zeros.25

Examining columns (2)-(4) vis-a-vis columns (5)-(7), respectively, yields the first main
set of empirical results.26 As noted earlier, PPML (conditional mean) estimates for EIA
effects tend to be significantly smaller than OLS estimates using identical samples; the
three OLS estimates for EIAMR are two to three times larger than the comparable PPML
estimates, when exponentiated. Furthermore, we note that the FE-OLS+ estimate of 0.383
is close to the comparable estimate in Baier and Bergstrand (2007), Table 1, column (1) of
0.460, even though the samples differ. Both the OLS and PPML estimates are similar to
those found in the literature for positive flows.

Second, we note that the PPML estimates in columns (8)-(10) using all non-negative
trade flows are very similar to the comparable PPML estimates in columns (5)-(7) using
only positive trade flows. Such results have been found elsewhere; the inclusion of zeros
in PPML estimates using a large sample does not change PPML results materially. By
contrast, inclusion of intra-national trade does; we address this later. The contrasting results
using OLS and PPML may well then be explained by the heteroskedasticity-bias argument
associated with Jensen’s Inequality.

Third, all variables’ PPML coefficient estimates tend to be systematically smaller than
their corresponding OLS coefficient estimates. Notably, the partial effects for common le-
gal origin and common colonial history are all statistically insignificant using PPML but
are positive and statistically significant using OLS. For common official religion, the OLS
(PPML) estimate is positive (negative) and statistically significant.

Fourth, we note that the CRE results for coefficient estimates for EIAMR are fairly
24We chose to report the BV results – BV without CREs and BV with CREs – first, followed by the

three-way fixed effects specification.
25In Table 4, we use lnGDPex for lnGDPi and lnGDPim for lnGDPj .
26Due to our focus in this paper on the structure of error terms and the role of zeros, we omit lagged

values of the EIA dummy variable, which would complicate the paper unnecessarily.
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close to the full FE specification results. In the OLS specifications, the CRE and FE-
OLS+ estimates of 0.430 and 0.383, respectively, only differ by 0.047 and the difference is
not statistically significant. For the specifications in columns (6) and (7) of the PPML+
specifications, the CRE and FE EIAMR estimates are 0.130 and 0.121, respectively. With
all non-negative observations for PPML, the difference in the EIAMR coefficient estimates
is only 0.055, which is not statistically significant. Hence, the CRE approach for controlling
for unobserved heterogeneity provides very similar results as three-way FEs.27

However, as raised earlier, OLS and PPML provide only conditional mean estimates of
the partial effects of various bilateral trade-cost variables. By contrast, QR can provide
(conditional) partial effects across quantiles – while still accounting for Jensen’s Inequality.
In the remaining sections of the paper, we examine in detail the QR estimates across quan-
tiles, both for positive flows only as well as for non-negative flows. We also conduct several
robustness analyses. The final sections of the paper provide simulation analyses, address the
Arkolakis proposition using disaggregate data, and address heterogeneous effects of EIAs for
developing countries versus developed countries across quantiles.

6 Quantile Gravity

The first subsection provides standard QR estimates of our BV specification of the gravity
equation using only positive trade flows. The second subsection addresses unobserved het-
erogeneity (ignored in the first set of estimates), using only positive trade flows; we motivate
econometrically the rationale for using a standard Chamberlain-Mundlak correlated random
effects (CREs) approach to account for unobserved heterogeneity in the context of QRs of
a properly-specified gravity equation. The third subsection introduces our novel three-stage
QR approach accounting for zeros and unobserved heterogeneity.

6.1 Standard QR Estimation

In section 6.1.1, we address the econometric methodology. In section 6.1.2, we present the
results.

6.1.1 Methodology

Recall from section 4.2 that QRs have three major advantages. First, and obvious, QR
estimates partial effects at different points in the conditional distribution of the RHS vari-
ables. Second, QR estimation is more robust to non-normal errors and outliers, such as

27See Baier et al. (2018b) for econometric discussion and similar findings.
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large trade flows. Third, QR is invariant to monotonic transformations, such as logarithmic
transformations; hence, we can estimate the QR equation in logs but not be subject to
Jensen’s Inequality. Estimation is easily operationalized using the QRPROCESS command
in Stata.28 For a succinct introduction to QR estimation, see Wooldridge (2010), section
12.10 and (for QRs with panel data) section 12.10.3.

Ignoring for now zeros and any unobserved heterogeneity (except accounting for the MR
terms), the QR specification analogous to OLS and PPML specifications (10) and (11),
respectively, discussed earlier is:

Quantq(lnXijt) = βq
0 + βq

1 lnGDPit + βq
2 lnGDPjt + βq

3EIAMRijt

+βq
4DISTMRij + βq

5CONTIGMRij + βq
6LANGMRij + βq

7LEGALMRij

+βq
8RELIGMRij + βq

9COMCOLMRij +

T∑
t=1

αq
tY EARt + ηqijt (17)

where q = 0.10, 0.20, ..., 0.90.

6.1.2 Results

Table 5 provides our first set of QR empirical results; we label these specifications BVQ.
Specification (17) is estimated in this subsection using only positive trade flows and ignores
unobserved heterogeneity. We note three important results in this section. First, at the me-
dian (Q50), the coefficient estimate for EIAMRijt (0.372) is more similar to the (conditional
mean) FE-OLS+ estimate in column (4) of Table 4 (0.383) than to the PPML estimates in
columns (5)-(10). The Q50 estimate of EIAMRijt at 0.372 lies slightly below the FE-OLS+
estimate of 0.383, but well above the PPML estimates of 0.11-0.12 using FE-PPML.29

Second, and consistent with our theoretical conjecture based upon Arkolakis (2010), the
partial effects of an EIA are largest at the lowest quantiles – which weigh more heavily the
“least traded goods” – and the partial effects (or percentage increases in trade from an EIA)
generally decline as conditional quantiles increase.30

28We utilize the Frisch-Newton interior point method.
29At the 40th and 60th quantiles, the coefficient estimates are virtually identical to the FE-OLS+ estimate.
30Later in this paper, we will examine empirically in more detail the Arkolakis proposition using both

disaggregated data as well as previous periods’ export shares. Moreover, we will show later in Section 10 that
there is a strong correlation between the logs of the unconditional trade flows and the conditional trade-flow
predictions. Also, we use the term “partial” effect of an EIA even though – as constructed based upon theory
– we are also controlling for exporter and importer “multilateral resistance” (MR) effects, following Baier
and Bergstrand (2009b) and Baier and Bergstrand (2010). However, we will show later in a robustness
analysis (section 6.5) and Table A9 in Appendix A that the estimated partial effects are nearly identical
across quantiles when we include the MR terms without constraining their coefficients and any differences
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Third, one of the benefits of the BV model is that it allows estimates of coefficients of
time-invariant bilateral variables, such as distance, that might otherwise be omitted using
pair fixed effects. Examining bilateral distance, we find the absolute values of the coefficient
estimates decline monotonically with increases in conditional quantiles. This result is also
consistent with the IMMP hypothesis in Arkolakis (2010), where one might substitute a
natural trade-cost reduction for a policy trade-cost reduction; however, this interpretation
should be approached with caution.31

Fourth, the BV approach is useful also because – not only does it account for the exporter
and importer multilateral resistance terms – it allows coefficient estimates of exporter- and
importer-specific variables. We note the exporter (importer) GDP elasticities decline mono-
tonically from about 1.4 to 0.8 (about 1.1 to 0.8) as conditional quantiles increase. While
there is no theoretical conjecture for this, we note the distinctive result in Santos Silva and
Tenreyro (2006) that PPML generates GDP elasticities significantly less than zero. Our
results for the 90th quantile indicate lower income elasticities.32

6.2 Correlated Random Effects Estimation

Section 6.2.1 discusses the methodology for accounting for unobserved heterogeneity. Section
6.2.2 provides the results.

6.2.1 Methodology

As noted, specification (17) does not account for unobserved heterogeneity (except account-
ing for the MR terms). In this section, we address the rationale for using a standard (and well
established) Chamberlain-Mundlak-based (CM) correlated random effects (CRE) methodol-
ogy for accounting for unobserved heterogeneity. Econometricians have long faced problems
using fixed effects (FEs) in QRs. Excellent sources of discussion on the topic are found in
Wooldridge (2010) (section 12.10.3), Galvao and Monte-Rojas (2017), and Galvao and Kato
(2018), with the latter an exceptional discussion of the issues with FEs in QRs using panel
data and the suitability of correlated random effects for QRs with panel data.

are not statistically significant.
31We approach cautiously any interpretation of the variance across quantiles in the (largely) time-invariant

“MR” variables in the context of Arkolakis (2010). The reason is that EIAMRijt is a time-varying variable,
which allows interpreting causality going from EIAMRijt to (conditional) Xijt, i.e., a trade-policy “shock.”
By contrast, the substantive part of the variation of the remaining MR variables is cross-sectional, and
consequently should not be associated with time-varying trade “shocks” (such as the formation of an EIA).

32Table 5 also reports estimates for Q75. While this is not of material importance here with only posi-
tive trade flows, Q75 estimates will be important later in the QRs accounting for zeros; under the strong
assumption that the position within the conditional and unconditional quantiles can be compared, Q75 will
turn out to be the median of positive trade flows in the sample including zeros.
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The basic problem with using FEs in QRs is the “incidental parameters problem” (IPP).
As Galvao and Monte-Rojas (2017) state, “there is no general transformation that can suit-
ably eliminate” the incidental parameters. The IPP arises because the number of parameters
estimated is proportional to the number of cross-section observations (say, N). If the number
of time periods (say, T ) is fixed, then the number of observations available for estimation is
comparable to the number of parameters, preventing consistent estimation of the common
parameter (say, the coefficient on EIAMR). Accordingly, econometricians have appealed to
asymptotic theory. However, as discussed formally in Kato et al. (2012), existing sufficient
conditions under which the asymptotic bias of QR with FEs is negligible require T strictly
greater than N (T >> N). Moreover, the non-differentiability of the QR objective func-
tion (i.e., the “check function”) complicates the asymptotic analysis of QRs with FEs. As
discussed in Galvao and Monte-Rojas (2017), certain restrictions can be applied to generate
consistent estimates with QRs. However, as those authors note, with three dimensions (or
three-way FEs, such as addressed in gravity specifications in section 5), no theory exists to
demonstrate consistency of estimates of a common parameter; at best, one can only control
for two effects (cf., their scenario iv).

Alternative estimation methods have surfaced beyond the conventional QRs with FEs,
such as penalized estimation, minimum-distance estimation, and two-step estimation. How-
ever, all such alternative approaches have limitations. Koenker (2004) proposed the penal-
ized estimation method where individual effects are treated as pure location-shift param-
eters common to all quantiles and subject to the “l1 penalty.” However, QR restrictions
on estimation and asymptotic properties show that the “large T ” requirement must hold for
consistency. Galvao and Wang (2015) proposed a minimum distance estimator for panel QRs
with FEs. The authors demonstrated asymptotic normality of the estimator under sequen-
tial and simultaneous asymptotics. However, for simultaneous asymptotics, the requirement
T,N → ∞ must hold; hence, this approach does not work for fixed T . Canay (2011) pro-
posed a “two-step” estimation approach for panel QRs with FEs. However, as noted in
Galvao and Monte-Rojas (2017), no individual FE is allowed to change across quantiles;
moreover, his approach requires an additional restriction on the conditional average. Fur-
thermore, Santos Silva (2019) notes that an assumption in the approaches in Koenker (2004)
and Canay (2011) goes against the “spirit of QR.” Thus, as Santos Silva (2019) concludes,
“Estimation of QR with FEs is difficult because there is no transformation that can be
used to eliminate the incidental parameters. Therefore, due to the incidental parameter
problem, consistency requires that both N → ∞ and T → ∞. For fixed T , the only
realistic option is the ‘correlated random effects’ (Mundlak) estimator.”
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Wooldridge (2010) (section 12.10.3), Galvao and Monte-Rojas (2017), and Galvao and
Kato (2018) all provide convincing arguments for using the Chamberlain-Mundlak-based
correlated random effects (CRE) approach to control for unobserved heterogeneity using
panel data in QRs, as suggested by Santos Silva (2019); all noted the paper by Abrevaya and
Dahl (2008). In the spirit of Chamberlain (1982), the CRE approach views the unobservable
effects as a linear projection onto observables plus an error term; the intuition is that a rich
set of covariates is capable of explaining unobserved heterogeneity, with the error term
independent of the covariates, cf., Galvao and Monte-Rojas (2017). As Galvao and Kato
(2018) note, the key distinction between CRE and FE models is that one is able to avoid
the IPP with CRE, allowing T to be fixed.

As Wooldridge (2010), section 12.10.3 concisely describes, consistent estimates of a com-
mon parameter of interest can be obtained in a panel with variation in i and t by regressing
the LHS variable (say, yit) on an intercept, the RHS covariates (say, xit), and the time-
averaged values of xit – denoted xi; the error term uit is assumed independent of xi. In the
context of our BV specifications, the QR specification is:

Quantq(lnXijt) = βq
0 + βq

1 lnGDPit + βq
2 lnGDPjt + βq

3EIAMRijt

+βq
4DISTMRij + βq

5CONTIGMRij + βq
6LANGMRij + βq

7LEGALMRij

+βq
8RELIGMRij + βq

9COMCOLMRij +

T∑
t=1

αq
tY EARt

+βq
10lnGDP i + βq

11lnGDP j + βq
12EIAMRij +

T∑
t=1

+γqt Y EAR+ ηqijt (18)

where q = 0.10, 0.20, ..., 0.90. The bars over variables in equation (18) denote the time-
averages of the underlying variables. Note that several MR variables such as DISTMRij

are time-invariant; consequently, their time-averaged means are subsumed in the intercept.

6.2.2 Results

Table 6 provides results of estimating specification (18) for the same ten quantiles as in Table
5 using the same positive trade flows, but now accounting for unobserved heterogeneity using
CREs; we label this specification BVQCM.33 First, we note that, including CREs rather than
excluding CREs (as in Table 5), the coefficient estimates for EIAMR are slightly larger for
all quantiles, except Q70 and higher quantiles. At the (conditional) median, Q50, of the

33The rationale for the inclusion of Q75 will become more apparent in the next section.
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positive flows, the EIAMR effect with (without) CREs is 0.495 (0.374). Furthermore, this
0.495 estimate is above the conditional mean OLS coefficient estimate with three-way fixed
effects of 0.383.

Second, the Arkolakis proposition of declining growth effects from liberalizations as
trade-flows increase remains supported. However, the rate of decline is magnified with
CREs. Specifically, at the 10th quantile the EIAMR effect is slightly larger with CREs,
but at the highest quantile (Q90) the effect is considerably smaller. Interestingly, at the
90th quantile the coefficient estimate is 0.158, which is quite close to the PPML conditional
mean estimates. Hence, accounting for unobserved heterogeneity alters the partial effect
estimates.

6.3 Quantile Gravity with Zeros

Section 6.3.1 discusses the methodology for accounting for zeros and unobserved heterogene-
ity. Section 6.3.2 provides the results.

6.3.1 Methodology

We now address the second of the “Frontiers of Gravity Research” raised in Head and Mayer
(2014), “Causes and Consequences of Zeros” in trade. The importance of treating zeros is now
well established. Zeros may occur in trade for two likely reasons: (1) for economic reasons,
it is possible that export fixed costs are sufficiently high to not cover variable profits so that
no exporter in some country i is willing to export to country j, or (2) data is missing.34

Because of the profuse number of zeros in bilateral trade that surface for exporting countries
that are economically small, most economists argue that the bulk of zeros is motivated by
the first reason. Consequently, there are different processes generating the distribution of
zeros and the distribution of positive trade flows.35

34Data could be missing due to countries not reporting or even not recording.
35Given either the cutoff-profitability rationale or the missing data rationale, in econometric terms we

will interpret the zeros as “censored” observations; consequently, our econometric approach is based upon
a censored-QR approach. In related research, econometricians have also viewed the zeros as a “kink” – or
“corners” – in a one-part data-generating process (DGP). In our view, motivated by the discussion in section
3 and equation (1), in a one-part DGP a zero trade flow can only be obtained if either one of the country-
pair’s national outputs/expenditures (or multilateral resistance terms) was zero or bilateral trade costs, τijt,
were infinity. Since no country in the world has zero national output/expenditures (nor zero multilateral
resistance terms), a zero trade flow would require τijt to equal infinity, i.e., be “prohibitive.” Since there are
very few countries with prohibitive tariff rates, this could not explain the vast bulk of zeros in the world’s
statistical population of bilateral trade flows. Consequently, we will use a censored-QR approach in the bulk
of this paper; nevertheless, in a simulation analysis much later, we will provide results associated with a
one-part DGP with zeros.
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Cameron and Trivedi (2005) (pp. 544-546) suggest that generally the participation
mechanism and the outcome may be modeled using separate processes. In such a case, they
recommend an econometric “two-part model” that first specifies a model for the participation
and then specifies in a second step a model for the outcome conditional upon participation
being observed. They note that an obvious model for the (first-stage) participation decision
is a logit or probit model to predict the likelihood of a positive outcome. Conditioned on
this outcome, the second stage determines the level of (positive) activity.

Galvao et al. (2013) introduced a three-step method for “censored” quantile regression
(in the presence of fixed effects). The estimation strategy of Galvao et al. (2013) suggests
that the censored QR can be estimated by focusing on a subset of observations where the
“true” qth conditional quantile line exceeds the censoring point and then estimating a fixed
effects QR on this subset. In the context (and notation) of their paper, the minimization
problem for censored QR is:

QN (α, β) =
1

NT

N∑
i=1

T∑
t=1

ρτ

(
yit − αi − x

′
itβ
)
× I

[
αi0 + x

′
itβ0 > Cit

]
. (19)

where yit is the observed outcome variable, xit is a vector of controls, Cit is the known
censoring point, αi is the individual effect (fixed effect), and I[·] is an indicator function;
this specification is asymptotically equivalent to that of Powell (1986). To obtain the portion
in I[·], a binary model is estimated such that:

π0 = Pr(δit = 1|xit, αi, Cit) = Pr(uit > −αi0 − xTitβ0 + Cit|xit, αi, Cit) (20)

and
Pr(uit > 0|xit, αi, Cit) > 1− q (21)

where δit = 1 for uncensored observations and uit is the innovation term (the qth conditional
quantile is equal to zero). For further details, see Galvao et al. (2013). Note that the use of
an indicator variable implies smaller sub-samples as q decreases.

The principle behind the three steps in our paper follows along the intuition in Cameron
and Trivedi (2009), which is that the economic process for determination of trade at the
extensive margin is different from that at the intensive margin. We create an indicator
variable, Tijt, that is the dependent variable used in the first stage, defined as:

Tijt =

1, if Xijt ≥ 1

0, otherwise.
(22)
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In our data set (using actual US dollar flows) the lowest (non-zero) value of Xijt is equal to
1. However, in a robustness analysis later, we will also consider a higher cutoff value (user-
defined minimum value, Cijt). In Galvao et al. (2013), the first stage is a binary choice model,
such as a logit model. In our context, the first stage is used to determine the probability that
at least one producer in country i in period t is entering the foreign market j. In the second
stage, Galvao et al. (2013) recommended “applying fixed effects QR” (p. 1077) to subsets
of observations. However, our second stage specification needs to account – as earlier for
positive trade flows – for unobserved heterogeneity. In our gravity-equation context, three-
way fixed effects QR will introduce the IPP. Consequently, we modify the Galvao et al.
(2013) approach in the second stage by using instead our Chamberlain-Mundlak-based CRE
approach to avoid IPP. As in Galvao et al. (2013), the third stage is required simply to
ensure efficiency of the estimates.

Formally, our novel modified Galvao et al. (2013) three-stage approach can be described
as follows:

1. Estimate a logit model such that

z(ϱij , ςit, ϑjt, EIAijt, Cijt) = Pr(Tijt = 1|ϱij , ςit, ϑjt, EIAijt, Cijt) (23)

where z is a propensity score function determining whether Tijt is equal to 1 (if positive
trade flow) or equal to 0.36 Define a subset of observations

J0 = {(i, j, t : ẑ(ϱij , ςit, ϑjt, EIAijt, Cijt) > 1− q + cN} (24)

where q is the quantile of interest [q ∈ (0, 1)] and cN is a small positive constant
defined as:

cN = min(.05, q10 of ẑ) (25)

2. Estimate the CRE quantile model in equation (18) for q = 0.1, ..., 0.9 using the subset
of observations J0 to obtain the vector of coefficient estimates, which we label β̂0(q).
As discussed above, we use the CRE approach for the second stage to avoid the IPP.

36For robustness, we will also consider later Cloglog and linear probability models with three-way fixed
effects for the first stage, as well as a CRE-based first-stage logit; see section 7.3 later. All models are
estimated in Stata except for this first stage logit model which is estimated in R using the "feglm" command.
This command significantly decreases the time to estimate, especially in the simulations later in section 11
where this first stage is continually repeated. We used the "rcall" Stata program described in Haghish (2021)
to allow communication between R and Stata.
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3. To guarantee efficiency, construct another subset of observations J1 such that:

J1 =
{
(i, j, t : β̂0(q)) > δNT

}
(26)

where δNT is calculated as:
δNT = 1/3(NT )(−1/3) (27)

where N is the number of country-pair observations and T is number of years in the
sample. Then we estimate the quantile model once more on the sample J1 using again
the CRE estimator. This third stage guarantees efficiency as shown by Galvao et al.
(2013).37

Intuitively, this procedure (essentially) suggests estimating (in the second and third
stages) CRE equation (18) on subsets of the full sample where – for various q – the estimated
propensity score (that Xijt ≥ 1), ẑ(ϱij , ςit, ϑjt, EIAijt, Cijt), exceeds 1-q. In the benchmark
application, Cijt = 0. However, since the full sample is sensitive to the cutoff value Cijt,
the second and third stage results may be sensitive to Cijt; we explore this in a robustness
analysis later.

6.3.2 Results

Table 7 provides the main empirical results across quantiles Q10-Q90 for estimating the
partial EIA effects using our modified Galvao et al. (2013) three-step quantile approach
with CREs. Furthermore, we are also interested in the partial EIA effect at the median
of all positive flows; this is approximately Q75 (see footnote 32). Several results are worth
noting. First, as in Table 6 for positive flows with CREs, the partial effects of EIAs also
decrease across quantiles, consistent with the Arkolakis proposition and our earlier results.

Second, Table 7 results suggest that omission of accounting for zeros biases the QR
estimates upward. To see this, we note that – at the 75th quantile (the median of the
positive flows) – the partial effect is 0.251, which is smaller than the partial effect of 0.462 in
Table 6 at the 50th quantile (or median) of positive trade flows. Furthermore, at the lowest
quantile, Q10, the partial effect is considerably larger than in Tables 5 and 6. However, recall
that the sub-samples at low quantiles are smaller, since in these sub-samples it is rarer to
have high probabilities of positive trade. Yet, at the 90th quantile (which is approximately
the 80th quantile of positive flows) the QR partial EIA effect is 0.220, which is close to (and
not statistically different from) the 80th quantile estimate in Table 6 of 0.262.

37In the third stage, we cluster standard errors by country pairs.
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Third, one of the benefits of using the CRE approach in the second (and third) stage is
that we can also estimate partial effects of all other MR variables. Examining DISTMR,
we find a one percent fall in distance increases bilateral trade more for the lower condi-
tional quantiles where censoring is more likely to occur. This is consistent with the finding
in Carrere et al. (2020). Furthermore, we also find systematic declines in partial effects
across quantiles for CONTIGMR and LEGALMR; for DISTMR, CONTIGMR, and
LEGALMR there are statistically significant differences between the partial effects for the
10th and 90th quantiles.38

Figure 2, Panel A (on the left-hand-side) provides a useful depiction of the EIAMRijt

partial effects at each of ten quantiles, 10-90 (and 75). Note the decline in partial effects
as conditional quantiles increase, consistent with Figure 1 from Arkolakis (2010). As in
Figure 1 for NAFTA, the actual decline is not monotonic, but it is substantive. Panel B
(on the right-hand-side) illustrates the absolute value of the DISTMR partial effects across
quantiles; these results are also consistent with the Arkolakis proposition.

7 Robustness Analysis

We conducted numerous robustness analyses along several dimensions. For brevity, we
present in the paper a discussion of six of these analyses; in Appendix A we present the
results for several others.

Section 7.1 presents one set of robustness results for the sensitivity of the Logit-BVQCM
results to an alternative method for handling the approximation for zeros. Section 7.2 illus-
trates that the Logit-BVQCM results hold up across different types of EIAs, i.e., (shallow)
free trade agreements and deeper economic integration agreements. Section 7.3 presents
results using instead a linear probability model in the first stage regression. Section 7.4
provides a robustness analysis for inclusion versus exclusion of intra-national trade flows.
Section 7.5 allows coefficient estimates of variables’ MR terms to be unconstrained. Section
7.6 provides estimates of Logit-BVQCM coefficients to be “adjusted” for dissimilar sample
sizes in the second and third stages to be “comparable” in the spirit of Machado et al. (2016).

38For LANGMR and COMCOLMR, the differences between the 10th and 90th quantiles are not statis-
tically significant.
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7.1 QR Robustness 1: Approximations of Zeros

7.1.1 Methodology

As discussed in section 6.3.1, the results of our estimation using the three-stage Logit-
BVQCM technique may be sensitive to how we treat “zeros.” We rationalized in that section
our motivation for adding ones to all zeros in our benchmark case, following guidance from
Cameron and Trivedi (2009), Wooldridge (2010), and Figueiredo et al. (2014). However, we
provide two alternative methods for treating zeros in our estimation (which uses logarithms
of flows for the LHS variable). A less defendable choice is adding ones to all observations;
we conduct one robustness analysis using this method. A second method, suggested in
Martin and Pham (2020), is to use the minimum level of the trade flows in the sample. In
our sample, the lowest non-zero value of trade flows is USD 1. In the spirit of robustness,
we alternatively used a value of USD 10,000.39 Later in section 11 using Monte Carlo
simulations, we will address the zeros issue once again.

7.1.2 Results

Appendix A Table A1 provides the results of the robustness analysis of adding ones to all
trade flows instead of just the zeros. A comparison of the results in Table 7 (adding 1’s to
only 0’s) and Appendix Table A1 shows that this difference did not materially change the
results quantitatively.

The second approach has two steps. First, we found all the observations that had values
of trade less than USD 10,000 and considered them zeros. Second, we added one to all zeros
to be able to take the logs. Hence, in this approach, we have a larger percentage of “zeros” in
the sample. Remarkably, as shown in Table 8, using a minimum value of USD 10,000 does
not have a significant impact upon the results qualitatively or quantitatively. All the partial
EIAMR effects remained positive and declined with increases in conditional quantiles. The
sole exception occurred at Q10, where the EIAMR partial effect in Table 8 is considerably
smaller than that in Table 7.

7.2 QR Robustness 2: Varying Degrees of Economic Integration

7.2.1 Methodology

One of the benefits of using the NSF-Kellogg Institute Database on Economic Integration
Agreements is that the database employs a multichotomous index of EIAs, notably allowing

39We also considered using a uniform distribution to generate a random integer between 0.01 and 1;
however, the three stage approach could not accommodate this alternative method.
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“deeper” trade agreements. Numerous papers have been exploring the trade impact of Deep
Trade Agreements (DTAs). The estimation of partial effects of EIAs of varying degrees
of economic integration was explored systematically using panel data and OLS in Baier
et al. (2014). None of the previous QR analyses noted in section 1’s literature summary has
examined partial effects of EIAs by type of agreement. Similar to Baier et al. (2014), we
examine partial effects of free trade agreements (FTAs) relative to those of customs unions
(CUs), common markets (CMs), and economic unions (ECUs). However, like in Baier et al.
(2014), due to the relatively few numbers of CUs, CMs, and ECUs in the data set, we
combine the latter into one measure of “deep” trade agreements, labeled CUCMECU. The
definitions of each type of agreement is described online in the EIA database as well as in
Baier et al. (2014).

7.2.2 Results

In the interest of brevity, we present the results disaggregating EIAs by FTAs and CUCME-
CUs only for Logit-BVQCM. Table 9 provides the estimates by type of EIA; results for
BVQCM (positive trade flows) are in Appendix A Table A2. First, as expected, note that
– beginning at Q30 in Table 9 – the effect of CUCMECUs is larger than that for FTAs; for
positive flows, the partial effect of CUCMECU is larger than that for FTA for all quantiles.
Deeper EIAs have larger partial effects.

Second, for FTAs the results are similar to those for EIAs; at higher quantiles, the partial
effects are smaller. For the most part, we also find support for the Arkolakis proposition
for deeper agreements; starting at Q30, CUCMECU effects decline with increases in the
quantiles. However, we also note a reversal in the trend starting at Q75. For the largest
trade flows, CUCMECUs have slightly larger effects, which is likely attributable to the
deepness of the European Union countries’ integration.

7.3 QR Robustness 3: First-Stage Linear Probability Model

7.3.1 Methodology

Galvao et al. (2013) provides no clear guidance on the choice of estimator for the first
stage. Probit with fixed effects is subject to the IPP. Some researchers have argued that
logit with fixed effects may suffer from inconsistent estimates. The linear probability model
(LPM) is a likely alternative estimator for the first stage determination of the sample of
propensity scores for each quantile estimated in the second stage; LPM allows a set of three-
way fixed effects in the first-stage only. A natural drawback of the LPM estimator is that
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the propensity scores can lie outside the range of 0 to 1; also, it is difficult to justify that
propensity scores are linear. Hence, there is no ideal first stage estimator. In the interest of
a sensitivity analysis, we consider the LPM for the first stage and present the results in the
paper.

We also considered a Cloglog first stage estimator and a CRE-based first stage logit
estimator (instead of using three-way fixed effects) and present those results in Appendix
A.

7.3.2 Results

Table 10 provides the (third-stage) results for Q10-Q90 and Q75 using the LPM in the first
stage. There are several findings. First, the QR estimate for the median of positive trade
flows (Q75) is 0.426, which is significantly higher than the comparable result in Table 7
using Logit-BVQCM. Second, the estimated EIAMR partial effects decline as conditional
quantiles increase, as in previous results. Third, the rate of decline is not as steep as in Table
7, with the EIAMR partial effect at the 10th (90th) quantile estimated at 0.785 (0.336).
In general, these results are qualitatively similar to those in Table 7.

As an explanation for the lower (higher) partial effects at the lowest (highest) conditional
quantiles for the LPM-BVQCM relative to Logit-BVQCM, one must recognize that the
sample sizes for the various quantiles in the former are larger; there is a different sample
at each quantile using LPM relative to logit. The reason is that the logit model drops
observations where the covariates (which include the fixed effects in the first stage) perfectly
predict the dependent variable. One example (likely the easiest to identify) are country-pairs
that always trade (AT) or never trade (NT) in every year of the sample. Country-pairs that
always trade in every year of the sample are likely to have higher trade values than all
country-pairs with positive trade in the sample.40 When we use the LPM model, AT and
NT observations are brought back into the estimation and are now included in the second
and third stages. In Appendix A Table A3, we detail the types of observations added back
into each stage of the estimation across the quantiles. In the AT group which tends to have
larger trade-flow values (see Appendix A Figure A1), these trade values are found entering
primarily at lower quantiles, tending to reduce EIAMR effects at these quantiles. In the
NT group which includes only zero trade values, these observations are found entering at
higher quantiles, tending to increase EIAMR effects at these quantiles. Consequently, the

40Figure A1 in the appendix shows the density plots for country-pairs that always trade in every year of
the sample and all country pairs with positive trade in the sample. We see a larger percentage of higher
trade values for the former.
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differing characteristics of the two first-stage methods essentially creates a flatter LPM-
BVQCM “curve” for EIAMR coefficient estimates relative to the Logit-BVQCM “curve” for
EIAMR coefficient estimates.41

As noted above, we also considered the Cloglog function for the first stage estimator.
As shown in Appendix A Table A7, the third stage results were not materially different
from those in Table 7. Furthermore, we considered a logit model in the first stage estimator
using correlated random effects rather than the three-way fixed effects in the benchmark
Logit-BVQCM model. As shown in Appendix A Table A8, the third stage results were not
materially different from those in Table 7.

7.4 QR Robustness 4: Intra-national Trade

7.4.1 Methodology

In principle, theoretical foundations for the gravity equation include a nation’s trade “with
itself.” This is often referred to in the gravity-equation literature as “intra-national trade.”
Hence, in empirical work, several studies have addressed the robustness of results to including
intra-national trade flows, which are effectively the output of a nation less its exports;
alternatively, this can be termed the domestic expenditure of a country on its domestic
output.

As noted in Bergstrand et al. (2015), the empirical dilemma typically faced is that trade
flows are measured on a “gross” basis whereas measures of national output – such as Gross
Domestic Product (GDP) – are generally measured on a “value-added” basis. In the trade
gravity-equation literature, researchers have had to make a difficult choice between three im-
perfect options. First, some researchers have employed a much smaller database of measures
of trade flows and national outputs of only manufactures for a small number of countries. For
instance, Bergstrand et al. (2015) employed the United Nations UNIDO Industrial Statistics
Database as a primary source of national (gross) outputs of manufactures, using the CEPII
TradProd Database as a secondary source for manufactures gross outputs. A major draw-
back is that this allowed trade among only 40 countries and a rest-of-the-world aggregate
for only 13 years (1990-2002). Given four-year intervals, the sample size was only 6,724
observations, which is considerably smaller than our sample size of over 120,000 positive
trade flows and our complete sample with zeros of nearly 250,000 observations.

41Appendix A Tables A4 and A5 provide analogous LPM-BVQCM results using, respectively, the robust-
ness checks of adding one’s to all zeros and using a user-defined minimum value of USD 10,000, as addressed
earlier for Logit-BVQCM. Appendix A Table A6 provides results using LPM-BVQCM (disaggregated by
type of agreement) analogous to the Logit-BVQCM results in Table 9.
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Second, the alternative approach, also examined in Bergstrand et al. (2015), was to use
aggregate trade flows among a much larger number of countries and a much larger number
of years, but having to use GDP as a proxy for national output. We note that the World
Input-Output Database (WIOD) provides “gross” measures of national output for a small
number of countries (40). But as noted importantly in Baier et al. (2019), the correlation
coefficient between the measures of intra-national trade for these 40 countries using the
WIOD gross output measures and GDP measures was a very high 95.8 percent.

The third alternative approach uses information from input-output tables and potentially
provides better measures of domestic and foreign value added if the production network is
internationally fragmented, as raised in Timmer et al. (2015).

Interestingly, Campos et al. (2021) recently explored in detail whether the choice of the
three techniques matter to structural gravity estimates. They concluded that “the estimates
of both the partial effect of trade agreements and the trade elasticity are very close across
methods” (p. 7). Consequently, in this study, we use the second approach, constructing
intra-national trade by subtracting each country’s exports from its GDP. This allowed the
use of trade flows among our 184 countries.42

7.4.2 Results

Table 11 provides evidence that our results are robust to including intra-national trade.
The specifications in columns (2) and (4) in both panels include only international trade
flows. The specifications in columns (3) and (5) in both panels include international and
intra-national trade flows. Intra-national trade is, on average, three times international
trade. Because intra-national flows are very large relative to typical international trade
flows, columns (3) and (5) in both panels include a dummy variable (INTER × Y earFE)
that accounts for whether the flow is international or intra-national.43

Upon closer examination, columns (2) and (3) in Panel A demonstrate using OLS that
the additional inclusion of (relatively large) intra-national trade flows increases the EIA
partial effect a small amount, most likely due to skewing the trade distribution further to
the right (and likely increasing the conditional mean EIA effect). This small increase in
partial EIA effects is also found in Panel B using either BVQCM or LPM-BVQCM, for a
likely similar reason. By contrast, the PPML estimate of the EIA partial effect is more

42For small countries, subtracting each country’s aggregate exports from its GDP can occasionally produce
negative values, due to the value-added nature of GDP. However, there were only 25 country-year observa-
tions that had negative intra-national trade imputations and we truncated these observations at 0. These
25 country-year observations spanned only 10 exporters: the Bahamas, Republic of the Congo, Equatorial
Guinea, St. Kitts and Nevis, Liberia, Marshall Islands, Malaysia, Oman, Singapore, and Suriname.

43For brevity, we do not report the coefficient estimates for INTERijt.
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sensitive to the inclusion of intra-national trade, likely due to PPML’s equal weighting of
observations in levels.44

7.5 QR Robustness 5: Allowing for Unconstrained MR Terms

We mentioned earlier in the paper that we would also provide estimates allowing the co-
efficient estimates of the “MR” components of the various bilateral trade-cost variables to
be left unconstrained. For brevity, we provide a comparable table to Table 7 where the
MR components’ coefficient estimates are allowed to be unconstrained. However, due to the
large number of coefficient estimates, we report in Appendix A Table A9 only the coefficient
estimates for ln(GDPex), ln(GDPim), EIAijt, etc., as in Table 7. As shown in Appendix A
Table A9, the basic results of interest are generally robust to allowing the MR components’
coefficient estimates of each bilateral variable to be unconstrained.45

7.6 QR Robustness 6: Comparable Partial Effects

In this subsection, we address a concern raised in Machado et al. (2016) regarding mixed
distributions and their implications for interpreting the QR partial effects across quantiles.
As discussed earlier, we view the data on bilateral trade flows as determined by a two-part
DGP process. In this case, we can interpret zeros as censored values. With the results
using our three-stage censored QRs, the estimated coefficients are not directly comparable
across quantiles because we have different subsamples at each estimation. This is due to
the condition that the subsamples only include observations where the propensity scores
resulting from the first stage logit are greater than 1− q + cN .

To make the the estimates comparable across quantiles, we calculate the partial or av-
erage effect for each subsample by computing the derivative of equation (19) with respect
to each regressor. Using this method, for each observation we multiply the propensity score
of being in the subsample by the estimated coefficient for each quantile regression. The
results are in Table 12. Note that the results are similar to the benchmark results in Table
7 with larger differences at the higher conditional quantiles, where the cutoff for entering
the subsample is much lower (i.e., the probability of censoring is lower).

44Note that we cannot provide this robustness check for Logit-BVQCM because of the 0-1 constraint on
the first-stage logit, as discussed earlier in section 7.3.2.

45None of the corresponding coefficient estimates across the two specifications is statistically different.
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8 Disaggregated Flows and the Arkolakis (2010) Proposition

Referring back to the introductory quote, central to this paper is providing compelling
evidence of the Arkolakis proposition that goods with lower initial sales should have larger
effects from an EIA. Up to now, our approach has relied upon quantile regressions. However,
the original empirical work in Arkolakis (2010) used 4-digit Standard International Trade
Classification (SITC) data.

In this section, we examine in more depth empirically the Arkolakis proposition. First,
we employ our novel Logit-BVQCM estimator using 2-digit SITC data.46 Using such data
moves estimation closer in spirit to the Arkolakis (2010) proposition that “goods with low
volumes of trade prior to a trade liberalization episode grow more when trade costs decline”
(p. 1153) and his use of disaggregated data. Second, we expand the specification of the
QR to include two more variables. One variable is the previous period’s share of country i’s
exports in two-digit sector s that are imported by country j. Given our 5-year intervals for
our time series, these previous period (t-5) shares can be reasonably construed as exogenous
to the current period trade flow. The second variable is an interaction of these previous
period export shares with EIAMR. Beyond showing the negative influence of the export
shares, we will also calculate the marginal effects across quantiles of larger and larger export
shares.

8.1 Methodology

First, consider disaggregated SITC Revision 1 trade at the 2-digit level for QR with non-
negative trade flows and our three-step methodology with CREs. Analogous to earlier, for
the second and third stages the QR trade model is:

Quantq(lnXijst) = βq
0 + βq

1 lnGDPit + βq
2 lnGDPjt + βq

3EIAMRijt + βq
4DISTMRij

+ βq
5CONTIGMRij + βq

6LANGMRij + βq
7LEGALMRij + βq

8RELIGMRij

+ βq
9COMCOLMRij +

T∑
t=1

αq
tY EARt + βq

10lnGDP i + βq
11lnGDP j

+ βq
12EIAMRij +

T∑
t=1

+γqt Y EAR+

S∑
s=1

Υs + ηqijst (28)

46At 2-digit SITC level, this leads to millions of observations, making QR estimation difficult. 4-digit
SITC data would be infeasible.
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where subscript s is the SITC product category and Υs denotes sector dummies. The three-
step QR approach has a first stage logit and is adjusted to consider SITC categories at 2
digit levels:

z(ϱijs, ςist, ϑjst, EIAijt, Cijst) = Pr(Tijst = 1|ϱijs, ςsit, ϑjst, EIAijt, Cijst) (29)

to calculate the propensity scores. We use these propensity scores to create subsamples that
meet criteria such that:

J0 = {(i, j, s, t : ẑ(ϱijs, ςist, ϑjst, EIAijt, Cijst) > 1− q + cN} (30)

where subscript s is the SITC sector level.
As discussed in the introduction to this section, we extend the model to include the

previous period’s country i share of sector s exports to country j, EXSHij,t−5, and the
interaction of this variable with EIAMR, EIAMRijt ∗ EXSHij,t−5. In the context of our
Logit-BVQCM specification, we include additionally the time-averaged mean of EXSHij,t−5.
This suggests replacing specification (28) with:

Quantq(lnXijst) = βq
0 + βq

1 lnGDPit + βq
2 lnGDPjt + βq

3EIAMRijt + βq
4DISTMRij

+ βq
5CONTIGMRij + βq

6LANGMRij + βq
7LEGALMRij + βq

8RELIGMRij

+ βq
9COMCOLMRij +

T∑
t=1

αq
tY EARt + βq

10lnGDP i + βq
11lnGDP j

+ βq
12EIAMRij +

T∑
t=1

+γqt Y EAR+ βq
13EXSHijs,t−5 + β14EXSH ijs

+ βq
15EIAMRijt ∗ EXSHijs,t−5 +

S∑
s=1

Υs + ηqijst (31)

8.2 Results

The results are presented in Table 13. Consistent with earlier results, we find that the
partial effects decline with increases in conditional quantiles. At lower quantiles, the partial
effects of EIAMRijt are lower than in Table 7 and at higher quantiles, the partial effects
are higher. However, it is important to note the significant increase in the sizes of the sub-
samples that are used. The sub-samples for Table 13 are 20 times larger than those for our
previous estimates using aggregate trade flows.

Importantly, the coefficient estimates for EIAMR∗EXSHijs,t−5 are negative and statis-
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tically significant for most quantiles. This implies that the partial effect of an EIA decreases
as the previous period’s export share increases, consistent with the Arkolakis proposition.
Moreover, this is readily apparent also from estimated (comparable) marginal effects re-
ported in Table 14. As conditional quantiles increase, the (comparable) marginal effects
decline. Furthermore, we see going down Table 14 across rows that, as the export share in
sector s of country i’s exports to country j increases, the marginal effects decline. To our
knowledge, this is the first systematic empirical support of the Arkolakis proposition across
time, across country-pairs, and across EIAs.

9 Have Developing-Country Exporters Benefited More from
EIAs?

Baier et al. (2018a), or BBC, examined the heterogeneous effects of EIAs on country-pairs’
trade flows using conditional mean (OLS) estimation including interaction terms. Based
upon a theoretical extension of the Melitz general equilibrium model of trade with heteroge-
neous firms, BBC argued that variable-cost and fixed-cost trade elasticities associated with
trade liberalizations are heterogeneous and endogenous to levels of country-pairs’ bilateral
policy and non-policy, variable and fixed trade costs (even allowing for constant-elasticity-
of-substitution preferences and an untruncated Pareto distrituion of productivities). Using
associated comparative statics, BBC provided several explicit predictions of the heteroge-
neous EIA dummies’ partial effects allowing for variations in country-pairs’ bilateral (trade-
cost-related) characteristics, and confirmed the predictions empirically.

However, in one of their robustness analyses, BBC could not show that the trade effects
of an EIA were sensitive to the level of either the exporter’s or importer’s per capita GDP,
and hence, levels of development. Noting this finding, BBC nevertheless did show that
the estimated EIA partial effects were statistically significantly negatively related to the
country-pairs’ (average) per capita GDPs; that is, EIA partial effects were higher for lower
per capita income pairs. Moreover, they showed that a 10 percent lower per capita income
(for the pair) was associated with a 60 percent higher EIA partial effect.

In this section, we use the QR methodology of this paper to tackle this issue: Do EIAs
actually increase developing-country exports more? For brevity, we extend our benchmark
aggregate trade Logit-BVQCM specification in a manner similar to that in the previous
section. One of the benefits of our BV approach is that we can introduce the logarithms of
time-varying exporter and importer per capita GDPs (lnPCGDPit and lnPCGDPjt, re-
spectively) – variables historically included in gravity-equation specifications (cf., Bergstrand
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(1989)) but omitted in more recent gravity-equation specifications – and their time-averaged
means (lnPCGDP i, lnPCGDP j) due to the CRE approach. Moreover, we include the in-
teraction of EIAMR with the log of the exporter’s per capita GDP, EIAMRijt∗lnPCGDPit.47

Accordingly, in this section we estimate:

Quantq(lnXijst) = βq
0 + βq

1 lnGDPit + βq
2 lnGDPjt + βq

3EIAMRijt + βq
4DISTMRij

+ βq
5CONTIGMRij + βq

6LANGMRij + βq
7LEGALMRij + βq

8RELIGMRij

+ βq
9COMCOLMRij +

T∑
t=1

αq
tY EARt + βq

10lnGDP i + βq
11lnGDP j

+ βq
12EIAMRij +

T∑
t=1

+γqt Y EAR+ βq
13 lnPCGDPit + βq

14 lnPCGDPjt

+ βq
15EIAMRijt ∗ lnPCGDPit + βq

16EIAMRijt ∗ lnPCGDPjt

+ βq
17lnPCGDPi + βq

18lnPCGDP j +

S∑
s=1

Υs + ηqijst. (32)

Table 15 and the accompanying Figure 5 provide the results. For brevity, we report in
Table 15 the marginal effects; the regression results are in Appendix A, Table A10. The
format of the table is analogous to previous tables; we report (third-stage) marginal effects
across quantiles (across columns). The distinguishing feature of this table is that we report
the EIA (comparable) marginal effects by various percentiles of the distribution of exporter
per capita GDPs. The poorest (richest) exporters – trading at a particular quantile – are
in the 10th (90th) percentile. First, we note that – as before – as quantiles increase the
(comparable) marginal effects decline. Second, this decline with rising quantiles holds at
all percentiles of exporter per capita income. Third, and most importantly, as exporter per
capita GDP increases going down the rows, the EIA marginal effects decline. Consistent
with the results discussed earlier in BBC, we note, for instance, that – at the 10th conditional
quantile (first column) and when exponentiated – the marginal EIA effect on trade flows
is 84 percent higher when the exporter’s per capita income is at only the 30th percentile
relative to being at the 50th percentile (median).

47We have also experimented with alternative specifications to account for developing-developed countries,
but for brevity only report this specification’s results. The results are similar using alternative specifications.
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10 Unconditional vs. Conditional Quantiles

In this section, we discuss briefly the correlation between the conditional and unconditional
dependent variables. A typical approach (cf., Machado et al. (2016)) uses the squared corre-
lation of these two variables as a pseudo R2, or a goodness of fit measure, of their estimations.
Although not definitive, we find a clear positive correlation between the conditional quantile
fitted values and the unconditional trade values.

For brevity, we discuss suggestive evidence of a positive relationship between conditional
quantile predictions of the log of trade flows and the unconditional values of the log of trade
flows. Recall from Tables 6 and 7, we have estimates of conditional quantile partial effects
for positive trade flows and for non-negative trade flows, respectively. Figure 3 provides, for
positive flows, a scatterplot as well as the fitted regression line between the unconditional
values of the log of trade on the vertical axis and the conditional quantile predictions for
four alternative quantiles (0.1, 0.3, 0.7, and 0.9). The scatterplots and fitted regression lines
show a strong positive correlation between these values; the pseudo R2 values for various
quantiles are 64-65 percent. Figure 4 provides the analogous information based upon the
Logit-BVQCM results in Table 7 for all non-negative trade flows. In this case, we examine
the relationship between the unconditional logs of trade flows and their corresponding con-
ditional quantile predictions for the quantiles of positive flows (0.6, 0.7 0.8, and 0.9). Again,
the scatterplots and fitted regression lines show strong positive relationships; the pseudo R2

values for various quantiles are 37-38 percent.
While this evidence is suggestive, a more rigorous technique is needed to establish uncon-

ditional quantile treatment effects. In Appendix B, we use the methodology of Firpo (2007)
to provide quantile treatment effects (QTEs). To summarize the two important results, we
find first that the QTEs also decline as quantiles increase, similar to our earlier results. We
find second that the QTEs are generally of magnitudes quite similar quantitatively to our
earlier conditional quantile effects.

11 Monte Carlo Simulations for a Two-Part DGP

In the previous econometric analysis, we have shown that:

(1) For positive trade flows, quantile regressions – with or without accounting for unob-
served heterogeneity – provide EIA partial effect estimates at the median quantile
that are closer to historical three-way FE (conditional mean) OLS estimates than to
historical three-way FE (conditional mean) PPML estimates, and are about four to
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five times larger than the PPML estimates.
(2) However, at the 90th conditional quantile, QR partial EIA effect estimates are very

close to PPML estimates.
(3) Accounting for unobserved heterogeneity and for zeros using a novel three-step es-

timator, QR partial EIA effect estimates at the median of positive flows – which is
Q75 of all non-negative flows – are about 50 percent smaller than QR partial (median
quantile) EIA effect estimates using only positive trade flows.

(4) Across specifications and an extensive empirical robustness analysis, our QR results
support the Arkolakis (2010) proposition that the effects of EIAs are larger when initial
trade flows tend to be smaller (more specifically, at lower conditional quantiles).

In the spirit of Santos Silva and Tenreyro (2006), Head and Mayer (2014), and Martin
and Pham (2020), we conduct a large Monte Carlo simulation analysis of the sensitivity of
EIA partial effect estimates across a wide array of “error structures.” A novel difference of
our simulation study with these three previous simulation studies is that we pay particular
attention to the panel nature of our data. Most researchers, including the three studies
cited above, use a cross-section approach and cross-section data in their simulations. To
bear resemblance to the canonical gravity expression for panel data in our econometric
work, we introduce the it, jt, and ij dimensions to our analysis and we use the same data
as in section 5.2.

In our first simulation analysis, we consider six alternative methods of estimation: OLS
(for positive flows only), PPML (positive flows), BVQCM (positive flows), PPML (non-
negative flows), Logit-BVQCM (to account for zeros), and LPM-BVQCM (to account for
zeros). Also, we will separate results for positive trade flows only (Panel A in subsequent
tables) from the results for non-negative trade flows (Panel B results). Noting all of this,
we need to recall the discussion in section 3 on alternative “data generating processes”
(DGPs). As addressed in section 3, depending upon the underlying theoretical context, one
can consider bilateral trade flows as being generated under a single-stage DGP, consistent
with the discussion in section 3.1 (gravity without export fixed costs). By contrast, one can
also consider bilateral trade flows as being generated under a two-stage DGP, whereby – in
the presence of export fixed costs – firms first decide (based upon variable profits relative
to export fixed costs) whether or not to enter a market, and then conditional upon entering
decide how much to export. In our first set of simulations discussed in this paper, we assume
a two-stage DGP similar to that in Head and Mayer (2014) and adapted in Poissonnier
(2019). However, because the underlying DGP is a two-stage process, this could affect the
measurement of the bias if the (true) underlying DGP is single-stage, such as in Santos Silva
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and Tenreyro (2011); hence, we caution the reader in this regard. Consequently, in section
12, we will provide simulations under the alternative “null” of a single-stage process.

11.1 Methodology

Our approach for the two-part simulations follows the structural gravity methodology de-
scribed in Head and Mayer (2014) and adapted in Poissonnier (2019) for panel data. As
in Head and Mayer (2014), we start with two RHS variables determining trade flows, a
continuous time-invariant variable, lnDISTij , and a time-varying variable, EIAijt.48 In the
simulations, the coefficients on lnDISTij and EIAijt are set to −1 and 0.5, respectively,
and we use an iterative approach to solve for the multilateral resistance terms Φjt and Πit

using a structural gravity framework as in Poissonnier (2019). Also as in Poissonnier (2019),
the convergence criterion is quadratic such that the matrix ΠitΦ

′
jt is continually updated

until convergence, which differs from the approach for each multilateral resistance term in
Head and Mayer (2014). The data generating process is defined such that variable trade
costs (τijt) raised to the trade elasticity (−θ) are:

τ−θ
ijt = exp(− lnDISTij + 0.5EIAijt) ∗ ηijt (33)

where ηijt is defined as in section 4.1.1. We define the variance of ηijt as σ2
ijt. For nota-

tional convenience going forward, we define a term µijt such that µijt = exp(− lnDISTij +

0.5EIAijt). Hence, τ−θ
ijt = µijtηijt, as in Santos Silva and Tenreyro (2006).

To see how estimates from our alternative estimators are sensitive to the structure of
gravity’s errors, we consider the same four cases for the error structure presented in Santos
Silva and Tenreyro (2006). Formally, the four cases we consider are:

1. Case 1: σ2
ijt = h× µ−2

ijt ; V ar[Xijt|EIAijt, lnDISTij ] = h

2. Case 2: σ2
ijt = h× µ−1

ijt ; V ar[Xijt|EIAijt, lnDISTij ] = h× µijt

3. Case 3: σ2
ijt = h ; V ar[Xijt|EIAijt, lnDISTij ] = h× µ2

ijt

4. Case 4: σ2
ijt = h × (µ−1

ijt + exp(x2ijt)) ; V ar[Xijt|EIAijt, lnDISTij ] = h × (µijt +

exp (x2ijt)µ
2
ijt)

where the variable x2ijt is a binary variable with mean 0.4.
48For the BV equivalent time-invariant and time-varying variables, each are constructed after the simula-

tion data is created for each iteration.
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We summarize each of the cases. In Case 1, the variance of ϵijt is a constant (h), which
implies that the non-linear least squares estimator is optimal; as discussed below, we set
h = 4 in the benchmark case. Santos Silva and Tenreyro (2006) argue this case is unrealistic
for bilateral trade, but – as there – we include it for completeness. In Case 2, the conditional
variance of Xijt is equal to its conditional mean, scaled by the index of dispersion h, as in
the Poisson distribution. In this case, PPML is the optimal estimator and λ = 1. In Case
3, λ = 2, so the conditional variance of Xijt is equal to the square of its conditional mean,
scaled by the index of dispersion h, as in the Gamma distribution. In this case, Gamma
PML is the optimal estimator. In Case 4, the conditional variance of Xijt is a quadratic
function of the mean, but it is not proportional to the square of the mean.

Note that we use the same Constant Variance Mean Ratio (Case 2) and Constant Coef-
ficient of Variation (Case 3) notation that is specified in Head and Mayer (2014). Similar to
Head and Mayer (2014), we include an overdisperson parameter, h, that is set initially to 4
as in Head and Mayer (2014). PPML should still remain consistent and efficient. We also
provide simulations where h was set to 1 and 10.

The data generating process does not naturally generate zeros. Consequently, we follow
Head and Mayer (2014), p. 180, to generate zeros. As in a standard Melitz model, we
assume that variable profits of a firm in country i for selling to country j (say, Xijt/α) must
exceed export fixed costs fijt to enter the market, where α is defined as the elasticity of
substitution in consumption. Hence, trade can only occur if Xijt ≥ αfijt. So we create a
threshold (zero profit cutoff) such that trade is positive if:

Xijt =

Xijt, if Xijt ≥ αfijt

0, if Xijt < αfijt .
(34)

The mean and variance of the threshold are set to mimic the proportion of zeros observed
in the current sample of countries from 1965 to 2010 at 5 year intervals. Total trade cost is
defined as:

ϕijt = τ−θ
ijt f

−[ θ
α−1

−1]
it (35)

Following Head and Mayer (2014), we set θ = 5 and θ/(α − 1) = 2.5 which implies that
α = 3. Head and Mayer (2014) note that θ/(α − 1) = 2.5 matches the estimates provided
by Eaton et al. (2011) of this parameter. Details of the construction of this two-stage DGP
are provided in Appendix C.
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11.2 Benchmark Simulation Results

For the benchmark simulations, we run all the models using our benchmark treatment
of zeros in the data, adding ones to the zeros; our first robustness analysis in the next
subsection will address this issue. For all the results, we report the coefficient estimates
from 250 iterations of the specifications. For OLS and PPML, we include it, jt, and ij fixed
effects. For BVQCM, Logit-BVQCM, and LPM-BVQCM, we include our correlated random
effects, as explained earlier. For OLS and PPML specifications, we report the coefficient
estimate for EIAijt, the standard error of the estimate, and the bias (which is two times
the deviation of the estimate from 0.5). For BVQCM, Logit-BVQCM, and LPM-BVQCM,
we report the coefficient estimate for EIAMRijt, the standard error of the estimate, and
the bias.49

Table 16 reports the benchmark results. Note that we consider all the estimators used
earlier in the empirical analysis. As indicated above, the table (and subsequent tables) are
divided into two panels. The top panel uses only positive trade flows. The bottom panel
uses all non-negative trade flows. Going down the rows of the top panel in Table 16, the first
three estimators are OLS, PPML, and BVQCM, using positive trade flows only for the four
different error-structure cases 1-4. In the bottom panel, we examine PPML, Logit-BVQCM,
and LPM-BVQCM using positive trade flows and zeros; in a robustness analysis later, we
will consider alternative methods for approximating zeros for the second and third stages
in Logit-BVQCM and LPM-BVQCM, the percentages of zeros, and alternative indexes of
overdispersion. For PPML, we use actual zeros, as standard.

We note several results in Table 16. First, for Case 1 when the conditional variance of
Xijt is a constant (h = 4) and only positive trade flows are used, PPML has the least bias of
the three estimators for the EIA partial effect. For non-negative trade flows, again PPML
has the least bias (0.011). The bias of Logit-BVQCM (LPM-BVQCM) is 0.028 (0.039).
Second, similar results hold for Case 2, when the conditional variance of Xijt is proportional
to the conditional mean. Note that in Case 2, λ = 1 and the optimal estimator for the
Poisson distribution is the PPML. For the case of non-negative trade flows, the relative
biases of PPML, Logit-BVQCM, and LPM-BVQCM remain approximately the same as in
Case 1.

Several results emerge for Cases 3 and 4. First, in Case 3 (for which Gamma PML is
optimal), for positive trade flows PPML has the least bias. However, for non-negative trade
flows, Logit-BVQCM has the lowest bias and LPM-BVQCM has the largest bias. For Case

49Note that the economic interpretations of these coefficient estimates are the same; from earlier in the
paper, results are robust to constraining the MR terms’ coefficients or allowing them to be unconstrained.
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4, PPML has the largest bias.

11.3 Robustness Analysis

In this section, we discuss five robustness analyses conducted to see the sensitivity of our
findings above to several changes.

11.3.1 Adding 1s to All Trade Flows

In empirical section 7, we provided a robustness analysis contrasting our benchmark esti-
mates using the procedure suggested in Cameron and Trivedi (2009), Wooldridge (2010),
and Figueiredo et al. (2014) – to add ones only to zeros – with an alternative of adding ones
to all trade flows. We implement a similar robustness analysis here in the simulations.

The top panel of Table 17 reports the results for OLS, PPML, and BVQCM using only
positive trade flows for this alternative treatment of zeros. Since the top panel uses only
positive trade flows, one should not expect any material change in the estimates. However,
for some (initially) very small trade flows (say, ones) adding a 1 can non-trivially affect the
results. This is indeed the case, as expected. A comparison of the estimates from the top
panel of Table 17 with the corresponding estimates in Table 16 shows that – for Cases 1 and
2 – the relative biases are approximately the same across the two methods of approximating
zeros for OLS and BVQCM; naturally adding ones to all trade flows does impact the PPML
estimates slightly, but not materially.

The bottom panel of Table 17 reports that – for Cases 1 and 2 – PPML remains having
the smallest bias. However, for Cases 3 and 4, Logit-BVQCM has the smallest bias.

11.3.2 Increase the Number of Observations of Zero by 25 Percent

In this robustness analysis, we increase the number of observations that are zero in every
year by 25 percent. The results are provided in Table 18. For brevity, we review only the
results for non-negative trade flows in the bottom panel. With a substantive increase in
zeros, LPM-BVQCM now has the least bias in all four cases, followed by Logit-BVQCM
which has the second lowest level of bias in three of the four cases.

11.3.3 Decrease the Number of Observations of Zero by 25 Percent

Table 19 provides the results of decreasing the number of observations of zero relative to
the benchmark. We focus again on the bottom panel, for brevity. With this decrease in the
number of trade flows with zeros, PPML has the least bias when using non-negative trade

49



flows in Cases 1 and 2. However, Logit-BVQCM has the least bias in the bottom panel of
Table 19 in Cases 3 and 4.

11.3.4 Increase the Cutoff Value for Trade to USD 500,000

In this case, we increase the cutoff value for trade to USD 500,000, similar to the exercise
in empirical Section 7. The results are provided in Table 20; we focus on the bottom panel.
Increasing the cutoff value for trade relative to the benchmark does not alter materially the
biases for the four cases for non-negative trade relative to the benchmark results in Table
16.

11.3.5 Reduce the Overdispersion Index from h = 4 to h = 1

Table 21 provides the penultimate set of simulation results. In this case, we reduce the index
of overdispersion from the value of h = 4 as used in the simulations in Head and Mayer
(2014) to a lower value of h = 1. Focusing again on the bottom panel, the main finding,
relative to the benchmark results in Table 16, is that the biases are reduced substantively
for all three estimators (PPML, Logit-BVQCM, and LPM-BVQCM) in Cases 3 and 4. For
Cases 1 and 2, the biases for all three estimators increase, but there is no change in relative
biases (relative to the benchmark Table 16 results).

11.3.6 Increase the Overdispersion Index from h = 4 to h = 10

Table 22 provides the final set of simulation results in this section. In this case, we increase
the index of overdispersion from the value of h = 4 as used in our benchmark simulations
to a higher value of h = 10. Focusing again on the bottom panel, the main finding, relative
to the benchmark results in Table 16, is that the biases increase for all three estimators in
Cases 3 and 4. For Cases 1 and 2, the biases for all three estimators decrease, with the
Logit-BVQCM falling sharply in Case 1. Logit-BVQCM has the least bias in Cases 1, 3,
and 4.

In summary, our results indicate that the optimal estimator depends materially on the
underlying error structure. In general, we find for the cases of constant variance (Case 1)
and a Poisson distribution for errors (Case 2) that the optimal estimator is PPML. However,
for Cases 3 and 4, we find significant evidence that Logit-BVQCM or LPM-BVQCM yield
less biased estimates.
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12 Monte Carlo Simulations 2: One-Part DGP

The simulation results presented in the previous section relied on a structural gravity
methodology simulation approach described in Head and Mayer (2014) and adapted in
Poissonnier (2019) for panel data and was implicitly a two-stage DGP. The key feature of
this approach was the inclusion of fixed trade costs, fijt, in ϕijt (overall trade costs). The
simulations closely followed the theoretical gravity specification with export fixed costs de-
veloped by Melitz (2003), an extensive margin decision and an intensive margin decision.
Given that the PPML estimator is not optimal for a two-stage modeling process, we will
present an alternative one-step DGP here for non-negative outcomes.

12.1 Methodology

We now present simulation results that have a one-stage DGP as outlined in Santos Silva
and Tenreyro (2011) and Breinlich et al. (2022). Similar to the simulations presented in
Santos Silva and Tenreyro (2011), the dependent variable, yi, has a significant proportion
of zero outcomes while its expectation, conditional on its determinants, is expressed as:

E(yi|xi) = exp(x′iβ). (36)

We note that this expectation can be represented as a finite mixture of two components:
(1) mi, which is a discrete random variable, and (2) a continuous random variable zik. In
the context of international trade, for convenience let yi be exports from country i (to some
country j) and β a vector of coefficients on xi. We let mi denote the number of firms and
let zik denote the exports of a particular firm, where k denotes a firm. Given the discussion,
we can express the dependent variable as:

yi =

mi∑
k=1

zik (37)

where mi is a discrete non-negative integer (of possible export firms in country i).
If we assume that zik and mi are independent, we can rewrite the expectation as:

E(yi|xi) = E(mi|zik)E(zik|xi) (38)

= exp(x′iγ)exp(x
′
iδ) (39)

so that β = γ + δ. To simplify the simulation, both Santos Silva and Tenreyro (2011) and
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Breinlich et al. (2022) assume δ = 0, which implies that:

E(yi|xi) = E(mi|zik) = exp(x′iβ). (40)

If zik is zero for all firms in country i, then the aggregate bilateral trade flow would be zero.
Following Santos Silva and Tenreyro (2011) and Breinlich et al. (2022), we specify that

E(mi|zik) = exp(0.4+βzik) and V ar(mi|zik) = aE(mi|zik)+bE(mi|zik)2. Note that Santos
Silva and Tenreyro (2011) used varying values of a and b that change the percentage of zeros
in the simulated data. Following Breinlich et al. (2022), setting a = 1 and b = 2 implies
that the simulated data will have roughly 50 percent zeros, which is similar to aggregate
trade data used in the previous simulations and actual trade data. Both articles note that
the Gamma PML is the optimal estimator given the simulation setup, which then should
not favor the PPML or our three stage approach. We similarly exclude fixed effects, for
simplicity. Additionally, we will report the results of the PPML conditional mean while we
report Q0.50, Q0.60, Q0.70, Q0.80, Q0.90 for our three stage censored quantile model.

We will consider two cases: (1) regressors and parameters are constant across k, and (2)
parameters vary across k but each firm faces the same regressors. In Case 1, we consider
homogeneous firms. In Case 2, we allow for heterogeneity across firms. In Case 2, we use
σk to define variation in productivity across firms (i.e., heterogeneous firms):

• Case 1: Homogeneous firms

• β = −1 and zi ∼ N (0, 1)

• Case 2: Heterogeneous firms

• β ∼ N (−1, σk) and zi ∼ N (0, 1)

The simulation will set n ∈ {100, 000; 1, 000, 000} and k = 1 (initially).50 Additionally, we
will allow the variation of the firm parameters such that σk ∈ {0.0, 0.25, 0.50, 0.75, 1.0}.

12.2 Results

The results are presented in two parts. The first part is the set of results in Table 23. This
table is composed of three panels. Panel A provides the results of estimating the model
using PPML. We have two sets of samples: one uses a sample of n = 100, 000 and the
other uses a sample of n = 1, 000, 000. Across rows, we vary the degree of heterogeneity

50The setup is analogous to Breinlich et al. (2022) and the choice of k will not be relevant given that our
focus is on the aggregate yi.
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among firms (which is also representative of an index of heterogeneity across sectors). With
homogeneous firms, PPML has virtually no bias. As we move down rows in Panel A,
increasing heterogeneity among firms increases the bias of the PPML conditional mean.
The results are virtually identical across columns.

Panel B provides comparable results with n = 100, 000 using Logit-BVQ. When there
is no firm heterogeneity, Logit-BVQ has large bias at Q50, which is at the median of all
flows, including zeros as described above. However, near the median of positive flows in the
non-negative sample (Q80), Logit-BVQ has the least bias across these quantiles. Moreover,
as firm heterogeneity increases as we move down the rows of Panel B, the minimal bias
at Q80 persists. Indeed, across every row for Logit-BVQ except for Q50, the bias stays
approximately the same as heterogeneity increases. These results are confirmed with the
larger sample in Panel C.

Table 24 provides further results from the simulations analogous to those in Breinlich
et al. (2022). The top panel presents the results allowing variation in the number of firms
(k) in the sample. Clearly, the number of firms does not matter for the results. However, the
top panel shows clearly that – with firm homogeneity – PPML has the lowest bias. However,
at Q80 (the median of positive flows in the non-negative sample), Logit-BVQ has fairly low
bias, certainly relative to that at the median of all non-negative flows.

However, the bottom panel of Table 24 shows that – with firm heterogeneity – PPML,
as found earlier, has considerable bias. Yet, Logit-BVQ has much smaller bias, whether at
the median of all non-negative flows or at the median of the positive flows.

The bottom line is that – as in the case of the two-part Monte Carlo analysis earlier
– which method has the least bias is a function of parameters of the model. Interestingly,
under many scenarios, Logit-BVQ has small biases.

13 Conclusions

The purpose of this paper was to provide an alternative conditional quantile method for
estimating the effects of economic integration agreements on trade flows – and, in principle,
also for estimating trade elasticities – to the well established conditional mean estimators
ordinary least squares (OLS) and Poisson pseudo maximum likelihood (PPML). We focused
on quantile regressions (QRs), which have played only a limited role to date in evaluating
one of two parameters that are central to quantifying the economic welfare gains or losses
from trade-policy liberalizations.

First, QRs offer an alternative way to PPML to circumvent the Jensen’s Inequality issue
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associated with OLS. The zeros issue is addressed using a novel extension of the Galvao et al.
(2013) three-step estimator to account for zeros in trade and using Chamberlain-Mundlak-
based correlated random effects to address unobserved heterogeneity, avoiding the incidental
parameters problem associated with three-way fixed effects in the context of QRs.

Second, we found in general that the partial effect of an EIA at the median of positive
trade flows using our three-step QR approach was fairly close to historical OLS conditional
mean effects. Yet, we also found that at the highest conditional quantiles – where trade flows
are likely the largest – our QR EIA partial effects were close to historical PPML conditional
mean estimates.

Third, QR allowed us to examine empirically the theoretical proposition in Arkolakis
(2010) and Kehoe and Ruhl (2013) that the effects of an economic integration agreement
tend to be largest where initial trade volumes are low or, more accurately, at low conditional
quantiles. While those earlier studies focused upon a few selected EIAs for selected time
periods, we provided systematic evidence confirming Arkolakis’ theoretical proposition over
nearly the universe of EIAs and trade flows in the world spanning 50 years.

Fourth, extending the work of Baier et al. (2018a), we found strong evidence that devel-
oping country exports benefit more from EIAs than non-developing exporters. Our evidence
suggests that developing country exports actually increase more than non-developing coun-
tries’ exports.

Our study suggests a promising methodology for future analyses of the trade-flow and
economic-welfare effects of trade-policy changes across the distribution of all trade flows.
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14 Figures and Tables

Figure 1: Predicted and actual ratio of U.S. imports from Mexico in 1998-2000 to that in 1991-1993
for each decile of previously traded goods. (Arkolakis, JPE, 2010)

Figure 2: Coefficients on EIAMR (Panel A) and DISTMR (Panel B) from Logit-BVQCM.
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Figure 3: BVQCM

Figure 4: Logit-BVQCM
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Figure 5: Logit-BVQCM

Note: Percentiles in the legend refer to exporter GDP per capita. "Comparable" refers to the adjustment
discussed by Machado et al. (2016) to allow partial effects to be comparable across quantiles.
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Table 1: Comparison of Linear Regression and Quantile Regression
Linear Regression Quantile Regression
1. Predicts the conditional mean E(Y | X) Predicts conditional quantiles Qτ (Y | X)

2. Often assumes normality Is distribution agnostic
3. Does not preserve E(Y | X) under transformation Preserves Qτ (Y | X) under transformation
4. Is sensitive to outliers Is robust to response outliers
5. Applies when n is small Needs sufficient data
6. Is computationally inexpensive Is computationally intensive

Source: Rodriguez and Yao (2017).

Table 2: Summary Statistics Decomposed by EIA vs. No EIA
Variables No EIA EIA Total

(1) (2) (3) (4)

n (%) 237987 (95.9) 10136 (4.1) 248123 (100.0)
Trade if Tij > 0, mean (st dev) 2.2e+08 (2.7e+09) 2.0e+09 (9.3e+09) 3.5e+08 (3.7e+09)
Trade if Tij ≥ 0, mean (st dev) 1.1e+08 (1.9e+09) 1.7e+09 (8.8e+09) 1.7e+08 (2.6e+09)
Tij , mean (st dev) 0.47 (0.50) 0.89 (0.31) 0.49 (0.50)
ln(GDP ), mean (st dev) 22.82 (2.46) 24.59 (2.35) 22.89 (2.48)
ln(DIST), mean (st dev) 8.83 (0.68) 7.36 (0.84) 8.77 (0.75)
CONTIG, mean (st dev) 0.01 (0.11) 0.13 (0.34) 0.02 (0.13)
LANG, mean (st dev) 0.16 (0.37) 0.32 (0.47) 0.17 (0.37)
LEGAL, mean (st dev) 0.35 (0.48) 0.44 (0.50) 0.35 (0.48)
RELIG, mean (st dev) 0.17 (0.24) 0.29 (0.32) 0.17 (0.25)
COMCOL, mean (st dev) 0.11 (0.31) 0.16 (0.37) 0.11 (0.31)
Trade Decile, n (%)

10-50th 125615 (99.1) 1110 (0.9) 126725 (100.0)
50-60th 21905 (98.9) 244 (1.1) 22149 (100.0)
60-70th 24301 (97.9) 512 (2.1) 24813 (100.0)
70-80th 23784 (95.9) 1028 (4.1) 24812 (100.0)
80-90th 23014 (92.8) 1798 (7.2) 24812 (100.0)
90-100th 19368 (78.1) 5444 (21.9) 24812 (100.0)

Note: Tij is a binary variable that is 1 if international trade is positive and 0 otherwise. The

positive values begin at the 52th percentile. The median of strictly positive trade values fall

between the 74th and 76th percentile. 184 countries are in the sample.

Table 3: Agreements Description

Integration Index Count Percent of Total Cumulative Percent

(0) No Agreement 237,987 95.91 95.91
(3) Free Trade Agreement 6,114 2.46 98.38
(4) Customs Union 1,802 0.73 99.11
(5) Common Market 1,456 0.59 99.69
(6) Economic Union 764 0.31 100.00

Total 248,123 - -

Notes: Total observations are based upon 184 countries for 10 periods at 5 year in-
tervals (1965-2010). Note that number in parentheses is the number coded in the data
source at https://sites.nd.edu/jeffrey-bergstrand. Non-reciprocal (one-way) and
reciprocal preferential (two-way partial) agreements are coded as not having an agree-
ment (or 0) for this study.
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Table 4: Methods Comparison
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

BVOLS+ BVOLS+ FE-OLS+ BVPPML+ BVPPML+ FE-PPML+ BVPPML BVPPML FE-PPML

ln(GDPex) 1.113∗∗∗ 0.649∗∗∗ 0.777∗∗∗ 1.025∗∗∗ 0.800∗∗∗ 1.118∗∗∗

(0.005) (0.022) (0.015) (0.085) (0.015) (0.084)
ln(GDPim) 0.950∗∗∗ 0.463∗∗∗ 0.795∗∗∗ 0.903∗∗∗ 0.840∗∗∗ 1.029∗∗∗

(0.006) (0.024) (0.019) (0.058) (0.018) (0.048)
EIAMR 0.529∗∗∗ 0.430∗∗∗ 0.383∗∗∗ 0.213∗∗ 0.130∗ 0.121∗∗∗ 0.242∗∗ 0.164∗∗ 0.109∗∗∗

(0.047) (0.036) (0.034) (0.106) (0.074) (0.029) (0.106) (0.072) (0.029)
DISTMR -1.391∗∗∗ -1.317∗∗∗ -0.826∗∗∗ -0.777∗∗∗ -0.839∗∗∗ -0.779∗∗∗

(0.022) (0.024) (0.059) (0.066) (0.059) (0.064)
CONTIGMR 0.458∗∗∗ 0.467∗∗∗ 0.317∗∗∗ 0.347∗∗∗ 0.283∗∗∗ 0.321∗∗∗

(0.089) (0.088) (0.090) (0.094) (0.090) (0.094)
LANGMR 0.460∗∗∗ 0.433∗∗∗ 0.413∗∗∗ 0.386∗∗∗ 0.434∗∗∗ 0.413∗∗∗

(0.050) (0.049) (0.112) (0.110) (0.114) (0.110)
LEGALMR 0.270∗∗∗ 0.253∗∗∗ 0.036 0.050 0.042 0.048

(0.034) (0.033) (0.094) (0.093) (0.094) (0.093)
RELIGMR 0.336∗∗∗ 0.298∗∗∗ -0.240∗∗ -0.246∗∗ -0.253∗∗∗ -0.266∗∗∗

(0.061) (0.060) (0.101) (0.100) (0.098) (0.098)
COMCOLMR 0.561∗∗∗ 0.461∗∗∗ -0.439 -0.364 -0.470 -0.355

(0.061) (0.059) (0.337) (0.323) (0.349) (0.324)

BV Yes Yes No Yes Yes No Yes Yes No
Year FE Yes Yes No Yes Yes No Yes Yes No
CRE No Yes No No Yes No No Yes No
Exp-Yr FE No No Yes No No Yes No No Yes
Imp-Yr FE No No Yes No No Yes No No Yes
Pair FE No No Yes No No Yes No No Yes
Adj. R2 0.645 0.656 0.857
Pseudo R2 0.899 0.901 0.991 0.909 0.911 0.992
Obs 121417 121417 121417 121417 121417 121417 248123 248123 248123

Clustered standard errors by country-pair are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. The + indicates only positive trade values (i.e. Tij > 0) were

used in the estimation. The BV abbreviation indicates "Bonus Vetus" methodology described in Baier and Bergstrand (2009a) and Baier and Bergstrand

(2010). OLS and PPML are abbreviations for ordinary least squares and Poisson pseudo maximum likelihood, respectively. "FE" denotes the three-way

(full) fixed effects specification. "Year FE" indicates whether year dummy variables were included or not; "CRE" indicates whether correlated random

effects were used or not. Note that singletons and separated observations were kept in columns 4, 7, and 10, but only the standard errors change marginally

and coefficients are not affected. The "FE" specifications using EIA rather than EIAMR yielded identical coefficient estimates. As discussed in the text, the

coefficient estimates for EIA in columns (4), (7), and (10) are identical using EIAMRijt or EIAijt; the reason is that the exporter-year and importer-year

FEs capture all of multilateral resistance elements inside EIAMRijt.
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Table 5: BVQ Positive
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q75 Q80 Q90

ln(GDPex) 1.421∗∗∗ 1.329∗∗∗ 1.256∗∗∗ 1.186∗∗∗ 1.121∗∗∗ 1.056∗∗∗ 0.984∗∗∗ 0.943∗∗∗ 0.902∗∗∗ 0.802∗∗∗

(0.008) (0.007) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
ln(GDPim) 1.086∗∗∗ 1.046∗∗∗ 1.011∗∗∗ 0.981∗∗∗ 0.954∗∗∗ 0.927∗∗∗ 0.898∗∗∗ 0.880∗∗∗ 0.858∗∗∗ 0.820∗∗∗

(0.009) (0.007) (0.007) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
EIAMR 0.439∗∗∗ 0.423∗∗∗ 0.384∗∗∗ 0.384∗∗∗ 0.372∗∗∗ 0.385∗∗∗ 0.368∗∗∗ 0.362∗∗∗ 0.364∗∗∗ 0.314∗∗∗

(0.094) (0.061) (0.053) (0.047) (0.044) (0.042) (0.042) (0.042) (0.043) (0.049)
DISTMR -1.635∗∗∗ -1.517∗∗∗ -1.434∗∗∗ -1.375∗∗∗ -1.334∗∗∗ -1.280∗∗∗ -1.236∗∗∗ -1.203∗∗∗ -1.172∗∗∗ -1.133∗∗∗

(0.039) (0.029) (0.027) (0.025) (0.024) (0.024) (0.024) (0.023) (0.022) (0.024)
CONTIGMR 0.073 0.104 0.187∗ 0.225∗∗ 0.291∗∗∗ 0.295∗∗∗ 0.350∗∗∗ 0.371∗∗∗ 0.398∗∗∗ 0.356∗∗∗

(0.127) (0.115) (0.112) (0.107) (0.103) (0.100) (0.103) (0.099) (0.098) (0.099)
LANGMR 0.499∗∗∗ 0.477∗∗∗ 0.475∗∗∗ 0.458∗∗∗ 0.455∗∗∗ 0.469∗∗∗ 0.478∗∗∗ 0.478∗∗∗ 0.458∗∗∗ 0.462∗∗∗

(0.078) (0.062) (0.057) (0.054) (0.052) (0.053) (0.053) (0.053) (0.054) (0.058)
LEGALMR 0.188∗∗∗ 0.270∗∗∗ 0.287∗∗∗ 0.304∗∗∗ 0.312∗∗∗ 0.342∗∗∗ 0.357∗∗∗ 0.362∗∗∗ 0.368∗∗∗ 0.333∗∗∗

(0.059) (0.044) (0.041) (0.038) (0.036) (0.036) (0.035) (0.035) (0.035) (0.037)
RELIGMR 0.665∗∗∗ 0.550∗∗∗ 0.386∗∗∗ 0.257∗∗∗ 0.174∗∗∗ 0.063 0.029 0.002 -0.009 -0.060

(0.109) (0.083) (0.072) (0.067) (0.061) (0.059) (0.061) (0.061) (0.062) (0.069)
COMCOLMR 0.618∗∗∗ 0.556∗∗∗ 0.479∗∗∗ 0.458∗∗∗ 0.433∗∗∗ 0.403∗∗∗ 0.384∗∗∗ 0.374∗∗∗ 0.369∗∗∗ 0.390∗∗∗

(0.104) (0.089) (0.078) (0.074) (0.071) (0.068) (0.065) (0.065) (0.066) (0.066)

BV Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
CRE No No No No No No No No No No
Obs 121417 121417 121417 121417 121417 121417 121417 121417 121417 121417

Clustered standard errors by country-pair are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. Only positive trade values (i.e. Tij > 0) were used in the

estimation. The quantile estimation is performed using the Frisch-Newton interior point method at each decile. BV indicates that the "Bonus Vetus"

methodology described in Baier and Bergstrand (2009a) and Baier and Bergstrand (2010) was used. "Year FE" indicates whether year dummy variables

were included or not; "CRE" indicates whether correlated random effects were used or not.
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Table 6: BVQCM Positive
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q75 Q80 Q90

ln(GDPex) 0.777∗∗∗ 0.774∗∗∗ 0.747∗∗∗ 0.711∗∗∗ 0.722∗∗∗ 0.708∗∗∗ 0.690∗∗∗ 0.670∗∗∗ 0.646∗∗∗ 0.577∗∗∗

(0.041) (0.033) (0.029) (0.026) (0.025) (0.024) (0.024) (0.024) (0.023) (0.026)
ln(GDPim) 0.521∗∗∗ 0.494∗∗∗ 0.468∗∗∗ 0.460∗∗∗ 0.474∗∗∗ 0.478∗∗∗ 0.490∗∗∗ 0.490∗∗∗ 0.489∗∗∗ 0.524∗∗∗

(0.043) (0.036) (0.030) (0.027) (0.026) (0.024) (0.024) (0.024) (0.024) (0.027)
EIAMR 0.498∗∗∗ 0.452∗∗∗ 0.465∗∗∗ 0.472∗∗∗ 0.462∗∗∗ 0.411∗∗∗ 0.358∗∗∗ 0.310∗∗∗ 0.262∗∗∗ 0.158∗∗∗

(0.084) (0.055) (0.044) (0.040) (0.039) (0.037) (0.036) (0.036) (0.038) (0.047)
DISTMR -1.551∗∗∗ -1.446∗∗∗ -1.402∗∗∗ -1.356∗∗∗ -1.313∗∗∗ -1.253∗∗∗ -1.204∗∗∗ -1.174∗∗∗ -1.136∗∗∗ -1.094∗∗∗

(0.041) (0.035) (0.030) (0.027) (0.026) (0.026) (0.025) (0.025) (0.025) (0.026)
CONTIGMR 0.147 0.102 0.206∗ 0.222∗∗ 0.303∗∗∗ 0.303∗∗∗ 0.367∗∗∗ 0.404∗∗∗ 0.397∗∗∗ 0.356∗∗∗

(0.121) (0.114) (0.107) (0.105) (0.103) (0.105) (0.104) (0.095) (0.090) (0.096)
LANGMR 0.474∗∗∗ 0.458∗∗∗ 0.428∗∗∗ 0.425∗∗∗ 0.423∗∗∗ 0.446∗∗∗ 0.450∗∗∗ 0.445∗∗∗ 0.445∗∗∗ 0.457∗∗∗

(0.078) (0.063) (0.056) (0.054) (0.052) (0.051) (0.051) (0.052) (0.054) (0.058)
LEGALMR 0.204∗∗∗ 0.256∗∗∗ 0.266∗∗∗ 0.278∗∗∗ 0.297∗∗∗ 0.322∗∗∗ 0.334∗∗∗ 0.344∗∗∗ 0.348∗∗∗ 0.315∗∗∗

(0.059) (0.046) (0.039) (0.037) (0.036) (0.035) (0.034) (0.034) (0.035) (0.035)
RELIGMR 0.562∗∗∗ 0.474∗∗∗ 0.322∗∗∗ 0.229∗∗∗ 0.127∗∗ 0.055 -0.033 -0.047 -0.047 -0.036

(0.105) (0.084) (0.071) (0.065) (0.060) (0.059) (0.059) (0.059) (0.061) (0.070)
COMCOLMR 0.475∗∗∗ 0.385∗∗∗ 0.397∗∗∗ 0.408∗∗∗ 0.400∗∗∗ 0.349∗∗∗ 0.354∗∗∗ 0.336∗∗∗ 0.367∗∗∗ 0.316∗∗∗

(0.108) (0.087) (0.079) (0.074) (0.069) (0.065) (0.063) (0.064) (0.065) (0.065)

BV Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
CRE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Obs 121417 121417 121417 121417 121417 121417 121417 121417 121417 121417

Clustered standard errors by country-pair in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. Only positive trade values (i.e. Tij > 0) were used in

the estimation. The quantile estimation is performed using Frisch-Newton interior point method at each decile. BV indicates that the "Bonus Vetus"

methodology described in Baier and Bergstrand (2009a) and Baier and Bergstrand (2010) was used. "Year FE" indicates whether year dummy variables

were included or not; "CRE" indicates whether correlated random effects were used or not.
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Table 7: Logit-BVQCM
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q75 Q80 Q90

ln(GDPex) 1.019∗∗∗ 1.055∗∗∗ 1.091∗∗∗ 1.051∗∗∗ 1.037∗∗∗ 1.009∗∗∗ 0.971∗∗∗ 0.946∗∗∗ 0.918∗∗∗ 0.812∗∗∗

(0.078) (0.061) (0.055) (0.047) (0.042) (0.039) (0.037) (0.035) (0.035) (0.038)
ln(GDPim) 0.914∗∗∗ 0.983∗∗∗ 1.017∗∗∗ 0.989∗∗∗ 1.001∗∗∗ 0.968∗∗∗ 0.914∗∗∗ 0.878∗∗∗ 0.874∗∗∗ 0.823∗∗∗

(0.074) (0.055) (0.051) (0.043) (0.038) (0.037) (0.036) (0.036) (0.036) (0.039)
EIAMR 1.160∗∗∗ 0.992∗∗∗ 0.853∗∗∗ 0.703∗∗∗ 0.593∗∗∗ 0.452∗∗∗ 0.271∗∗∗ 0.251∗∗∗ 0.275∗∗∗ 0.220∗∗∗

(0.203) (0.132) (0.115) (0.104) (0.086) (0.081) (0.078) (0.075) (0.073) (0.084)
DISTMR -1.653∗∗∗ -1.566∗∗∗ -1.565∗∗∗ -1.552∗∗∗ -1.551∗∗∗ -1.504∗∗∗ -1.480∗∗∗ -1.463∗∗∗ -1.428∗∗∗ -1.374∗∗∗

(0.061) (0.046) (0.046) (0.039) (0.038) (0.036) (0.035) (0.035) (0.035) (0.038)
CONTIGMR 0.754∗∗∗ 0.942∗∗∗ 0.849∗∗∗ 0.716∗∗∗ 0.598∗∗∗ 0.638∗∗∗ 0.593∗∗∗ 0.552∗∗∗ 0.554∗∗∗ 0.472∗∗∗

(0.234) (0.191) (0.164) (0.147) (0.149) (0.153) (0.141) (0.135) (0.131) (0.129)
LANGMR 0.501∗∗∗ 0.343∗∗∗ 0.388∗∗∗ 0.395∗∗∗ 0.403∗∗∗ 0.461∗∗∗ 0.467∗∗∗ 0.477∗∗∗ 0.488∗∗∗ 0.457∗∗∗

(0.133) (0.101) (0.094) (0.088) (0.085) (0.082) (0.078) (0.078) (0.079) (0.080)
LEGALMR 0.328∗∗∗ 0.290∗∗∗ 0.289∗∗∗ 0.283∗∗∗ 0.311∗∗∗ 0.279∗∗∗ 0.275∗∗∗ 0.249∗∗∗ 0.206∗∗∗ 0.164∗∗∗

(0.088) (0.069) (0.064) (0.058) (0.054) (0.052) (0.050) (0.050) (0.050) (0.051)
RELIGMR -0.119 -0.004 0.168 0.169 0.142 0.188∗∗ 0.219∗∗ 0.208∗∗ 0.270∗∗∗ 0.309∗∗∗

(0.173) (0.133) (0.122) (0.105) (0.099) (0.095) (0.093) (0.095) (0.096) (0.104)
COMCOLMR 0.578∗∗∗ 0.612∗∗∗ 0.620∗∗∗ 0.690∗∗∗ 0.723∗∗∗ 0.708∗∗∗ 0.668∗∗∗ 0.646∗∗∗ 0.662∗∗∗ 0.610∗∗∗

(0.160) (0.126) (0.115) (0.102) (0.094) (0.088) (0.083) (0.082) (0.082) (0.083)

BV Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
CRE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Obs 45721 53410 58986 63751 68164 72317 77088 79697 82460 88975

Clustered standard errors by country-pair are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. The prefix "Logit-" indicates that the three-stage

estimation procedure described by Galvao et al. (2013) was implemented to account for zeros in quantile regressions. The first stage is a logit model with

exporter-year, importer-year, and pair fixed effects using all trade pairs (i.e. Tij ≥ 0). The second and third stages are both quantile regressions using

Frisch-Newton interior point method at each decile. BV indicates that the "Bonus Vetus" methodology described in Baier and Bergstrand (2009a) and

Baier and Bergstrand (2010) was used."Year FE" indicates whether year dummy variables were included or not in the second and third stages; "CRE"

indicates whether correlated random effects were used or not in the second and third stages.
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Table 8: Logit-BVQCM (User-defined minimum value of USD 10,000)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q75 Q80 Q90

ln(GDPex) 0.808∗∗∗ 0.851∗∗∗ 0.959∗∗∗ 0.968∗∗∗ 0.986∗∗∗ 0.977∗∗∗ 0.912∗∗∗ 0.908∗∗∗ 0.868∗∗∗ 0.762∗∗∗

(0.066) (0.053) (0.047) (0.041) (0.038) (0.037) (0.034) (0.034) (0.034) (0.036)
ln(GDPim) 0.788∗∗∗ 0.813∗∗∗ 0.849∗∗∗ 0.842∗∗∗ 0.856∗∗∗ 0.867∗∗∗ 0.835∗∗∗ 0.846∗∗∗ 0.816∗∗∗ 0.786∗∗∗

(0.062) (0.052) (0.043) (0.037) (0.036) (0.036) (0.034) (0.034) (0.034) (0.038)
EIAMR 0.781∗∗∗ 0.929∗∗∗ 0.885∗∗∗ 0.757∗∗∗ 0.664∗∗∗ 0.555∗∗∗ 0.415∗∗∗ 0.363∗∗∗ 0.278∗∗∗ 0.232∗∗∗

(0.139) (0.124) (0.089) (0.084) (0.081) (0.072) (0.069) (0.067) (0.065) (0.076)
DISTMR -1.273∗∗∗ -1.293∗∗∗ -1.313∗∗∗ -1.292∗∗∗ -1.297∗∗∗ -1.308∗∗∗ -1.278∗∗∗ -1.266∗∗∗ -1.239∗∗∗ -1.203∗∗∗

(0.052) (0.043) (0.035) (0.033) (0.035) (0.035) (0.033) (0.032) (0.032) (0.036)
CONTIGMR 0.645∗∗∗ 0.658∗∗∗ 0.623∗∗∗ 0.557∗∗∗ 0.434∗∗∗ 0.398∗∗∗ 0.499∗∗∗ 0.523∗∗∗ 0.536∗∗∗ 0.489∗∗∗

(0.205) (0.178) (0.135) (0.125) (0.133) (0.138) (0.136) (0.128) (0.121) (0.118)
LANGMR 0.177∗ 0.165∗ 0.239∗∗∗ 0.281∗∗∗ 0.304∗∗∗ 0.348∗∗∗ 0.387∗∗∗ 0.398∗∗∗ 0.398∗∗∗ 0.397∗∗∗

(0.099) (0.089) (0.080) (0.075) (0.077) (0.076) (0.074) (0.076) (0.077) (0.081)
LEGALMR 0.289∗∗∗ 0.247∗∗∗ 0.281∗∗∗ 0.287∗∗∗ 0.290∗∗∗ 0.296∗∗∗ 0.269∗∗∗ 0.238∗∗∗ 0.217∗∗∗ 0.191∗∗∗

(0.075) (0.062) (0.055) (0.051) (0.050) (0.049) (0.047) (0.048) (0.048) (0.050)
RELIGMR -0.025 0.031 0.042 -0.012 0.054 0.052 0.060 0.152 0.150∗ 0.224∗∗

(0.130) (0.123) (0.099) (0.095) (0.092) (0.087) (0.090) (0.093) (0.091) (0.098)
COMCOLMR 0.372∗∗∗ 0.494∗∗∗ 0.548∗∗∗ 0.570∗∗∗ 0.614∗∗∗ 0.590∗∗∗ 0.581∗∗∗ 0.572∗∗∗ 0.591∗∗∗ 0.524∗∗∗

(0.139) (0.113) (0.095) (0.088) (0.085) (0.081) (0.078) (0.080) (0.079) (0.082)

BV Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
CRE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Obs 39966 46728 51774 56121 60258 64541 69174 71755 74599 81087

Clustered standard errors by country-pair are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. The prefix "Logit-" indicates that the three-stage

estimation procedure described by Galvao et al. (2013) was implemented to account for zeros in quantile regressions. The first stage is a logit model with

exporter-year, importer-year, and pair fixed effects using all trade pairs (i.e. Tij ≥ 0). The second and third stages are both quantile regressions using

the Frisch-Newton interior point method at each decile. BV indicates that the "Bonus Vetus" methodology described in Baier and Bergstrand (2009a)

and Baier and Bergstrand (2010) was used. "Year FE" indicates whether year dummy variables were included or not in the second and third stages;

"CRE" indicates whether correlated random effects were used or not in the second and third stages. We create an arbitrary minimum value of USD

10,000 and replace trade values below this cutoff to 1 (i.e. ln(Xijt) = 0 when trade value is 1.)

70



Table 9: Logit-BVQCM Disaggregated by Type of EIA
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q75 Q80 Q90

ln(GDPex) 1.008∗∗∗ 1.052∗∗∗ 1.084∗∗∗ 1.055∗∗∗ 1.031∗∗∗ 1.005∗∗∗ 0.958∗∗∗ 0.942∗∗∗ 0.913∗∗∗ 0.802∗∗∗

(0.079) (0.061) (0.055) (0.047) (0.042) (0.039) (0.037) (0.035) (0.035) (0.038)
ln(GDPim) 0.906∗∗∗ 0.971∗∗∗ 1.015∗∗∗ 0.985∗∗∗ 0.997∗∗∗ 0.957∗∗∗ 0.922∗∗∗ 0.886∗∗∗ 0.884∗∗∗ 0.820∗∗∗

(0.073) (0.055) (0.051) (0.044) (0.038) (0.037) (0.036) (0.036) (0.036) (0.039)
FTA-MR 1.230∗∗∗ 0.963∗∗∗ 0.857∗∗∗ 0.748∗∗∗ 0.631∗∗∗ 0.507∗∗∗ 0.362∗∗∗ 0.294∗∗∗ 0.271∗∗∗ 0.096

(0.197) (0.129) (0.112) (0.099) (0.086) (0.081) (0.078) (0.077) (0.074) (0.080)
CUCMECU-MR 0.828∗∗ 0.914∗∗∗ 0.929∗∗∗ 0.756∗∗∗ 0.683∗∗∗ 0.550∗∗∗ 0.518∗∗∗ 0.539∗∗∗ 0.573∗∗∗ 0.682∗∗∗

(0.417) (0.271) (0.223) (0.179) (0.158) (0.147) (0.140) (0.139) (0.136) (0.169)
DISTMR -1.647∗∗∗ -1.561∗∗∗ -1.562∗∗∗ -1.557∗∗∗ -1.550∗∗∗ -1.496∗∗∗ -1.461∗∗∗ -1.459∗∗∗ -1.429∗∗∗ -1.362∗∗∗

(0.059) (0.046) (0.045) (0.039) (0.037) (0.036) (0.035) (0.035) (0.035) (0.038)
CONTIGMR 0.886∗∗∗ 0.877∗∗∗ 0.859∗∗∗ 0.689∗∗∗ 0.580∗∗∗ 0.619∗∗∗ 0.665∗∗∗ 0.616∗∗∗ 0.585∗∗∗ 0.501∗∗∗

(0.221) (0.194) (0.162) (0.146) (0.147) (0.158) (0.145) (0.138) (0.129) (0.125)
LANGMR 0.491∗∗∗ 0.344∗∗∗ 0.387∗∗∗ 0.395∗∗∗ 0.410∗∗∗ 0.463∗∗∗ 0.483∗∗∗ 0.470∗∗∗ 0.492∗∗∗ 0.463∗∗∗

(0.132) (0.100) (0.094) (0.088) (0.086) (0.082) (0.079) (0.079) (0.079) (0.080)
LEGALMR 0.332∗∗∗ 0.296∗∗∗ 0.290∗∗∗ 0.285∗∗∗ 0.303∗∗∗ 0.280∗∗∗ 0.277∗∗∗ 0.247∗∗∗ 0.203∗∗∗ 0.166∗∗∗

(0.089) (0.068) (0.064) (0.058) (0.054) (0.052) (0.051) (0.050) (0.049) (0.051)
RELIGMR -0.120 -0.000 0.150 0.173∗ 0.147 0.208∗∗ 0.233∗∗ 0.233∗∗ 0.275∗∗∗ 0.334∗∗∗

(0.172) (0.132) (0.122) (0.105) (0.099) (0.095) (0.093) (0.095) (0.095) (0.104)
COMCOLMR 0.605∗∗∗ 0.649∗∗∗ 0.629∗∗∗ 0.670∗∗∗ 0.698∗∗∗ 0.693∗∗∗ 0.626∗∗∗ 0.626∗∗∗ 0.641∗∗∗ 0.588∗∗∗

(0.161) (0.129) (0.115) (0.102) (0.094) (0.089) (0.083) (0.083) (0.082) (0.083)

BV Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
CRE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Obs 45722 53410 58994 63737 68154 72322 77074 79679 82443 88956

Clustered standard errors by country-pair are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. The prefix "Logit-" indicates that the three-stage

estimation procedure described by Galvao et al. (2013) was implemented to account for zeros in quantile regressions. The first stage is a logit model

with exporter-year, importer-year, and pair fixed effects using all trade pairs (i.e. Tij ≥ 0). The second and third stages are both quantile regressions

using the Frisch-Newton interior point method at each decile. BV indicates that the "Bonus Vetus" methodology described in Baier and Bergstrand

(2009a) and Baier and Bergstrand (2010) was used. "Year FE" indicates whether year dummy variables were included or not in the second and third

stages; "CRE" indicates whether correlated random effects were used or not in the second and third stages. The terms FTA and CUCMECU indicate

Free Trade Agreements and deeper trade agreements (including Customs Unions, Common Markets, and Economic Unions), respectively.
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Table 10: LPM-BVQCM
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q75 Q80 Q90

ln(GDPex) 0.864∗∗∗ 0.950∗∗∗ 0.941∗∗∗ 0.974∗∗∗ 1.007∗∗∗ 1.002∗∗∗ 0.982∗∗∗ 0.964∗∗∗ 0.936∗∗∗ 0.835∗∗∗

(0.060) (0.037) (0.032) (0.029) (0.028) (0.026) (0.025) (0.025) (0.025) (0.025)
ln(GDPim) 0.816∗∗∗ 0.816∗∗∗ 0.854∗∗∗ 0.867∗∗∗ 0.882∗∗∗ 0.860∗∗∗ 0.829∗∗∗ 0.822∗∗∗ 0.814∗∗∗ 0.771∗∗∗

(0.066) (0.039) (0.032) (0.028) (0.027) (0.026) (0.026) (0.027) (0.027) (0.029)
EIAMR 0.785∗∗∗ 0.765∗∗∗ 0.766∗∗∗ 0.732∗∗∗ 0.684∗∗∗ 0.618∗∗∗ 0.499∗∗∗ 0.426∗∗∗ 0.359∗∗∗ 0.336∗∗∗

(0.077) (0.050) (0.043) (0.042) (0.041) (0.041) (0.042) (0.042) (0.043) (0.050)
DISTMR -1.188∗∗∗ -1.228∗∗∗ -1.259∗∗∗ -1.308∗∗∗ -1.340∗∗∗ -1.369∗∗∗ -1.383∗∗∗ -1.383∗∗∗ -1.394∗∗∗ -1.378∗∗∗

(0.054) (0.037) (0.032) (0.029) (0.029) (0.028) (0.027) (0.027) (0.028) (0.029)
CONTIGMR -0.203 -0.024 0.107 0.205∗ 0.302∗∗∗ 0.296∗∗∗ 0.331∗∗∗ 0.414∗∗∗ 0.403∗∗∗ 0.361∗∗∗

(0.127) (0.105) (0.103) (0.108) (0.107) (0.104) (0.112) (0.115) (0.114) (0.112)
LANGMR 0.189∗∗ 0.217∗∗∗ 0.271∗∗∗ 0.347∗∗∗ 0.457∗∗∗ 0.502∗∗∗ 0.553∗∗∗ 0.581∗∗∗ 0.572∗∗∗ 0.565∗∗∗

(0.091) (0.065) (0.060) (0.059) (0.058) (0.059) (0.058) (0.058) (0.059) (0.063)
LEGALMR 0.511∗∗∗ 0.548∗∗∗ 0.487∗∗∗ 0.444∗∗∗ 0.404∗∗∗ 0.414∗∗∗ 0.409∗∗∗ 0.406∗∗∗ 0.371∗∗∗ 0.340∗∗∗

(0.067) (0.048) (0.042) (0.039) (0.039) (0.040) (0.039) (0.039) (0.039) (0.041)
RELIGMR 0.340∗∗∗ 0.146∗ 0.072 0.026 0.020 0.009 0.062 0.094 0.112 0.104

(0.121) (0.085) (0.074) (0.069) (0.067) (0.066) (0.067) (0.067) (0.069) (0.075)
COMCOLMR 0.140 0.200 0.345∗∗∗ 0.390∗∗∗ 0.398∗∗∗ 0.423∗∗∗ 0.405∗∗∗ 0.405∗∗∗ 0.458∗∗∗ 0.488∗∗∗

(0.160) (0.128) (0.097) (0.084) (0.082) (0.078) (0.073) (0.072) (0.072) (0.070)

BV Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
CRE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Obs 48602 74039 91708 105378 116927 127740 140112 147490 155884 176342

Clustered standard errors by country-pair are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. The prefix "LPM-" indicates that the three-stage

estimation procedure described by Galvao et al. (2013) was implemented to account for zeros in quantile regressions. The first stage is a linear probability

model with exporter-year, importer-year, and pair fixed effects using all trade pairs (i.e. Tij ≥ 0). The second and third stages are both quantile

regressions using the Frisch-Newton interior point method at each decile. BV indicates that the "Bonus Vetus" methodology described in Baier and

Bergstrand (2009a) and Baier and Bergstrand (2010) was used. "Year FE" indicates whether year dummy variables were included or not in the second

and third stages; "CRE" indicates whether correlated random effects were used or not in the second and third stages.
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Table 11: Comparison of EIA Partial Effects With and Without Intra-national Trade

Panel A: OLS (Positive) and PPML (Non-negative)

(1) (2) (3) (4) (5)
OLS+ OLS+ INTRA PPML PPML INTRA

EIA 0.383∗∗∗ 0.389∗∗∗ 0.109∗∗∗ 0.277∗∗∗

(0.034) (0.034) (0.029) (0.050)

Exporter-Year FE Yes Yes Yes Yes
Importer-Year FE Yes Yes Yes Yes
Pair FE Yes Yes Yes Yes
INTER x Year FE No Yes No Yes
Adj. R2 0.851 0.857
Pseudo R2 0.992 0.998
Obs 117539 118698 248123 249706

Panel B: BVQCM (Positive) and LPM-BVQCM (Non-negative)

(1) (2) (3) (4) (5)
BVQCM+ BVQCM+ INTRA LPM-BVQCM LPM-BVQCM INTRA

EIAMR 0.462∗∗∗ 0.485∗∗∗ 0.426∗∗∗ 0.433∗∗∗

(0.039) (0.039) (0.042) (0.042)

BV Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
CRE Yes Yes Yes Yes
INTER x Year FE No Yes No Yes
Obs 121417 122975 147490 149002

Clustered standard errors by country-pair are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. OLS and PPML

are average treatment effects. BVQCM is the median estimate of the positive trade flows. The prefix "LPM-"

indicates that the three-stage estimation procedure described by Galvao et al. (2013) was implemented to account

for zeros in quantile regressions; the first stage is a linear probability model with exporter-year, importer-year, and

pair fixed effects using all trade pairs (i.e. Tij ≥ 0). We cannot use logit in the first stage because intra-national

trade observations are removed from predicted probabilities. BV indicates that the "Bonus Vetus" methodology

described in Baier and Bergstrand (2009a) and Baier and Bergstrand (2010) was used. "Year FE" indicates

whether year dummy variables were included or not in the second and third stages; "CRE" indicates whether

correlated random effects were used or not in the second and third stages. The INTER × Y ear FE refers to

the interaction of an indicator variable, 1 if an observed trade is across an international border (international)

and 0 otherwise, and the year dummy variable. LPM-BVQCM and LPM-BVQCM INTRA are estimates at the

75th conditional quantile, which is likely near the median of the positive trade flows in the entire (unconditional)

non-negative trade-flow sample; see section 10 later.
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Table 12: Logit-BVQCM (Comparable)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q75 Q80 Q90

ln(GDPex) 1.013∗∗∗ 1.033∗∗∗ 1.048∗∗∗ 0.989∗∗∗ 0.952∗∗∗ 0.902∗∗∗ 0.837∗∗∗ 0.799∗∗∗ 0.757∗∗∗ 0.632∗∗∗

(0.078) (0.060) (0.053) (0.044) (0.039) (0.035) (0.032) (0.030) (0.029) (0.030)
ln(GDPim) 0.909∗∗∗ 0.962∗∗∗ 0.977∗∗∗ 0.930∗∗∗ 0.919∗∗∗ 0.865∗∗∗ 0.788∗∗∗ 0.741∗∗∗ 0.721∗∗∗ 0.641∗∗∗

(0.074) (0.054) (0.049) (0.041) (0.035) (0.033) (0.031) (0.031) (0.030) (0.030)
EIAMR 1.152∗∗∗ 0.971∗∗∗ 0.820∗∗∗ 0.661∗∗∗ 0.544∗∗∗ 0.404∗∗∗ 0.234∗∗∗ 0.212∗∗∗ 0.227∗∗∗ 0.171∗∗∗

(0.202) (0.129) (0.111) (0.098) (0.079) (0.072) (0.067) (0.063) (0.061) (0.065)
DISTMR -1.642∗∗∗ -1.533∗∗∗ -1.504∗∗∗ -1.460∗∗∗ -1.424∗∗∗ -1.344∗∗∗ -1.276∗∗∗ -1.235∗∗∗ -1.178∗∗∗ -1.070∗∗∗

(0.061) (0.045) (0.044) (0.037) (0.034) (0.032) (0.030) (0.029) (0.029) (0.030)
CONTIGMR 0.750∗∗∗ 0.922∗∗∗ 0.816∗∗∗ 0.674∗∗∗ 0.549∗∗∗ 0.570∗∗∗ 0.511∗∗∗ 0.466∗∗∗ 0.458∗∗∗ 0.367∗∗∗

(0.233) (0.187) (0.158) (0.138) (0.137) (0.137) (0.121) (0.114) (0.108) (0.100)
LANGMR 0.498∗∗∗ 0.336∗∗∗ 0.373∗∗∗ 0.371∗∗∗ 0.370∗∗∗ 0.412∗∗∗ 0.403∗∗∗ 0.403∗∗∗ 0.403∗∗∗ 0.356∗∗∗

(0.132) (0.098) (0.090) (0.083) (0.078) (0.073) (0.067) (0.066) (0.065) (0.063)
LEGALMR 0.326∗∗∗ 0.284∗∗∗ 0.278∗∗∗ 0.266∗∗∗ 0.285∗∗∗ 0.249∗∗∗ 0.238∗∗∗ 0.210∗∗∗ 0.170∗∗∗ 0.128∗∗∗

(0.088) (0.067) (0.061) (0.055) (0.049) (0.046) (0.043) (0.042) (0.041) (0.040)
RELIGMR -0.118 -0.004 0.161 0.159 0.130 0.168∗∗ 0.189∗∗ 0.175∗∗ 0.223∗∗∗ 0.240∗∗∗

(0.172) (0.130) (0.117) (0.099) (0.091) (0.084) (0.080) (0.080) (0.079) (0.081)
COMCOLMR 0.575∗∗∗ 0.599∗∗∗ 0.596∗∗∗ 0.650∗∗∗ 0.664∗∗∗ 0.632∗∗∗ 0.576∗∗∗ 0.545∗∗∗ 0.546∗∗∗ 0.475∗∗∗

(0.159) (0.124) (0.111) (0.096) (0.087) (0.079) (0.071) (0.069) (0.068) (0.064)

BV Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
CRE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Obs 45721 53410 58986 63751 68164 72317 77088 79697 82460 88975

Clustered standard errors by country-pair are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. The prefix "Logit-" indicates that the three-stage

estimation procedure described by Galvao et al. (2013) was implemented to account for zeros in quantile regressions. The first stage is a logit model

with exporter-year, importer-year, and pair fixed effects using all trade pairs (i.e. Tij ≥ 0). The second and third stages are both quantile regressions

using Frisch-Newton interior point method at each decile. BV indicates that the "Bonus Vetus" methodology described in Baier and Bergstrand (2009a)

and Baier and Bergstrand (2010) was used."Year FE" indicates whether year dummy variables were included or not in the second and third stages;

"CRE" indicates whether correlated random effects were used or not in the second and third stages. "Comparable" refers to the adjustment discussed

by Machado et al. (2016) to allow partial effects to be comparable across quantiles.
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Table 13: SITC 2 Digit Logit-BVQCM (Comparable) With EXSHt−5

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90

ln(GDPex) 0.626∗∗∗ 0.636∗∗∗ 0.648∗∗∗ 0.654∗∗∗ 0.666∗∗∗ 0.664∗∗∗ 0.652∗∗∗ 0.620∗∗∗ 0.553∗∗∗

(0.040) (0.034) (0.032) (0.029) (0.027) (0.025) (0.023) (0.021) (0.018)
ln(GDPim) 0.707∗∗∗ 0.671∗∗∗ 0.647∗∗∗ 0.623∗∗∗ 0.609∗∗∗ 0.596∗∗∗ 0.564∗∗∗ 0.506∗∗∗ 0.442∗∗∗

(0.040) (0.036) (0.032) (0.030) (0.027) (0.025) (0.023) (0.021) (0.017)
EIAMR 0.857∗∗∗ 0.792∗∗∗ 0.749∗∗∗ 0.712∗∗∗ 0.694∗∗∗ 0.640∗∗∗ 0.551∗∗∗ 0.484∗∗∗ 0.376∗∗∗

(0.067) (0.056) (0.051) (0.047) (0.043) (0.040) (0.036) (0.032) (0.027)
DISTMR -0.907∗∗∗ -0.928∗∗∗ -0.926∗∗∗ -0.922∗∗∗ -0.900∗∗∗ -0.866∗∗∗ -0.814∗∗∗ -0.734∗∗∗ -0.599∗∗∗

(0.036) (0.031) (0.029) (0.027) (0.025) (0.023) (0.021) (0.019) (0.016)
CONTIGMR 0.311∗∗∗ 0.362∗∗∗ 0.360∗∗∗ 0.351∗∗∗ 0.331∗∗∗ 0.307∗∗∗ 0.280∗∗∗ 0.245∗∗∗ 0.222∗∗∗

(0.109) (0.101) (0.095) (0.094) (0.086) (0.082) (0.076) (0.068) (0.057)
LANGMR 0.278∗∗∗ 0.265∗∗∗ 0.271∗∗∗ 0.258∗∗∗ 0.263∗∗∗ 0.250∗∗∗ 0.242∗∗∗ 0.232∗∗∗ 0.208∗∗∗

(0.066) (0.059) (0.056) (0.054) (0.051) (0.049) (0.046) (0.043) (0.039)
LEGALMR 0.367∗∗∗ 0.342∗∗∗ 0.336∗∗∗ 0.326∗∗∗ 0.317∗∗∗ 0.307∗∗∗ 0.284∗∗∗ 0.247∗∗∗ 0.203∗∗∗

(0.048) (0.045) (0.042) (0.039) (0.037) (0.035) (0.032) (0.029) (0.025)
RELIGMR -0.266∗∗∗ -0.225∗∗∗ -0.200∗∗∗ -0.194∗∗∗ -0.205∗∗∗ -0.202∗∗∗ -0.191∗∗∗ -0.172∗∗∗ -0.158∗∗∗

(0.086) (0.075) (0.070) (0.065) (0.062) (0.058) (0.054) (0.049) (0.046)
COMCOLMR 0.047 0.073 0.101 0.134∗ 0.157∗∗ 0.184∗∗∗ 0.202∗∗∗ 0.210∗∗∗ 0.193∗∗∗

(0.095) (0.084) (0.077) (0.071) (0.067) (0.062) (0.058) (0.050) (0.043)
EXSHt−5 0.031∗∗∗ 0.034∗∗∗ 0.036∗∗∗ 0.038∗∗∗ 0.040∗∗∗ 0.040∗∗∗ 0.041∗∗∗ 0.042∗∗∗ 0.043∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
EIAMR * EXSHt−5 -0.005∗ -0.003 -0.002 -0.004∗∗ -0.006∗∗∗ -0.007∗∗∗ -0.009∗∗∗ -0.013∗∗∗ -0.019∗∗∗

(0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

BV Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
CRE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Obs 778998 945562 1082109 1207897 1334939 1472932 1634531 1830913 2083443

Clustered standard errors by country-pair are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. The prefix "Logit-" indicates that the three-stage

estimation procedure described by Galvao et al. (2013) was implemented to account for zeros in quantile regressions. The first stage is a logit

model with exporter-year, importer-year, and pair fixed effects using all trade pairs (i.e. Tij ≥ 0). The second and third stages are both quantile

regressions using Frisch-Newton interior point method at each decile. BV indicates that the "Bonus Vetus" methodology described in Baier and

Bergstrand (2009a) and Baier and Bergstrand (2010) was used."Year FE" indicates whether year dummy variables were included or not in the

second and third stages; "CRE" indicates whether correlated random effects were used or not in the second and third stages. "Comparable" refers

to the adjustment discussed by Machado et al. (2016) to allow partial effects to be comparable across quantiles. EXSHt−5 denotes the share of

sector s exports of country i to country j in the previous period. The three-stage model used trade values at a 2 digit SITC disaggregation level.

75



Table 14: Logit-BVQCM Marginal Effects (Comparable): Previous Sales Share

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90

EIAMR
Share 0.0% 0.857∗∗∗ 0.792∗∗∗ 0.749∗∗∗ 0.712∗∗∗ 0.694∗∗∗ 0.640∗∗∗ 0.551∗∗∗ 0.484∗∗∗ 0.376∗∗∗

(0.067) (0.056) (0.051) (0.047) (0.043) (0.040) (0.036) (0.032) (0.027)
Share 0.05% 0.857∗∗∗ 0.792∗∗∗ 0.749∗∗∗ 0.712∗∗∗ 0.694∗∗∗ 0.640∗∗∗ 0.550∗∗∗ 0.483∗∗∗ 0.375∗∗∗

(0.067) (0.056) (0.051) (0.046) (0.043) (0.040) (0.036) (0.032) (0.027)
Share 0.10% 0.856∗∗∗ 0.792∗∗∗ 0.749∗∗∗ 0.711∗∗∗ 0.694∗∗∗ 0.639∗∗∗ 0.550∗∗∗ 0.483∗∗∗ 0.374∗∗∗

(0.067) (0.056) (0.051) (0.046) (0.043) (0.040) (0.036) (0.032) (0.027)
Share 0.50% 0.854∗∗∗ 0.790∗∗∗ 0.748∗∗∗ 0.710∗∗∗ 0.691∗∗∗ 0.637∗∗∗ 0.546∗∗∗ 0.477∗∗∗ 0.367∗∗∗

(0.067) (0.056) (0.050) (0.046) (0.043) (0.040) (0.036) (0.032) (0.027)
Share 1.0% 0.852∗∗∗ 0.789∗∗∗ 0.747∗∗∗ 0.707∗∗∗ 0.688∗∗∗ 0.633∗∗∗ 0.542∗∗∗ 0.471∗∗∗ 0.358∗∗∗

(0.067) (0.056) (0.050) (0.046) (0.043) (0.040) (0.036) (0.032) (0.027)

BV Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
CRE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Obs 778998 945562 1082109 1207897 1334939 1472932 1634531 1830913 2083443

Clustered standard errors by country-pair are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. For all trade values,

the percentiles of ln(X) at 50th, 75th, 90th, and 95th correspond to previous export shares at 0%, 0.04%, 0.75%, and

2.47%, respectively.
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Table 15: Logit-BVQCM Marginal Effects (Comparable): Exporter GDP per capita

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90

EIAMR
10th Percentile 1.814∗∗∗ 1.625∗∗∗ 1.487∗∗∗ 1.417∗∗∗ 1.248∗∗∗ 1.185∗∗∗ 1.078∗∗∗ 0.862∗∗∗ 0.582∗∗∗

(0.331) (0.213) (0.233) (0.207) (0.197) (0.186) (0.155) (0.125) (0.137)
30th Percentile 1.634∗∗∗ 1.412∗∗∗ 1.260∗∗∗ 1.188∗∗∗ 1.044∗∗∗ 0.998∗∗∗ 0.903∗∗∗ 0.729∗∗∗ 0.528∗∗∗

(0.291) (0.182) (0.196) (0.172) (0.167) (0.160) (0.132) (0.106) (0.114)
Median 1.454∗∗∗ 1.203∗∗∗ 1.036∗∗∗ 0.962∗∗∗ 0.842∗∗∗ 0.813∗∗∗ 0.731∗∗∗ 0.597∗∗∗ 0.475∗∗∗

(0.265) (0.164) (0.171) (0.147) (0.145) (0.142) (0.117) (0.095) (0.099)
70th Percentile 1.245∗∗∗ 0.960∗∗∗ 0.776∗∗∗ 0.699∗∗∗ 0.608∗∗∗ 0.597∗∗∗ 0.530∗∗∗ 0.444∗∗∗ 0.413∗∗∗

(0.260) (0.165) (0.162) (0.136) (0.134) (0.133) (0.112) (0.095) (0.095)
90th Percentile 0.949∗∗∗ 0.615∗∗∗ 0.407∗∗ 0.326∗∗ 0.276∗ 0.292∗ 0.245∗ 0.227∗ 0.326∗∗∗

(0.298) (0.204) (0.193) (0.160) (0.150) (0.149) (0.130) (0.120) (0.115)

BV Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
CRE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Obs 45724 53410 58987 63751 68164 72317 77088 82460 88975

Clustered standard errors by country-pair are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. Marginal effects are calculated

with importer GDP per capita set at 30th Percentile. The prefix "Logit-" indicates that the three-stage estimation procedure

described by Galvao et al. (2013) was implemented to account for zeros in quantile regressions. The first stage is a logit model

with exporter-year, importer-year, and pair fixed effects using all trade pairs (i.e. Tij ≥ 0). The second and third stages are both

quantile regressions using Frisch-Newton interior point method at each decile. BV indicates that the "Bonus Vetus" methodology

described in Baier and Bergstrand (2009a) and Baier and Bergstrand (2010) was used."Year FE" indicates whether year dummy

variables were included or not in the second and third stages; "CRE" indicates whether correlated random effects were used or

not in the second and third stages. "Comparable" refers to the adjustment discussed by Machado et al. (2016) to allow partial

effects to be comparable across quantiles.
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Table 16: Simulation 1: Benchmark Case of Adding 1s to 0s Only

Panel A: EIA
Case 1 Case 2 Case 3 Case 4

Trade>0

(1) (2) (3) (4) (5)

OLS 0.51603 0.54213 0.59252 0.59110
S.E. 0.00307 0.00616 0.02607 0.02754
Bias 0.03207 0.08426 0.18503 0.18219

PPML 0.50035 0.50140 0.45219 0.44068
S.E. 0.00006 0.00092 0.08009 0.08268
Bias 0.00070 0.00279 0.09561 0.11865

BVQCM 0.45543 0.46700 0.62613 0.63656
S.E. 0.01003 0.01147 0.03561 0.03736
Bias 0.08914 0.06599 0.25225 0.27312

Panel B: Trade≥0

(1) (2) (3) (4) (5)

PPML 0.49450 0.49510 0.44010 0.41946
S.E. 0.00044 0.00100 0.08025 0.08219
Bias 0.01100 0.00979 0.11981 0.16108

Logit-BVQCM 0.51384 0.50760 0.53348 0.53982
S.E. 0.01815 0.02072 0.04696 0.04876
Bias 0.02768 0.01520 0.06695 0.07965

LPM-BVQCM 0.51963 0.51209 0.56937 0.56677
S.E. 0.01096 0.01128 0.03627 0.03805
Bias 0.03927 0.02419 0.13873 0.13355

Robust standard errors are clustered at the country-pair level.

The simulations used 250 iterations, Stata 16.1, and R 4.1.0.

Adjustment to dependent only occurred when the log of trade

values are used. Even in PPML simulations, we add 1 to all actual

trade values (including zeros). Bias is percentage difference (in

decimal form) from 0.5 (or the EIA effect).
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Table 17: Simulation 2: Case of Adding 1s to All Observations

Panel A: EIA
Case 1 Case 2 Case 3 Case 4

Trade>0

(1) (2) (3) (4) (5)

OLS 0.52027 0.54437 0.58295 0.58597
S.E. 0.00288 0.00579 0.02530 0.02661
Bias 0.04054 0.08874 0.16589 0.17193

PPML 0.50086 0.50200 0.44139 0.43341
S.E. 0.00008 0.00092 0.08017 0.08257
Bias 0.00173 0.00400 0.11721 0.13317

BVQCM 0.46573 0.47444 0.63587 0.65536
S.E. 0.00999 0.01141 0.03475 0.03650
Bias 0.06854 0.05113 0.27174 0.31073

Panel B: Trade≥0

(1) (2) (3) (4) (5)

PPML 0.49585 0.49649 0.43787 0.43107
S.E. 0.00038 0.00097 0.07970 0.08163
Bias 0.00830 0.00701 0.12425 0.13786

Logit-BVQCM 0.51325 0.50194 0.51707 0.52015
S.E. 0.01755 0.01981 0.04446 0.04614
Bias 0.02649 0.00389 0.03414 0.04029

LPM-BVQCM 0.52564 0.51408 0.56247 0.56386
S.E. 0.01123 0.01138 0.03533 0.03699
Bias 0.05128 0.02816 0.12494 0.12772

Robust standard errors are clustered at the country-pair level.

The simulations used 250 iterations, Stata 16.1, and R 4.1.0.

Adjustment to dependent only occurred when the log of trade

values are used. In PPML simulations, we use actual trade values

(including zeros) and make no adjustment by adding 1 to 0 trade

values. Bias is percentage difference (in decimal form) from 0.5

(or the EIA effect).
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Table 18: Simulation 3: Case of Increasing Number of Zeros by 25%

Panel A: EIA
Case 1 Case 2 Case 3 Case 4

Trade>0

(1) (2) (3) (4) (5)

OLS 0.50439 0.52764 0.61225 0.61197
S.E. 0.00174 0.00517 0.03014 0.03161
Bias 0.00878 0.05527 0.22449 0.22395

PPML 0.50013 0.50169 0.46506 0.43936
S.E. 0.00004 0.00093 0.08087 0.08339
Bias 0.00026 0.00337 0.06989 0.12127

BVQCM 0.34946 0.37173 0.59222 0.60825
S.E. 0.01105 0.01238 0.03974 0.04159
Bias 0.30109 0.25654 0.18444 0.21650

Panel B: Trade≥0

(1) (2) (3) (4) (5)

PPML 0.47838 0.47893 0.43598 0.41105
S.E. 0.00178 0.00200 0.08045 0.08285
Bias 0.04324 0.04215 0.12804 0.17790

Logit-BVQCM 0.52501 0.51772 0.54427 0.54962
S.E. 0.01540 0.01650 0.04498 0.04687
Bias 0.05001 0.03545 0.08854 0.09923

LPM-BVQCM 0.50867 0.50901 0.54184 0.53736
S.E. 0.01211 0.01233 0.04067 0.04253
Bias 0.01734 0.01802 0.08367 0.07472

Robust standard errors are clustered at the country-pair level.

The simulations used 250 iterations, Stata 16.1, and R 4.1.0.

Adjustment to dependent only occurred when the log of trade

values are used. In PPML simulations, we use actual trade values

(including zeros) and make no adjustment by adding 1 to 0 trade

values. Bias is percentage difference (in decimal form) from 0.5

(or the EIA effect).
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Table 19: Simulation 4: Case of Decreasing Number of Zeros by 25%

Panel A: EIA
Case 1 Case 2 Case 3 Case 4

Trade>0

(1) (2) (3) (4) (5)

OLS 0.51923 0.53381 0.56133 0.56436
S.E. 0.00434 0.00717 0.02413 0.02563
Bias 0.03846 0.06762 0.12265 0.12873

PPML 0.50039 0.50073 0.44339 0.42693
S.E. 0.00006 0.00091 0.07944 0.08173
Bias 0.00079 0.00147 0.11322 0.14614

BVQCM 0.50210 0.49446 0.61029 0.62675
S.E. 0.00997 0.01121 0.03362 0.03555
Bias 0.00420 0.01108 0.22058 0.25349

Panel B: Trade≥0

(1) (2) (3) (4) (5)

PPML 0.49880 0.49913 0.44011 0.42360
S.E. 0.00012 0.00091 0.07941 0.08170
Bias 0.00240 0.00175 0.11978 0.15280

Logit-BVQCM 0.49406 0.51298 0.51469 0.52271
S.E. 0.02381 0.02854 0.05021 0.05239
Bias 0.01188 0.02596 0.02937 0.04542

LPM-BVQCM 0.51294 0.49792 0.55596 0.55630
S.E. 0.01032 0.01110 0.03378 0.03537
Bias 0.02589 0.00415 0.11192 0.11259

Robust standard errors are clustered at the country-pair level.

The simulations used 250 iterations, Stata 16.1, and R 4.1.0.

Adjustment to dependent only occurred when the log of trade

values are used. In PPML simulations, we use actual trade values

(including zeros) and make no adjustment by adding 1 to 0 trade

values. Bias is percentage difference (in decimal form) from 0.5

(or the EIA effect).
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Table 20: Simulation 5: Case with Cutoff Value of $500,000

Panel A: EIA
Case 1 Case 2 Case 3 Case 4

Trade>0

(1) (2) (3) (4) (5)

OLS 0.51664 0.54306 0.59022 0.59230
S.E. 0.00305 0.00615 0.02605 0.02754
Bias 0.03329 0.08611 0.18043 0.18460

PPML 0.50036 0.50150 0.44832 0.43616
S.E. 0.00006 0.00092 0.08029 0.08234
Bias 0.00071 0.00299 0.10336 0.12768

BVQCM 0.45589 0.46914 0.63061 0.65490
S.E. 0.01004 0.01144 0.03558 0.03755
Bias 0.08823 0.06172 0.26122 0.30980

Panel B: Trade≥0

(1) (2) (3) (4) (5)

PPML 0.49451 0.49518 0.43816 0.42596
S.E. 0.00044 0.00100 0.08020 0.08222
Bias 0.01099 0.00963 0.12368 0.14809

Logit-BVQCM 0.51535 0.50632 0.52953 0.53803
S.E. 0.01806 0.02065 0.04692 0.04883
Bias 0.03070 0.01264 0.05906 0.07607

LPM-BVQCM 0.51958 0.51213 0.56424 0.56759
S.E. 0.01097 0.01126 0.03631 0.03825
Bias 0.03915 0.02426 0.12847 0.13518

Robust standard errors are clustered at the country-pair level.

The simulations used 250 iterations, Stata 16.1, and R 4.1.0.

Adjustment to dependent only occurred when the log of trade

values are used. In PPML simulations, we use actual trade values

(including zeros) and make no adjustment by adding 1 to 0 trade

values. Bias is percentage difference (in decimal form) from 0.5

(or the EIA effect).
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Table 21: Simulation 6: Overdispersion Index Reduced from 4 to 1, i.e. h = 1

Panel A: EIA
Case 1 Case 2 Case 3 Case 4

Trade>0

(1) (2) (3) (4) (5)

OLS 0.50658 0.51593 0.56088 0.56838
S.E. 0.00190 0.00348 0.01749 0.01909
Bias 0.01317 0.03185 0.12175 0.13675

PPML 0.50011 0.50045 0.47120 0.46437
S.E. 0.00003 0.00046 0.05531 0.05823
Bias 0.00022 0.00091 0.05760 0.07126

BVQCM 0.44480 0.45079 0.52258 0.54311
S.E. 0.00980 0.01041 0.02446 0.02610
Bias 0.11040 0.09842 0.04517 0.08622

Panel B: Trade≥0

(1) (2) (3) (4) (5)

PPML 0.49447 0.49460 0.46349 0.45628
S.E. 0.00044 0.00063 0.05525 0.05816
Bias 0.01107 0.01079 0.07303 0.08743

Logit-BVQCM 0.52338 0.50971 0.51435 0.51921
S.E. 0.01798 0.01837 0.03459 0.03673
Bias 0.04675 0.01942 0.02870 0.03843

LPM-BVQCM 0.52518 0.51804 0.54686 0.54916
S.E. 0.01095 0.01081 0.02469 0.02638
Bias 0.05036 0.03609 0.09372 0.09831

Robust standard errors are clustered at the country-pair level.

The simulations used 250 iterations, Stata 16.1, and R 4.1.0.

Adjustment to dependent only occurred when the log of trade

values are used. In PPML simulations, we use actual trade values

(including zeros) and make no adjustment by adding 1 to 0 trade

values. Bias is percentage difference (in decimal form) from 0.5

(or the EIA effect).

83



Table 22: Simulation 7: Overdispersion Index Increased from 4 to 10, i.e. h = 10

Panel A: EIA
Case 1 Case 2 Case 3 Case 4

Trade>0

(1) (2) (3) (4) (5)

OLS 0.52607 0.56815 0.59692 0.59985
S.E. 0.00405 0.00855 0.03137 0.03267
Bias 0.05214 0.13629 0.19384 0.19970

PPML 0.50068 0.50271 0.42641 0.39428
S.E. 0.00009 0.00145 0.09416 0.09701
Bias 0.00136 0.00542 0.14717 0.21143

BVQCM 0.46415 0.48191 0.68512 0.70406
S.E. 0.01030 0.01257 0.04276 0.04452
Bias 0.07169 0.03619 0.37025 0.40813

Panel B: Trade≥0

(1) (2) (3) (4) (5)

PPML 0.49446 0.49617 0.41504 0.38267
S.E. 0.00045 0.00148 0.09404 0.09690
Bias 0.01108 0.00766 0.16991 0.23467

Logit-BVQCM 0.50503 0.52002 0.54363 0.54972
S.E. 0.01828 0.02396 0.05388 0.05562
Bias 0.01007 0.04004 0.08726 0.09944

LPM-BVQCM 0.51442 0.51225 0.57529 0.58006
S.E. 0.01095 0.01227 0.04396 0.04574
Bias 0.02885 0.02450 0.15058 0.16013

Robust standard errors are clustered at the country-pair level.

The simulations used 250 iterations, Stata 16.1, and R 4.1.0.

Adjustment to dependent only occurred when the log of trade

values are used. In PPML simulations, we use actual trade values

(including zeros) and make no adjustment by adding 1 to 0 trade

values. Bias is percentage difference (in decimal form) from 0.5

(or the EIA effect).
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Table 23: Simulation for One-Part DGP

Panel A: PPML n = 100, 000 n = 1, 000, 000

(1) (2) (3)

σ = 0 -1.000653 -0.9998776
(0.0114556) 0.0034114

σ = 0.25 -1.066051 -1.066596
(0.0205614) 0.0034114

σ = 0.50 -1.288403 -1.286394
(0.0577706) 0.0173512

σ = 0.75 -1.542517 -1.544767
(0.0599742) 0.0212977

σ = 1.0 -1.652002 -1.653248
(0.0553482) (0.0196304)

Panel B: Logit-QR n = 100, 000

Q.50 Q.60 Q.70 Q.80 Q.90

(1) (2) (3) (4) (5) (6)

σ = 0 -1.165343 -1.170695 -1.146849 -1.039147 -0.8966256
(0.0817294) (0.0323301) (0.0166488) (0.0071459) (0.0059401)

σ = 0.25 -1.127125 -1.163318 -1.158612 -1.041043 -0.9031634
(0.0845641) (0.0349472) (0.0189079) (0.0074888) (0.0062170)

σ = 0.50 -1.070306 -1.164445 -1.202391 -1.045299 -0.9171719
(0.1055132) (0.0400436) (0.0185448) (0.0083877) (0.0070835)

σ = 0.75 -0.9884218 -1.178786 -1.24839 -1.045262 -0.9298841
(0.1303428) (0.0452036) (0.0119897) (0.0087541) (0.0073268)

σ = 1.0 -0.7199572 -1.176696 -1.252054 -1.037991 -0.9407848
(0.2033488) (0.0494092) (0.0116664) (0.0098158) (0.0081605)

Panel C: Logit-QR n = 1, 000, 000

Q.50 Q.60 Q.70 Q.80 Q.90

(1) (2) (3) (4) (5) (6)

σ = 0 -1.159581 -1.168899 -1.146424 -1.038993 -0.8965574
(0.0240261) (0.0104824) (0.0057150) (0.0020882) (0.0017831)

σ = 0.25 -1.127429 -1.162825 -1.159378 -1.041256 -0.9033191
(0.0266184) (0.0116302) (0.0059946) (0.0023218) (0.0019798)

σ = 0.50 -1.074606 -1.165059 -1.201262 -1.045021 -0.9165881
(0.0345299) (0.0122133) (0.0065913) (0.0026530) (0.0021705)

σ = 0.75 -0.9814089 -1.176771 -1.249682 -1.044930 -0.929834
(0.0455976) (0.0140130) (0.0034241) (0.0028412) (0.0023617)

σ = 1.0 -0.7284294 -1.175973 -1.251161 -1.037126 -0.9396865
(0.0607662) (0.0155981) (0.0037780) (0.0031173) (0.0027543)

The simulations used 500 repetitions, Stata 16.1. The table presents the simulation results of the one-stage

DGP as outlined in Santos Silva and Tenreyro (2011) and Breinlich et al. (2022). The variable σk is defined

as the variation in productivity across firms. Panel A shows the results for the PPML estimator and Panels

B and C show results for the Logit-QR at 100,000 and 1,000,000 observations, respectively.
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Table 24: Simulation Evidence that k is not relevant

σ = 0

(1) (2) (3) (4)

PPML Logit-QR Q.50 Logit-QR Q.80

k = 1 -1.000653 -1.165343 -1.039147
(0.0114556) (0.0817294) (0.0071459)

k = 10 -0.9999872 -1.167375) -1.038725)
(0.0105943) (0.0792129) (0.0069412)

k = 50 -0.9992448 -1.161576 -1.038804
(0.0109702) (0.0809577) (0.0070298)

σ = 0.5

(1) (2) (3) (4)

PPML Logit-QR Q.50 Logit-QR Q.80

k = 1 -1.288403 -1.070306 -1.045299
(0.0577706) (0.1055132) (0.0083876)

k = 10 -1.285168 -1.072648 -1.044448
(0.0550215) (0.1077478) (0.0083467)

k = 50 -1.287198 -1.07988 -1.04537
(0.0590342) (0.1003397) (0.0080483)

Resutls for one-stage DGP as outlined in Santos Silva and Ten-

reyro (2011) and Breinlich et al. (2022). The simulations used

500 repetitions, Stata 16.1. The percentage of zeros of the de-

pendent variable ranges .5029 to .5144 across repetitions. The

variables k and σk represent the number of firms and the varia-

tion in productivity across firms, respectively.
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15 Appendix A (Potentially Online)

Figure A1: The solid line represents the density of all positive trade values in the sample from
1965-2010. The dotted line represents the density of country-pairs that had positive trade-flow values
in every year of the sample.
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Table A1: Logit-BVQCM (Adding 1 to All Trade Values)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q75 Q80 Q90
ln(GDPex) 1.019∗∗∗ 1.055∗∗∗ 1.091∗∗∗ 1.052∗∗∗ 1.037∗∗∗ 1.009∗∗∗ 0.971∗∗∗ 0.946∗∗∗ 0.918∗∗∗ 0.812∗∗∗

(0.078) (0.061) (0.055) (0.047) (0.042) (0.039) (0.037) (0.035) (0.035) (0.038)
ln(GDPim) 0.914∗∗∗ 0.983∗∗∗ 1.017∗∗∗ 0.990∗∗∗ 1.001∗∗∗ 0.968∗∗∗ 0.914∗∗∗ 0.878∗∗∗ 0.874∗∗∗ 0.823∗∗∗

(0.074) (0.055) (0.051) (0.043) (0.038) (0.037) (0.036) (0.036) (0.036) (0.039)
EIAMR 1.159∗∗∗ 0.992∗∗∗ 0.853∗∗∗ 0.701∗∗∗ 0.593∗∗∗ 0.453∗∗∗ 0.270∗∗∗ 0.251∗∗∗ 0.275∗∗∗ 0.220∗∗∗

(0.203) (0.132) (0.115) (0.104) (0.086) (0.081) (0.078) (0.075) (0.073) (0.084)
DISTMR -1.653∗∗∗ -1.566∗∗∗ -1.565∗∗∗ -1.553∗∗∗ -1.551∗∗∗ -1.504∗∗∗ -1.480∗∗∗ -1.463∗∗∗ -1.428∗∗∗ -1.374∗∗∗

(0.061) (0.046) (0.046) (0.039) (0.038) (0.036) (0.035) (0.035) (0.035) (0.038)
CONTIGMR 0.755∗∗∗ 0.941∗∗∗ 0.849∗∗∗ 0.717∗∗∗ 0.598∗∗∗ 0.638∗∗∗ 0.591∗∗∗ 0.552∗∗∗ 0.554∗∗∗ 0.472∗∗∗

(0.234) (0.191) (0.164) (0.147) (0.149) (0.153) (0.141) (0.135) (0.131) (0.129)
LANGMR 0.501∗∗∗ 0.343∗∗∗ 0.388∗∗∗ 0.395∗∗∗ 0.403∗∗∗ 0.461∗∗∗ 0.467∗∗∗ 0.477∗∗∗ 0.488∗∗∗ 0.457∗∗∗

(0.133) (0.101) (0.094) (0.088) (0.085) (0.082) (0.078) (0.078) (0.079) (0.080)
LEGALMR 0.328∗∗∗ 0.290∗∗∗ 0.290∗∗∗ 0.283∗∗∗ 0.311∗∗∗ 0.278∗∗∗ 0.276∗∗∗ 0.248∗∗∗ 0.206∗∗∗ 0.164∗∗∗

(0.088) (0.069) (0.064) (0.058) (0.054) (0.052) (0.050) (0.050) (0.050) (0.051)
RELIGMR -0.119 -0.004 0.168 0.169 0.142 0.186∗∗ 0.219∗∗ 0.208∗∗ 0.270∗∗∗ 0.309∗∗∗

(0.173) (0.133) (0.122) (0.105) (0.099) (0.095) (0.093) (0.095) (0.096) (0.104)
COMCOLMR 0.578∗∗∗ 0.612∗∗∗ 0.620∗∗∗ 0.690∗∗∗ 0.723∗∗∗ 0.708∗∗∗ 0.667∗∗∗ 0.646∗∗∗ 0.662∗∗∗ 0.610∗∗∗

(0.160) (0.126) (0.115) (0.102) (0.094) (0.088) (0.083) (0.082) (0.082) (0.083)
BV Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
CRE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Obs 45721 53410 58986 63751 68164 72317 77088 79697 82460 88975

Clustered standard errors by country-pair are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. The prefix "Logit-" indicates that the three-stage

estimation procedure described by Galvao et al. (2013) was implemented to account for zeros in quantile regressions. The first stage is a logit model with

exporter-year, importer-year, and pair fixed effects using all trade pairs (i.e. Tij ≥ 0). The second and third stages are both quantile regressions using

the Frisch-Newton interior point method at each decile. BV indicates that the "Bonus Vetus" methodology described in Baier and Bergstrand (2009a)

and Baier and Bergstrand (2010) was used. "Year FE" indicates whether year dummy variables were included or not in the second and third stages;

"CRE" indicates whether correlated random effects were used or not in the second and third stages.
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Table A2: BVQCM (Positive) Disaggregated by Type of EIA
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q75 Q80 Q90

ln(GDPex) 0.778∗∗∗ 0.764∗∗∗ 0.748∗∗∗ 0.715∗∗∗ 0.720∗∗∗ 0.703∗∗∗ 0.685∗∗∗ 0.665∗∗∗ 0.646∗∗∗ 0.576∗∗∗

(0.041) (0.033) (0.029) (0.026) (0.025) (0.024) (0.024) (0.023) (0.023) (0.026)
ln(GDPim) 0.537∗∗∗ 0.493∗∗∗ 0.485∗∗∗ 0.465∗∗∗ 0.478∗∗∗ 0.479∗∗∗ 0.488∗∗∗ 0.490∗∗∗ 0.489∗∗∗ 0.523∗∗∗

(0.043) (0.036) (0.030) (0.027) (0.025) (0.024) (0.024) (0.024) (0.024) (0.027)
FTA-MR 0.430∗∗∗ 0.386∗∗∗ 0.400∗∗∗ 0.396∗∗∗ 0.351∗∗∗ 0.321∗∗∗ 0.271∗∗∗ 0.232∗∗∗ 0.201∗∗∗ 0.089∗

(0.085) (0.056) (0.045) (0.041) (0.038) (0.036) (0.036) (0.036) (0.036) (0.046)
CUCMECU-MR 0.805∗∗∗ 0.730∗∗∗ 0.674∗∗∗ 0.698∗∗∗ 0.725∗∗∗ 0.738∗∗∗ 0.637∗∗∗ 0.610∗∗∗ 0.584∗∗∗ 0.385∗∗∗

(0.135) (0.082) (0.063) (0.056) (0.052) (0.053) (0.054) (0.053) (0.057) (0.081)
DISTMR -1.554∗∗∗ -1.447∗∗∗ -1.411∗∗∗ -1.357∗∗∗ -1.318∗∗∗ -1.255∗∗∗ -1.206∗∗∗ -1.173∗∗∗ -1.138∗∗∗ -1.093∗∗∗

(0.040) (0.034) (0.030) (0.027) (0.026) (0.025) (0.025) (0.025) (0.025) (0.026)
CONTIGMR 0.271∗∗ 0.218∗ 0.261∗∗ 0.289∗∗∗ 0.290∗∗∗ 0.300∗∗∗ 0.376∗∗∗ 0.399∗∗∗ 0.383∗∗∗ 0.381∗∗∗

(0.135) (0.117) (0.104) (0.098) (0.091) (0.101) (0.104) (0.094) (0.091) (0.098)
LANGMR 0.441∗∗∗ 0.453∗∗∗ 0.423∗∗∗ 0.428∗∗∗ 0.404∗∗∗ 0.446∗∗∗ 0.448∗∗∗ 0.441∗∗∗ 0.442∗∗∗ 0.458∗∗∗

(0.079) (0.062) (0.056) (0.053) (0.051) (0.051) (0.051) (0.053) (0.054) (0.059)
LEGALMR 0.207∗∗∗ 0.240∗∗∗ 0.259∗∗∗ 0.260∗∗∗ 0.296∗∗∗ 0.317∗∗∗ 0.333∗∗∗ 0.346∗∗∗ 0.350∗∗∗ 0.312∗∗∗

(0.060) (0.046) (0.040) (0.037) (0.036) (0.035) (0.035) (0.034) (0.034) (0.035)
RELIGMR 0.548∗∗∗ 0.415∗∗∗ 0.292∗∗∗ 0.201∗∗∗ 0.118∗∗ 0.036 -0.022 -0.035 -0.045 -0.032

(0.106) (0.086) (0.072) (0.065) (0.060) (0.058) (0.059) (0.060) (0.061) (0.070)
COMCOLMR 0.511∗∗∗ 0.413∗∗∗ 0.411∗∗∗ 0.440∗∗∗ 0.439∗∗∗ 0.378∗∗∗ 0.367∗∗∗ 0.353∗∗∗ 0.359∗∗∗ 0.305∗∗∗

(0.108) (0.088) (0.078) (0.074) (0.069) (0.065) (0.062) (0.064) (0.064) (0.066)

BV Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
CRE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Obs 121417 121417 121417 121417 121417 121417 121417 121417 121417 121417

Clustered standard errors by country-pair in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. Only positive trade values (i.e. Tij > 0) were used in

the estimation. The quantile estimation is performed using Frisch-Newton interior point method at each decile. BV indicates that the "Bonus Vetus"

methodology described in Baier and Bergstrand (2009a) and Baier and Bergstrand (2010) was used. "Year FE" indicates whether year dummy variables

were included or not; "CRE" indicates whether correlated random effects were used or not. The terms FTA and CUCMECU indicate Free Trade

Agreements and deeper trade agreements (including Customs Unions, Common Markets, and Economic Unions), respectively.
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Table A3: Comparison of LPM and Logit Observations Included

Quantile NT Observations AT Observations

(1) (2) (3)

10 0 36,383
20 0 47,619
30 2 50,252
40 47 50,603
50 190 50,658
60 570 50,667
70 1,718 50,668
80 4,129 50,668
90 8,844 50,668

Note: NT and AT represent "never trade" and "always trade"

in every year of the sample. Columns (2) and (3) give the count

of observations that were included in the LPM estimation but

were excluded from the logit estimation due to perfect prediction

(identified by pair fixed effects from the first stage).
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Table A4: LPM-BVQCM (Adding 1 to All Trade Values)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q75 Q80 Q90

ln(GDPex) 0.864∗∗∗ 0.949∗∗∗ 0.941∗∗∗ 0.974∗∗∗ 1.007∗∗∗ 1.002∗∗∗ 0.982∗∗∗ 0.964∗∗∗ 0.936∗∗∗ 0.836∗∗∗

(0.060) (0.037) (0.032) (0.029) (0.028) (0.026) (0.025) (0.025) (0.025) (0.025)
ln(GDPim) 0.816∗∗∗ 0.816∗∗∗ 0.854∗∗∗ 0.867∗∗∗ 0.882∗∗∗ 0.860∗∗∗ 0.829∗∗∗ 0.822∗∗∗ 0.814∗∗∗ 0.771∗∗∗

(0.066) (0.039) (0.032) (0.028) (0.027) (0.026) (0.026) (0.027) (0.027) (0.029)
EIAMR 0.785∗∗∗ 0.766∗∗∗ 0.766∗∗∗ 0.732∗∗∗ 0.684∗∗∗ 0.620∗∗∗ 0.499∗∗∗ 0.426∗∗∗ 0.359∗∗∗ 0.336∗∗∗

(0.077) (0.050) (0.043) (0.042) (0.041) (0.041) (0.042) (0.042) (0.043) (0.050)
DISTMR -1.188∗∗∗ -1.228∗∗∗ -1.259∗∗∗ -1.308∗∗∗ -1.340∗∗∗ -1.369∗∗∗ -1.383∗∗∗ -1.383∗∗∗ -1.394∗∗∗ -1.378∗∗∗

(0.054) (0.037) (0.032) (0.029) (0.029) (0.028) (0.027) (0.027) (0.028) (0.029)
CONTIGMR -0.201 -0.025 0.107 0.204∗ 0.302∗∗∗ 0.297∗∗∗ 0.331∗∗∗ 0.414∗∗∗ 0.403∗∗∗ 0.361∗∗∗

(0.127) (0.105) (0.103) (0.108) (0.107) (0.104) (0.112) (0.115) (0.114) (0.112)
LANGMR 0.189∗∗ 0.217∗∗∗ 0.271∗∗∗ 0.347∗∗∗ 0.457∗∗∗ 0.502∗∗∗ 0.553∗∗∗ 0.581∗∗∗ 0.572∗∗∗ 0.565∗∗∗

(0.091) (0.065) (0.060) (0.059) (0.058) (0.059) (0.058) (0.058) (0.059) (0.063)
LEGALMR 0.511∗∗∗ 0.548∗∗∗ 0.487∗∗∗ 0.444∗∗∗ 0.404∗∗∗ 0.415∗∗∗ 0.409∗∗∗ 0.406∗∗∗ 0.371∗∗∗ 0.340∗∗∗

(0.067) (0.048) (0.042) (0.039) (0.039) (0.040) (0.039) (0.039) (0.039) (0.041)
RELIGMR 0.340∗∗∗ 0.145∗ 0.072 0.026 0.020 0.009 0.062 0.094 0.112 0.104

(0.121) (0.085) (0.074) (0.069) (0.067) (0.066) (0.067) (0.067) (0.069) (0.075)
COMCOLMR 0.140 0.201 0.345∗∗∗ 0.390∗∗∗ 0.398∗∗∗ 0.423∗∗∗ 0.405∗∗∗ 0.405∗∗∗ 0.458∗∗∗ 0.488∗∗∗

(0.160) (0.128) (0.097) (0.084) (0.082) (0.078) (0.073) (0.072) (0.072) (0.070)

BV Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
CRE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Obs 48602 74039 91708 105378 116927 127740 140112 147490 155884 176342

Clustered standard errors by country-pair are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. The prefix "LPM-" indicates that the three-stage

estimation procedure described by Galvao et al. (2013) was implemented to account for censored observations in quantile regressions. The first stage is

a linear probability model with exporter-year, importer-year, and pair fixed effects using all trade pair (i.e. Tij ≥ 0). The second and third stages are

both quantile regressions using the Frisch-Newton interior point method at each decile. BV indicates that the "Bonus Vetus" methodology described in

Baier and Bergstrand (2009a) and Baier and Bergstrand (2010) was used. "Year FE" indicates whether year dummy variables were included or not in

the second and third stages; "CRE" indicates whether correlated random effects were used or not in the second and third stages. Missing trade values

are replaced by 0 and we add 1 to all trade values.
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Table A5: LPM-BVQCM (User-defined minimum value of USD 10,000)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q75 Q80 Q90

ln(GDPex) 0.828∗∗∗ 0.884∗∗∗ 0.877∗∗∗ 0.893∗∗∗ 0.921∗∗∗ 0.928∗∗∗ 0.922∗∗∗ 0.903∗∗∗ 0.896∗∗∗ 0.808∗∗∗

(0.051) (0.036) (0.030) (0.027) (0.026) (0.025) (0.023) (0.024) (0.024) (0.025)
ln(GDPim) 0.702∗∗∗ 0.725∗∗∗ 0.738∗∗∗ 0.779∗∗∗ 0.798∗∗∗ 0.808∗∗∗ 0.830∗∗∗ 0.835∗∗∗ 0.824∗∗∗ 0.780∗∗∗

(0.054) (0.035) (0.030) (0.026) (0.026) (0.025) (0.025) (0.025) (0.026) (0.028)
EIAMR 0.648∗∗∗ 0.658∗∗∗ 0.691∗∗∗ 0.693∗∗∗ 0.668∗∗∗ 0.607∗∗∗ 0.520∗∗∗ 0.460∗∗∗ 0.391∗∗∗ 0.332∗∗∗

(0.066) (0.043) (0.039) (0.037) (0.038) (0.038) (0.039) (0.039) (0.040) (0.047)
DISTMR -1.139∗∗∗ -1.133∗∗∗ -1.150∗∗∗ -1.171∗∗∗ -1.186∗∗∗ -1.212∗∗∗ -1.224∗∗∗ -1.244∗∗∗ -1.252∗∗∗ -1.282∗∗∗

(0.045) (0.032) (0.028) (0.027) (0.027) (0.026) (0.025) (0.026) (0.026) (0.028)
CONTIGMR -0.019 0.068 0.117 0.176∗∗ 0.201∗∗ 0.233∗∗ 0.319∗∗∗ 0.341∗∗∗ 0.348∗∗∗ 0.347∗∗∗

(0.102) (0.079) (0.081) (0.083) (0.086) (0.095) (0.099) (0.100) (0.102) (0.105)
LANGMR 0.088 0.142∗∗ 0.170∗∗∗ 0.249∗∗∗ 0.310∗∗∗ 0.417∗∗∗ 0.465∗∗∗ 0.483∗∗∗ 0.502∗∗∗ 0.516∗∗∗

(0.078) (0.060) (0.057) (0.053) (0.054) (0.054) (0.054) (0.055) (0.057) (0.061)
LEGALMR 0.506∗∗∗ 0.535∗∗∗ 0.504∗∗∗ 0.462∗∗∗ 0.434∗∗∗ 0.417∗∗∗ 0.416∗∗∗ 0.395∗∗∗ 0.395∗∗∗ 0.351∗∗∗

(0.060) (0.043) (0.039) (0.036) (0.036) (0.036) (0.036) (0.036) (0.037) (0.039)
RELIGMR 0.169 -0.027 -0.056 -0.055 -0.071 -0.090 -0.057 -0.041 -0.022 0.027

(0.106) (0.079) (0.069) (0.064) (0.061) (0.061) (0.063) (0.064) (0.066) (0.072)
COMCOLMR 0.074 0.220∗∗ 0.330∗∗∗ 0.326∗∗∗ 0.366∗∗∗ 0.384∗∗∗ 0.347∗∗∗ 0.370∗∗∗ 0.404∗∗∗ 0.446∗∗∗

(0.142) (0.107) (0.088) (0.076) (0.075) (0.070) (0.068) (0.069) (0.069) (0.069)

BV Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
CRE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Obs 41130 62184 77660 90057 100876 111720 124385 132221 141333 163907

Clustered standard errors by country-pair are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. The prefix "LPM-" indicates that the three-stage

estimation procedure described by Galvao et al. (2013) was implemented to account for censored observations in quantile regressions. The first stage is

a linear probability model with exporter-year, importer-year, and pair fixed effects using all trade pair (i.e. Tij ≥ 0). The second and third stages are

both quantile regressions using the Frisch-Newton interior point method at each decile. BV indicates that the "Bonus Vetus" methodology described in

Baier and Bergstrand (2009a) and Baier and Bergstrand (2010) was used. "Year FE" indicates whether year dummy variables were included or not in

the second and third stages; "CRE" indicates whether correlated random effects were used or not in the second and third stages. We create an arbitrary

minimum value of USD 10,000 and replace trade values below this cutoff to 1 (i.e. ln(Xijt) = 0 when trade value is 1.)
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Table A6: LPM-BVQCM Disaggregated by Type of EIA
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q75 Q80 Q90

ln(GDPex) 0.855∗∗∗ 0.949∗∗∗ 0.939∗∗∗ 0.976∗∗∗ 0.999∗∗∗ 0.995∗∗∗ 0.980∗∗∗ 0.967∗∗∗ 0.940∗∗∗ 0.846∗∗∗

(0.060) (0.038) (0.032) (0.029) (0.028) (0.026) (0.025) (0.025) (0.025) (0.025)
ln(GDPim) 0.814∗∗∗ 0.819∗∗∗ 0.848∗∗∗ 0.860∗∗∗ 0.875∗∗∗ 0.857∗∗∗ 0.816∗∗∗ 0.812∗∗∗ 0.797∗∗∗ 0.775∗∗∗

(0.064) (0.039) (0.032) (0.028) (0.027) (0.026) (0.026) (0.027) (0.027) (0.029)
FTA-MR 0.722∗∗∗ 0.739∗∗∗ 0.702∗∗∗ 0.625∗∗∗ 0.577∗∗∗ 0.497∗∗∗ 0.374∗∗∗ 0.321∗∗∗ 0.268∗∗∗ 0.236∗∗∗

(0.074) (0.051) (0.046) (0.043) (0.042) (0.042) (0.042) (0.042) (0.043) (0.047)
CU-MR 1.119∗∗∗ 0.968∗∗∗ 0.891∗∗∗ 0.778∗∗∗ 0.745∗∗∗ 0.776∗∗∗ 0.727∗∗∗ 0.754∗∗∗ 0.863∗∗∗ 0.935∗∗∗

(0.128) (0.082) (0.075) (0.069) (0.077) (0.103) (0.133) (0.160) (0.193) (0.229)
CM-MR 1.081∗∗∗ 1.110∗∗∗ 1.061∗∗∗ 0.981∗∗∗ 0.970∗∗∗ 0.901∗∗∗ 0.771∗∗∗ 0.687∗∗∗ 0.643∗∗∗ 0.550∗∗∗

(0.110) (0.079) (0.069) (0.067) (0.065) (0.064) (0.065) (0.067) (0.070) (0.076)
ECU-MR 1.394∗∗∗ 1.281∗∗∗ 1.204∗∗∗ 1.034∗∗∗ 1.033∗∗∗ 0.993∗∗∗ 0.907∗∗∗ 0.961∗∗∗ 0.887∗∗∗ 0.902∗∗∗

(0.136) (0.108) (0.101) (0.092) (0.097) (0.096) (0.103) (0.107) (0.111) (0.135)
DISTMR -1.181∗∗∗ -1.233∗∗∗ -1.254∗∗∗ -1.303∗∗∗ -1.336∗∗∗ -1.364∗∗∗ -1.362∗∗∗ -1.358∗∗∗ -1.365∗∗∗ -1.358∗∗∗

(0.053) (0.037) (0.031) (0.029) (0.028) (0.027) (0.027) (0.027) (0.028) (0.028)
CONTIGMR -0.098 0.004 0.139 0.206∗ 0.287∗∗∗ 0.322∗∗∗ 0.394∗∗∗ 0.432∗∗∗ 0.429∗∗∗ 0.461∗∗∗

(0.129) (0.105) (0.103) (0.106) (0.107) (0.110) (0.105) (0.105) (0.107) (0.111)
LANGMR 0.139 0.197∗∗∗ 0.254∗∗∗ 0.328∗∗∗ 0.420∗∗∗ 0.458∗∗∗ 0.508∗∗∗ 0.529∗∗∗ 0.535∗∗∗ 0.549∗∗∗

(0.092) (0.065) (0.061) (0.059) (0.058) (0.059) (0.058) (0.059) (0.060) (0.062)
LEGALMR 0.513∗∗∗ 0.548∗∗∗ 0.483∗∗∗ 0.441∗∗∗ 0.397∗∗∗ 0.408∗∗∗ 0.405∗∗∗ 0.399∗∗∗ 0.363∗∗∗ 0.313∗∗∗

(0.067) (0.048) (0.043) (0.039) (0.039) (0.039) (0.039) (0.039) (0.039) (0.040)
RELIGMR 0.344∗∗∗ 0.135 0.068 0.026 0.028 0.023 0.113∗ 0.146∗∗ 0.178∗∗ 0.194∗∗∗

(0.119) (0.086) (0.075) (0.069) (0.068) (0.066) (0.067) (0.068) (0.070) (0.074)
COMCOLMR 0.131 0.211∗ 0.344∗∗∗ 0.410∗∗∗ 0.431∗∗∗ 0.442∗∗∗ 0.400∗∗∗ 0.397∗∗∗ 0.430∗∗∗ 0.426∗∗∗

(0.160) (0.125) (0.097) (0.084) (0.082) (0.077) (0.072) (0.072) (0.072) (0.070)

BV Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
CRE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Obs 48554 74049 91721 105379 116916 127750 140093 147492 155879 176335

Clustered standard errors by country-pair are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. The prefix "LPM-" indicates that the three-stage

estimation procedure described by Galvao et al. (2013) was implemented to account for censored observations in quantile regressions. The first stage is

a linear probability model with exporter-year, importer-year, and pair fixed effects using all trade pair (i.e. Tij ≥ 0). The second and third stages are

both quantile regressions using the Frisch-Newton interior point method at each decile. BV indicates that the "Bonus Vetus" methodology described in

Baier and Bergstrand (2009a) and Baier and Bergstrand (2010) was used. "Year FE" indicates whether year dummy variables were included or not in

the second and third stages; "CRE" indicates whether correlated random effects were used or not in the second and third stages. The terms FTA, CU,

CM, and ECU indicate Free Trade Agreements, Customs Unions, Common Markets, and Economic Unions, respectively.
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Table A7: Cloglog-BVQCM
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q75 Q80 Q90

ln(GDPex) 0.990∗∗∗ 1.037∗∗∗ 1.071∗∗∗ 1.045∗∗∗ 1.041∗∗∗ 1.012∗∗∗ 0.973∗∗∗ 0.953∗∗∗ 0.924∗∗∗ 0.801∗∗∗

(0.071) (0.058) (0.053) (0.045) (0.041) (0.039) (0.037) (0.035) (0.035) (0.038)
ln(GDPim) 0.969∗∗∗ 0.968∗∗∗ 0.990∗∗∗ 0.991∗∗∗ 0.991∗∗∗ 0.962∗∗∗ 0.921∗∗∗ 0.880∗∗∗ 0.871∗∗∗ 0.821∗∗∗

(0.071) (0.052) (0.050) (0.043) (0.038) (0.037) (0.037) (0.037) (0.036) (0.039)
EIAMR 1.221∗∗∗ 0.967∗∗∗ 0.875∗∗∗ 0.696∗∗∗ 0.578∗∗∗ 0.442∗∗∗ 0.279∗∗∗ 0.243∗∗∗ 0.259∗∗∗ 0.221∗∗∗

(0.196) (0.129) (0.114) (0.098) (0.086) (0.080) (0.077) (0.074) (0.074) (0.084)
DISTMR -1.610∗∗∗ -1.529∗∗∗ -1.533∗∗∗ -1.534∗∗∗ -1.537∗∗∗ -1.499∗∗∗ -1.476∗∗∗ -1.468∗∗∗ -1.430∗∗∗ -1.382∗∗∗

(0.057) (0.044) (0.044) (0.038) (0.037) (0.036) (0.035) (0.035) (0.035) (0.039)
CONTIGMR 0.853∗∗∗ 0.968∗∗∗ 0.824∗∗∗ 0.695∗∗∗ 0.586∗∗∗ 0.619∗∗∗ 0.584∗∗∗ 0.535∗∗∗ 0.561∗∗∗ 0.481∗∗∗

(0.206) (0.182) (0.157) (0.143) (0.147) (0.152) (0.141) (0.136) (0.133) (0.129)
LANGMR 0.408∗∗∗ 0.284∗∗∗ 0.339∗∗∗ 0.385∗∗∗ 0.384∗∗∗ 0.472∗∗∗ 0.466∗∗∗ 0.473∗∗∗ 0.480∗∗∗ 0.465∗∗∗

(0.125) (0.095) (0.091) (0.086) (0.084) (0.082) (0.079) (0.079) (0.079) (0.081)
LEGALMR 0.337∗∗∗ 0.297∗∗∗ 0.295∗∗∗ 0.279∗∗∗ 0.308∗∗∗ 0.272∗∗∗ 0.279∗∗∗ 0.248∗∗∗ 0.213∗∗∗ 0.168∗∗∗

(0.082) (0.065) (0.062) (0.057) (0.053) (0.052) (0.050) (0.050) (0.050) (0.052)
RELIGMR -0.131 0.051 0.157 0.147 0.143 0.152 0.197∗∗ 0.190∗∗ 0.273∗∗∗ 0.302∗∗∗

(0.162) (0.125) (0.119) (0.102) (0.099) (0.095) (0.094) (0.095) (0.097) (0.104)
COMCOLMR 0.639∗∗∗ 0.643∗∗∗ 0.624∗∗∗ 0.676∗∗∗ 0.717∗∗∗ 0.722∗∗∗ 0.670∗∗∗ 0.658∗∗∗ 0.666∗∗∗ 0.610∗∗∗

(0.151) (0.117) (0.111) (0.098) (0.094) (0.088) (0.083) (0.083) (0.083) (0.083)

BV Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
CRE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Obs 47846 53532 57767 61783 66081 70436 75584 78327 81530 88866

Clustered standard errors by country-pair are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. The prefix "Cloglog-" indicates that the three-stage

estimation procedure described by Galvao et al. (2013) was implemented to account for zeros in quantile regressions. The first stage is a complementary

log-log model with exporter-year, importer-year, and pair fixed effects using all trade pairs (i.e. Tij ≥ 0). The second and third stages are both

quantile regressions using Frisch-Newton interior point method at each decile. BV indicates that the "Bonus Vetus" methodology described in Baier and

Bergstrand (2009a) and Baier and Bergstrand (2010) was used."Year FE" indicates whether year dummy variables were included or not in the second

and third stages; "CRE" indicates whether correlated random effects were used or not in the second and third stages.
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Table A8: Logit(BVCM)-BVQCM
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q75 Q80 Q90

ln(GDPex) 0.952∗∗∗ 0.766∗∗∗ 0.877∗∗∗ 0.920∗∗∗ 0.947∗∗∗ 1.005∗∗∗ 1.030∗∗∗ 1.013∗∗∗ 0.998∗∗∗ 0.889∗∗∗

(0.188) (0.097) (0.064) (0.049) (0.041) (0.036) (0.031) (0.029) (0.028) (0.027)
ln(GDPim) 1.551∗∗∗ 1.338∗∗∗ 1.137∗∗∗ 1.059∗∗∗ 1.043∗∗∗ 0.978∗∗∗ 0.899∗∗∗ 0.862∗∗∗ 0.836∗∗∗ 0.820∗∗∗

(0.173) (0.116) (0.074) (0.055) (0.045) (0.039) (0.034) (0.033) (0.031) (0.031)
EIAMR 1.311∗∗∗ 1.043∗∗∗ 0.694∗∗∗ 0.637∗∗∗ 0.621∗∗∗ 0.614∗∗∗ 0.534∗∗∗ 0.470∗∗∗ 0.382∗∗∗ 0.317∗∗∗

(0.184) (0.131) (0.092) (0.069) (0.060) (0.057) (0.052) (0.051) (0.050) (0.056)
DISTMR -0.620∗∗∗ -0.870∗∗∗ -1.097∗∗∗ -1.266∗∗∗ -1.364∗∗∗ -1.438∗∗∗ -1.475∗∗∗ -1.483∗∗∗ -1.488∗∗∗ -1.504∗∗∗

(0.124) (0.094) (0.066) (0.049) (0.042) (0.037) (0.033) (0.032) (0.032) (0.031)
CONTIGMR -0.358 -0.365∗ -0.327 0.005 0.250∗ 0.413∗∗∗ 0.452∗∗∗ 0.448∗∗∗ 0.458∗∗∗ 0.521∗∗∗

(0.409) (0.206) (0.200) (0.176) (0.151) (0.133) (0.122) (0.121) (0.127) (0.130)
LANGMR -0.126 0.268∗ 0.452∗∗∗ 0.550∗∗∗ 0.578∗∗∗ 0.662∗∗∗ 0.689∗∗∗ 0.703∗∗∗ 0.702∗∗∗ 0.649∗∗∗

(0.233) (0.160) (0.116) (0.089) (0.079) (0.074) (0.070) (0.068) (0.066) (0.067)
LEGALMR 0.640∗∗∗ 0.531∗∗∗ 0.478∗∗∗ 0.431∗∗∗ 0.374∗∗∗ 0.342∗∗∗ 0.344∗∗∗ 0.351∗∗∗ 0.351∗∗∗ 0.334∗∗∗

(0.130) (0.106) (0.082) (0.064) (0.055) (0.051) (0.048) (0.046) (0.045) (0.044)
RELIGMR 0.521∗ 0.310 0.319∗∗ 0.279∗∗ 0.271∗∗∗ 0.225∗∗ 0.213∗∗∗ 0.220∗∗∗ 0.238∗∗∗ 0.242∗∗∗

(0.281) (0.216) (0.148) (0.113) (0.099) (0.090) (0.083) (0.080) (0.078) (0.080)
COMCOLMR 0.367 -0.345 -0.182 -0.035 0.056 0.106 0.220∗∗ 0.272∗∗∗ 0.289∗∗∗ 0.480∗∗∗

(0.639) (0.362) (0.253) (0.177) (0.145) (0.118) (0.101) (0.093) (0.086) (0.077)

BV Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
CRE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Obs 13546 41369 65212 86623 107807 129315 151591 163161 175435 202987

Clustered standard errors by country-pair are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. The prefix "Logit(BVCM)-" indicates that the three-stage

estimation procedure described by Galvao et al. (2013) was implemented to account for zeros in quantile regressions. The first stage is a logit model

where unobserved heterogeneity was accounted for using Chamberlain-Mundlak-based correlated random effects using all trade pairs (i.e. Tij ≥ 0). The

second and third stages are both quantile regressions using the Frisch-Newton interior point method at each decile. BV indicates that the "Bonus Vetus"

methodology described in Baier and Bergstrand (2009a) and Baier and Bergstrand (2010) was used. "Year FE" indicates whether year dummy variables

were included or not in the second and third stages; "CRE" indicates whether correlated random effects were used or not in the second and third stages.
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Table A9: Logit-BVQCM (Unconstrained MR Terms Coefficients)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q75 Q80 Q90

ln(GDPex) 0.928∗∗∗ 0.977∗∗∗ 1.015∗∗∗ 0.968∗∗∗ 0.926∗∗∗ 0.931∗∗∗ 0.883∗∗∗ 0.850∗∗∗ 0.822∗∗∗ 0.757∗∗∗

(0.076) (0.056) (0.048) (0.045) (0.041) (0.039) (0.037) (0.037) (0.036) (0.039)
ln(GDPim) 0.970∗∗∗ 1.050∗∗∗ 1.085∗∗∗ 1.084∗∗∗ 1.048∗∗∗ 1.056∗∗∗ 1.004∗∗∗ 0.989∗∗∗ 0.962∗∗∗ 0.911∗∗∗

(0.072) (0.050) (0.046) (0.043) (0.039) (0.037) (0.035) (0.035) (0.036) (0.040)
EIA 0.629∗∗∗ 0.415∗∗∗ 0.278∗∗∗ 0.200∗∗ 0.225∗∗∗ 0.207∗∗ 0.253∗∗∗ 0.331∗∗∗ 0.325∗∗∗ 0.238∗∗∗

(0.163) (0.116) (0.100) (0.092) (0.083) (0.080) (0.079) (0.079) (0.077) (0.089)
ln(DIST) -1.681∗∗∗ -1.595∗∗∗ -1.588∗∗∗ -1.570∗∗∗ -1.513∗∗∗ -1.468∗∗∗ -1.425∗∗∗ -1.412∗∗∗ -1.389∗∗∗ -1.374∗∗∗

(0.054) (0.044) (0.042) (0.036) (0.034) (0.034) (0.035) (0.036) (0.036) (0.037)
CONTIG 0.506∗∗ 0.773∗∗∗ 0.781∗∗∗ 0.765∗∗∗ 0.689∗∗∗ 0.619∗∗∗ 0.577∗∗∗ 0.606∗∗∗ 0.527∗∗∗ 0.372∗∗∗

(0.237) (0.190) (0.171) (0.138) (0.124) (0.126) (0.136) (0.132) (0.123) (0.122)
LANG 0.564∗∗∗ 0.342∗∗∗ 0.415∗∗∗ 0.412∗∗∗ 0.434∗∗∗ 0.403∗∗∗ 0.441∗∗∗ 0.446∗∗∗ 0.463∗∗∗ 0.442∗∗∗

(0.116) (0.088) (0.085) (0.079) (0.073) (0.071) (0.071) (0.071) (0.070) (0.077)
LEGAL 0.393∗∗∗ 0.362∗∗∗ 0.262∗∗∗ 0.243∗∗∗ 0.219∗∗∗ 0.235∗∗∗ 0.221∗∗∗ 0.180∗∗∗ 0.148∗∗∗ 0.132∗∗∗

(0.082) (0.062) (0.057) (0.053) (0.049) (0.048) (0.047) (0.047) (0.047) (0.051)
RELIG -0.132 0.044 0.084 0.160 0.165∗ 0.195∗∗ 0.239∗∗∗ 0.206∗∗ 0.196∗∗ 0.139

(0.154) (0.117) (0.108) (0.102) (0.095) (0.090) (0.086) (0.086) (0.087) (0.100)
COMCOL 0.421∗∗∗ 0.501∗∗∗ 0.572∗∗∗ 0.657∗∗∗ 0.692∗∗∗ 0.691∗∗∗ 0.627∗∗∗ 0.651∗∗∗ 0.665∗∗∗ 0.655∗∗∗

(0.149) (0.117) (0.105) (0.094) (0.087) (0.082) (0.081) (0.082) (0.081) (0.086)

BV Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
CRE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Obs 45707 53408 58984 63750 68164 72315 77088 79697 82460 88975

Clustered standard errors by country-pair are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. The prefix "Logit-" indicates that the three-stage

estimation procedure described by Galvao et al. (2013) was implemented to account for censored observations in quantile regressions. The first

stage is a logit model with exporter-year, importer-year, and pair fixed effects using all trade pairs (i.e. Tij ≥ 0). The second and third stages

are both quantile regressions using the Frisch-Newton interior point method at each decile. BV indicates that the "Bonus Vetus" methodology

described in Baier and Bergstrand (2009a) and Baier and Bergstrand (2010) was used. "Year FE" indicates whether year dummy variables were

included or not in the second and third stages; "CRE" indicates whether correlated random effects were used or not in the second and third

stages. "Unconstrained" refers to allowing the coefficient estimates of the “MR” components of the various bilateral trade-cost variables to be left

unconstrained.

96



Table A10: Logit-BVQCM (Comparable): GDP per capitas
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90

ln(GDPex) 0.117 0.463∗∗∗ 0.631∗∗∗ 0.844∗∗∗ 0.899∗∗∗ 0.974∗∗∗ 1.002∗∗∗ 0.972∗∗∗ 0.930∗∗∗

(0.198) (0.150) (0.124) (0.101) (0.094) (0.085) (0.077) (0.074) (0.076)
ln(GDPim) 0.583∗∗∗ 0.481∗∗∗ 0.653∗∗∗ 0.784∗∗∗ 0.788∗∗∗ 0.784∗∗∗ 0.758∗∗∗ 0.624∗∗∗ 0.650∗∗∗

(0.221) (0.164) (0.134) (0.114) (0.095) (0.085) (0.080) (0.077) (0.081)
ln(GDPpcex) 0.861∗∗∗ 0.534∗∗∗ 0.338∗∗∗ 0.048 -0.022 -0.145∗ -0.198∗∗∗ -0.251∗∗∗ -0.307∗∗∗

(0.197) (0.145) (0.120) (0.096) (0.089) (0.083) (0.075) (0.073) (0.074)
ln(GDPpcim) 0.284 0.448∗∗∗ 0.303∗∗ 0.171 0.120 0.060 0.022 0.073 -0.034

(0.212) (0.155) (0.126) (0.108) (0.091) (0.080) (0.075) (0.072) (0.075)
EIAMR 2.535∗∗∗ 2.814∗∗∗ 2.592∗∗∗ 2.799∗∗∗ 2.840∗∗∗ 2.938∗∗∗ 2.903∗∗∗ 2.428∗∗∗ 1.971∗∗∗

(0.918) (0.589) (0.641) (0.566) (0.572) (0.543) (0.440) (0.360) (0.378)
DISTMR -1.644∗∗∗ -1.540∗∗∗ -1.492∗∗∗ -1.467∗∗∗ -1.412∗∗∗ -1.344∗∗∗ -1.259∗∗∗ -1.160∗∗∗ -1.045∗∗∗

(0.059) (0.046) (0.042) (0.038) (0.035) (0.032) (0.030) (0.028) (0.029)
CONTIGMR 0.759∗∗ 0.989∗∗∗ 0.864∗∗∗ 0.690∗∗∗ 0.572∗∗∗ 0.475∗∗∗ 0.452∗∗∗ 0.492∗∗∗ 0.328∗∗∗

(0.299) (0.181) (0.164) (0.136) (0.130) (0.128) (0.125) (0.105) (0.095)
LANGMR 0.399∗∗∗ 0.300∗∗∗ 0.324∗∗∗ 0.318∗∗∗ 0.320∗∗∗ 0.375∗∗∗ 0.375∗∗∗ 0.360∗∗∗ 0.375∗∗∗

(0.124) (0.099) (0.088) (0.080) (0.077) (0.072) (0.067) (0.063) (0.061)
LEGALMR 0.401∗∗∗ 0.321∗∗∗ 0.291∗∗∗ 0.286∗∗∗ 0.267∗∗∗ 0.228∗∗∗ 0.195∗∗∗ 0.169∗∗∗ 0.100∗∗

(0.087) (0.068) (0.060) (0.053) (0.049) (0.046) (0.043) (0.040) (0.040)
RELIGMR -0.198 -0.059 0.124 0.164∗ 0.156∗ 0.159∗ 0.218∗∗∗ 0.234∗∗∗ 0.284∗∗∗

(0.168) (0.130) (0.114) (0.098) (0.089) (0.083) (0.079) (0.077) (0.080)
COMCOLMR 0.621∗∗∗ 0.634∗∗∗ 0.667∗∗∗ 0.707∗∗∗ 0.698∗∗∗ 0.663∗∗∗ 0.637∗∗∗ 0.550∗∗∗ 0.480∗∗∗

(0.156) (0.128) (0.111) (0.095) (0.086) (0.079) (0.070) (0.066) (0.065)
EIAMR∗ln(GDPpcex) -0.194∗∗ -0.226∗∗∗ -0.242∗∗∗ -0.244∗∗∗ -0.217∗∗∗ -0.200∗∗∗ -0.186∗∗∗ -0.142∗∗∗ -0.057

(0.080) (0.059) (0.061) (0.054) (0.047) (0.044) (0.039) (0.035) (0.037)
EIAMR∗ln(GDPpcim) 0.052 0.006 0.033 -0.009 -0.064 -0.105∗ -0.128∗∗∗ -0.124∗∗∗ -0.169∗∗∗

(0.089) (0.067) (0.065) (0.053) (0.053) (0.053) (0.045) (0.041) (0.038)

BV Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
CRE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Obs 45724 53410 58987 63751 68164 72317 77088 82460 88975

standard errors by country-pair are in parentheses ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. The prefix "Logit-" indicates that the three-stage estimation

procedure described by Galvao et al. (2013) was implemented to account for zeros in quantile regressions. The first stage is a logit model with

exporter-year, importer-year, and pair fixed effects using all trade pairs (i.e. Tij ≥ 0). The second and third stages are both quantile regressions

using Frisch-Newton interior point method at each decile. BV indicates that the "Bonus Vetus" methodology described in Baier and Bergstrand

(2009a) and Baier and Bergstrand (2010) was used."Year FE" indicates whether year dummy variables were included or not in the second and

third stages; "CRE" indicates whether correlated random effects were used or not in the second and third stages. "Comparable" refers to the

adjustment discussed by Machado et al. (2016) to allow partial effects to be comparable across quantiles.
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16 Appendix B: Quantile Treatment Effects (Potentially On-
line)

Firpo (2007) developed a method for analysis of the effects of binary regressors on quantiles
of the unconditional distribution of the dependent variable. Note that the method is a
semiparametric two stage approach where the first stage logit model generates propensity
scores and these propensity scores are used to re-weight the QR model suggested in Koenker
and Bassett (1978). A key assumption is that the variable of interest is binary and exogenous,
which causes complications with our current estimation strategy. First as noted by Baier
and Bergstrand (2004), it is quite difficult to predict EIAs between country-pairs due to the
complexity of such agreements. Second, our estimation strategy requires the construction
of bilateral regressors that have been demeaned (i.e., the BV technique) such that the EIA
variable is no longer binary. With these complications in mind, we estimated the model
suggested by Firpo (2007) with one slight modification to our specification, namely not
demeaning EIAijt. We use a combination of the BV approximate approach for MR terms
and CREs in place of three-way fixed effects in our specification. Since the Firpo (2007)
approach requires EIAijt to be binary, the second stage has re-weighted EIAijt values
without the MR and CRE approximations in the second stage.

The first stage estimation of the Firpo (2007) methodology uses the (logit) EIAijt spec-
ification:

EIAijt = β0 + β1 lnGDPit + β2 lnGDPjt ++β3DISTMRij + β4CONTIGMRij

+β5LANGMRij + β6LEGALMRij + β7RELIGMRij + β8COMCOLMRij

+

T∑
t=1

αtY EARt + β9lnGDP i + β10lnGDP j +

T∑
t=1

+γtY EAR+ ηijt. (41)

We know the QTEs for the unconditional outcomes are likely to differ from the benchmark
conditional QR partial effect estimates. However, because we do not specify fully the deter-
minants of EIAijt in this (first stage) logit specification (cf., Baier and Bergstrand (2004)),
the second-stage QTE estimates may vary considerably from the benchmark conditional
partial effect estimates in Table 6. Below in Table B1, we report the QTEs using only
positive flows.
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Table B1: Quantile Treatment Effect: Positive Trade

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q75 Q80 Q90

1.203∗∗∗ 1.170∗∗∗ 1.194∗∗∗ 1.222∗∗∗ 1.141∗∗∗ 0.974∗∗∗ 0.868∗∗∗ 0.853∗∗∗ 0.832∗∗∗ 0.357∗∗∗

(0.290) (0.266) (0.259) (0.243) (0.199) (0.162) (0.147) (0.142) (0.118) (0.089)

BV Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
CRE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
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17 Appendix C: Monte Carlo Simulations 1, Two-Part DGP
(Potentially Online)

This appendix provides a more detailed discussion of the construction of the two-part sim-
ulation analysis addressed in section 11 (Monte Carlo Simulations 1: Two-Part DGP). The
simulation follows the structural gravity methodology as adapted by Poissonnier (2019) for
panel data. The methodology is motivated by a two-stage economic process, as described
in section 3. First, a country must have at least one firm in country i whose productivity is
sufficiently high that the variable profits from entering the market exceed export fixed costs,
fijt. Trade costs, ϕijt, are determined by variable trade costs, τijt, and fixed trade costs,
fijt. The expression for trade costs is:

ϕijt = τ−θ
ijt f

−[ θ
α−1

−1]
ijt (42)

where θ is the trade elasticity in a standard Melitz model and α is the elasticity of substi-
tution.

We let variable trade costs be determined by:

τ−θ
ijt = exp(− lnDISTij + 0.5EIAijt) ∗ ηijt (43)

and assume the variance of ηijt is defined as in Section 11.1 (Cases 1-4). Note the coefficients
are set to −1 and 0.5 for lnDISTij and EIAijt, respectively. Several other parameters must
also be defined:

• θ = 5

• α = 1 + θ/2.5 = 3

• h = 4, heterogeneity parameter

We first set up the initial (naive) gravity specification that ignores fijt:

Xijt = YitYjt
τ−θ
ijt

ΠitΦjt
= YitYjt

exp(− lnDISTij + 0.5EIAijt) ∗ ηijt
ΠitΦjt

(44)

where the multilateral resistance terms, Πit and Φjt, need to be estimated. We follow
contraction mapping iterative process for panels in Poissonnier (2019) to estimate the matrix
Π̂itΦ̂

′
jt and iterate until convergence. The simulated trade flow for each bilateral pair is

predicted (X̂ijt) by structural gravity, equation (44).
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The next step is to consider the error variance. We need to have parameter σ as a function
of the variance of η. We can rewrite the numerator in the last RHS term in equation (44)
as:

exp(− lnDISTij + 0.5EIAijt + ηijt) = exp(− lnDISTij + 0.5EIAijt + σijt ∗ uijt) (45)

where uijt is a standard Normal pseudo-random term and σijt is set to satisfy the er-
ror variance in Cases 1-4. For example, with Case 2 (Poisson) where σ2

ijt = µ−1
ijt =

exp(− lnDISTij + 0.5EIAijt)
−1 (and setting h = 1):

lnσijt =
√

ln(1 + exp(− lnDISTij + 0.5EIAijt)−1)

lnµijt = −(lnσijt)
2

2

⇒ ηijt = exp(lnµijt + σijt ∗ uijt).

We can then generate simulated trade values (X̃ijt) including the error term:

X̃ijt = X̂ijt ∗ ηijt. (46)

However, this measure of trade was built without fijt. As noted above, trade flows are
determined by a two-stage process that includes: (1) variable profits from exporting to a
particular destination exceed export fixed cost (fijt) and (2) determining how much will be
exported, conditioned upon exporting. In the construction of fijt, we use the percentage of
zeros in the data for bilateral pairs in each year to find the percentile of X̃t that matches
the percentage of zeros (where we exclude intra-national trade). At X̃t and adding an error
term δ:

ln fijt = ln X̃t − lnα+ δijt (47)

where δijt is a standard Normal pseudo-random term and α is the elasticity of substitution.
The trade cost must now include fijt in ϕijt:

ϕijt = τ−θ
ijt f

−[ θ
α−1

−1]
ijt (48)

or
ϕijt = exp

[
− lnDISTij + 0.5EIAijt −

(
θ

α− 1
− 1

)
ln fijt

]
ηijt. (49)

We use the contraction mapping once again to estimate the multilateral resistance terms,
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Πit and Φjt, and simulate trade from the structural gravity equation:

X̌ijt = YitYjt
ϕ̂ijt

Π̂itΦ̂jt

(50)

noting that X̌ijt = 0 if X̌ijt < α ∗ exp(ln fijt) .
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