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Abstract
When the velocity equation of the incompressible 2D
magnetohydrodynamic (MHD) system is inviscid, the
globalwell-posedness and stability problem in thewhole
space ℝ2 case remains an extremely challenging open
problem. Broadman, Lin, and Wu (SIAM J. Math. Anal.
52(5) (2020): 5001-5035) were able to establish the global
well-posedness and stability near a background mag-
netic field when there is damping in one velocity
component. Theirwork exploited the stabilizing effect of
the backgroundmagnetic field. This paper presents new
progress. We are able to prove the global well-posedness
and stability even when themagnetic diffusion is degen-
erate and only in the vertical direction. The velocity
equation is still inviscid and has damping only in the
vertical component. The proof of this new result over-
comes two main difficulties, the potential rapid growth
of the velocity due to the lack of dissipation or horizon-
tal damping and the control of nonlinearity associated
with the magnetic field. By discovering the key hid-
den smoothing effects and incorporating them in the
construction of a two-layered energy function, we are
able to obtain uniform bounds on the solution in the
𝐻3-norm when the initial perturbation is near the back-
groundmagnetic field. In addition, we prove that certain
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Lebesgue and Sobolev norms of the solution approach
zero as time approaches infinity.

KEYWORDS
backgroundmagnetic field, magnetohydrodynamic equation, par-
tial dissipation, stability

1 INTRODUCTION

The incompressiblemagnetohydrodynamic (MHD) system governs themotion of electrically con-
ducting fluids in the presence of a magnetic field such as plasmas, liquid metals, and electrolytes
(see, e.g., Refs. 1, 2). The standard incompressible MHD system can be written as

⎧⎪⎨⎪⎩
𝜕𝑡𝑢 + (𝑢 ⋅ ∇)𝑢 + ∇𝑃 = 𝜈Δ𝑢 + (𝐵 ⋅ ∇)𝐵,

𝜕𝑡𝐵 + (𝑢 ⋅ ∇)𝐵 = 𝜂 Δ𝐵 + (𝐵 ⋅ ∇)𝑢,

∇ ⋅ 𝑢 = ∇ ⋅ 𝐵 = 0,

(1)

where 𝑢, 𝐵, and 𝑃 represent the velocity field of the fluid, the magnetic field, and the scalar pres-
sure, respectively. The parameters 𝜈 ≥ 0 and 𝜂 ≥ 0 denote the kinematic viscosity coefficient and
the magnetic diffusivity, respectively.
In many physical applications, the MHD system with only partial dissipation is relevant. One

especially important partial dissipation case is the MHD system with only magnetic diffusivity
(resistivity). The fluid viscosity can be ignored while the role of resistivity is important in mag-
netic reconnection and magnetic turbulence. Magnetic reconnection refers to the breaking and
reconnecting of oppositely directed magnetic field lines in a plasma and is at the heart of many
spectacular events in our solar system (see, e.g., Ref. 3). Mathematically the 2DMHD systemwith
only magnetic diffusivity is extremely difficult to analyze. In fact, fundamental issues such as
the problem of whether or not solutions of the 2D resistive MHD system can develop finite time
singularities remain open.
Even the small data global well-posedness problem concerning the 2D resistive MHD system

is highly nontrivial. A recent brilliant work of Wei and Zhang4 was able to solve the small data
global well-posedness problemwhen the spatial domain is periodic andwhen the initial magnetic
field has mean zero. When the spatial domain is the whole space ℝ2, the small data global well-
posedness problem remains open.Many efforts have been devoted to the 2D resistiveMHD system
in ℝ2 and the well-posedness problem is now much better understood (see, e.g., Refs. 5–10).
Recently Broadman, Lin, and Wu11 examined a special resistive MHD system with distin-

guishing mathematical properties. Besides the magnetic diffusion, the vertical component of the
velocity involves a damping term. More precisely the MHD system considered in Ref. 11 assumes
the form

⎧⎪⎪⎨⎪⎪⎩

𝜕𝑡𝑢1 + (𝑢 ⋅ ∇)𝑢1 = −𝜕1𝑃 + (𝐵 ⋅ ∇)𝐵1, 𝑥 ∈ ℝ2, 𝑡 > 0,

𝜕𝑡𝑢2 + (𝑢 ⋅ ∇)𝑢2 + 𝛾𝑢2 = −𝜕2𝑃 + (𝐵 ⋅ ∇)𝐵2,

𝜕𝑡𝐵 + 𝑢 ⋅ ∇𝐵 = 𝜂 Δ𝐵 + 𝐵 ⋅ ∇𝑢,

∇ ⋅ 𝑢 = ∇ ⋅ 𝐵 = 0,

(2)
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CHEN et al. 631

where 𝛾 > 0 is the damping coefficient and 𝜂 > 0 themagnetic diffusivity. The velocity equation is
an Euler-like equation and its solution can potentially grow in time. Ref. 11 was able to establish
the global well-posedness and stability near a background magnetic field. The smoothing and
stabilizing effect of the background magnetic field is fully exploited to overcome the potential
growth in the velocity field.
This paper presents new progress. We are able to deal with the situation when the magnetic

diffusion is degenerate and only in the vertical direction, namely,

⎧⎪⎪⎨⎪⎪⎩

𝜕𝑡𝑢1 + (𝑢 ⋅ ∇)𝑢1 = −𝜕1𝑃 + (𝐵 ⋅ ∇)𝐵1, 𝑥 ∈ ℝ2, 𝑡 > 0,

𝜕𝑡𝑢2 + (𝑢 ⋅ ∇)𝑢2 + 𝛾𝑢2 = −𝜕2𝑃 + (𝐵 ⋅ ∇)𝐵2,

𝜕𝑡𝐵 + 𝑢 ⋅ ∇𝐵 = 𝜂 𝜕2
2
𝐵 + 𝐵 ⋅ ∇𝑢,

∇ ⋅ 𝑢 = ∇ ⋅ 𝐵 = 0,

(3)

where the parameters 𝛾 > 0 and 𝜂 > 0. A special steady-state solution of (3) is given by the
background magnetic field

(𝑢(0), 𝐵(0)) = (0, 𝑒2), 𝑒2 ∶= (0, 1). (4)

The perturbation (𝑢, 𝑏) with 𝑏 = 𝐵 − 𝐵(0) satisfies

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝑡𝑢1 + (𝑢 ⋅ ∇)𝑢1 = −𝜕1𝑃 + (𝑏 ⋅ ∇)𝑏1 + 𝜕2𝑏1, 𝑥 ∈ ℝ2, 𝑡 > 0,

𝜕𝑡𝑢2 + (𝑢 ⋅ ∇)𝑢2 + 𝛾𝑢2 = −𝜕2𝑃 + (𝑏 ⋅ ∇)𝑏2 + 𝜕2𝑏2,

𝜕𝑡𝑏 + 𝑢 ⋅ ∇𝑏 = 𝜂 𝜕2
2
𝑏 + 𝑏 ⋅ ∇𝑢 + 𝜕2𝑢,

∇ ⋅ 𝑢 = ∇ ⋅ 𝑏 = 0,

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑏(𝑥, 0) = 𝑏0(𝑥).

(5)

Our goal here is to understand the global existence and stability of (𝑢, 𝑏) governed by (5). To solve
the desired stability problem, we need to overcome twomain difficulties. The first is the potential
growth of the velocity field 𝑢. The velocity equation in (5) is an Euler-like equation and its vorticity
formulation involves the Riesz transform{

𝜕𝑡𝜔 + (𝑢 ⋅ ∇)𝜔 = 𝛾2
1
𝜔 + (𝑏 ⋅ ∇)𝑗 + 𝜕2𝑗, 𝑥 ∈ ℝ2, 𝑡 > 0,

𝑢 = ∇⟂Δ−1𝜔,
(6)

where 𝜔 = ∇ × 𝑢, 𝑗 = ∇ × 𝑏, ∇⟂ = (−𝜕2, 𝜕1), and1 = 𝜕1(−Δ)
−

1

2 represent the Riesz transform.
Here, the fractional Laplacian operator can be defined through the Fourier transform,

ˆ(−Δ)𝛼𝑓(𝜉) = |𝜉|2𝛼𝑓(𝜉). (7)

𝑢 = ∇⟂Δ−1𝜔 represents theBiot–Savart law recovering the velocity𝑢 from the vorticity. The global
well-posedness for the 2D Euler equation{

𝜕𝑡𝜔 + (𝑢 ⋅ ∇)𝜔 = 0, 𝑥 ∈ ℝ2, 𝑡 > 0,

𝑢 = ∇⟂Δ−1𝜔,
(8)
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632 CHEN et al.

has been well-known (see, e.g., Refs. 12, 13). Especially the classical Yudovich theory13 asserted
that there exists a unique global weak solution 𝜔 ∈ 𝐿1(ℝ2) ∩ 𝐿∞(ℝ2) for any initial data 𝜔0 ∈

𝐿1(ℝ2) ∩ 𝐿∞(ℝ2). Because the Riesz transform is not bounded in 𝐿∞, the approach in Ref. 13 no
longer works for the Euler-like equation{

𝜕𝑡𝜔 + (𝑢 ⋅ ∇)𝜔 = 𝛾2
1
𝜔, 𝑥 ∈ ℝ2, 𝑡 > 0,

𝑢 = ∇⟂Δ−1𝜔.
(9)

The global well-posedness of classical solutions to (9) remains a well-known open problem. In
addition, solutions to (9) can potentially grow rather rapidly in time, so small data global well-
posedness and stability on (9) are also unknown. Therefore, solutions to (6) can potentially grow
in time and the stability problem on (6) is possible only if the magnetic field helps.
The second difficulty is due to the lack of horizontal magnetic diffusion. In the whole spaceℝ2,

dissipation in only one direction in general is not enough to control the nonlinearity. We discover
here that the nonlinear terms have special structures, which allow us to bound them suitably via
anisotropic tools.
This paper is able to successfully resolve these two difficulties and establish the desired well-

posedness and stability stated in the following theorem.

Theorem 1. Assume (𝑢0, 𝑏0) ∈ 𝐻3(ℝ2) with ∇ ⋅ 𝑢0 = 0 and ∇ ⋅ 𝑏0 = 0. Then, there exists 𝜀 =

𝜀(𝛾, 𝜂) > 0 such that, if

‖𝑢0‖𝐻3 + ‖𝑏0‖𝐻3 ≤ 𝜀, (10)

then (5) admits a unique global solution (𝑢, 𝑏) satisfying

‖(𝑢(𝑡), 𝑏(𝑡))‖2
𝐻3 + ∫

𝑡

0

(‖𝑢2(𝜏)‖2
𝐻3 + ‖𝜕2𝑢(𝜏)‖2

𝐻2 + ‖𝜕2𝑏(𝜏)‖2
𝐻3

)
𝑑𝜏 ≤ 𝐶𝜀2 (11)

for any 𝑡 > 0 and some uniform constant 𝐶. In addition, for any 2 ≤ 𝑝 < ∞, 2 < 𝑞 < ∞, as 𝑡 → ∞,
we have

‖𝑢2(𝑡)‖𝐿2(ℝ2) → 0, ‖∇𝑢(𝑡)‖𝑊1,𝑝(ℝ2) → 0, ‖𝜕2𝑏(𝑡)‖𝑊1,𝑝(ℝ2) → 0,

‖𝑢(𝑡)‖𝐿𝑞(ℝ2) → 0, ‖(𝑢(𝑡), 𝑏(𝑡))‖𝑊1,∞(ℝ2) → 0. (12)

As aforementioned, without the presence of the magnetic field, the fluid velocity 𝑢 can poten-
tially grow rapidly in time. Mathematically the best upper bound for 𝑢 in the Sobolev space 𝐻3

from direct energy estimates depends on time double exponentially. Therefore, it is absolutely
crucial to explore the stabilizing effect of the magnetic field on 𝑢. The idea here is to unearth good
hidden structures in (5). We are able to convert (5) into a system of wave equations. To do so, we
first apply the projection operator ℙ = 𝐼 − ∇Δ−1∇⋅ to eliminate the pressure to obtain

𝜕𝑡𝑢 = −ℙ(0, 𝑢2)
⊤ + 𝜕2𝑏 − ℙ((𝑏 ⋅ ∇)𝑏 − (𝑢 ⋅ ∇)𝑢). (13)

 14679590, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12551 by U
niversity O

f N
otre D

am
e, W

iley O
nline L

ibrary on [24/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CHEN et al. 633

By the definition of ℙ,

ℙ(0, 𝑢2)
⊤ = (0, 𝑢2)

⊤ − ∇Δ−1∇ ⋅ (0, 𝑢2)
⊤ = Δ−1𝜕2

1
𝑢 = −2

1
𝑢. (14)

Therefore, (5) can be written as

⎧⎪⎨⎪⎩
𝜕𝑡𝑢 = 𝛾2

1
𝑢 + 𝜕2𝑏 + 𝑀1, 𝑥 ∈ ℝ2, 𝑡 > 0,

𝜕𝑡𝑏 = 𝜂 𝜕2
2
𝑏 + 𝜕2𝑢 + 𝑀2,

∇ ⋅ 𝑢 = ∇ ⋅ 𝑏 = 0,

(15)

where𝑀1 and𝑀2 are the nonlinear terms,

𝑀1 = ℙ((𝑏 ⋅ ∇)𝑏 − (𝑢 ⋅ ∇)𝑢), 𝑀2 = (𝑏 ⋅ ∇)𝑢 − (𝑢 ⋅ ∇)𝑏. (16)

Differentiating (15) in time and making suitable substitutions, we obtain

⎧⎪⎨⎪⎩
𝜕tt𝑢 − (𝜂𝜕22 + 𝛾2

1
)𝜕𝑡𝑢 + (𝛾𝜂𝜕222

1
𝑢 − 𝜕22𝑢) = 𝑀3,

𝜕tt𝑏 − (𝜂𝜕22 + 𝛾2
1
)𝜕𝑡𝑏 + (𝛾𝜂𝜕222

1
𝑏 − 𝜕22𝑏) = 𝑀4,

∇ ⋅ 𝑢 = ∇ ⋅ 𝑏 = 0,

(17)

where𝑀3 and𝑀4 represent the nonlinear terms. In comparison with (5), (17) exhibits muchmore
regularization. In particular, the term 𝜕22𝑢 generates some smoothing effect in the 𝑥2-direction. A
more elaborate examination on the wave structure would reveal that the smoothing effect in the
𝑥2-direction is one derivative lower than the standard dissipation. More precisely, when we seek
solutions in (5) in𝐻3, the enhanced dissipation in the𝑥2-direction is of the form ‖𝜕2𝑢‖𝐻2 while the
standard dissipationwould yield ‖𝜕2𝑢‖𝐻3 . This factmotivates us to construct an energy functional
with two parts, one reflecting the existing damping and dissipation of (5) and one incorporating
the enhanced dissipation. To be exact, we define the energy functional 𝐸 by

𝐸(𝑡) = 𝐸1(𝑡) + 𝐸2(𝑡), (18)

where

𝐸1(𝑡) = sup
0≤𝜏≤𝑡

(‖𝑢(𝜏)‖2
𝐻3 + ‖𝑏(𝜏)‖2

𝐻3

)
+ ∫

𝑡

0

(
𝛾‖𝑢2(𝜏)‖2

𝐻3 + 𝜂‖𝜕2𝑏(𝜏)‖2
𝐻3

)
𝑑𝜏,

𝐸2(𝑡) = ∫
𝑡

0

‖𝜕2𝑢(𝜏)‖2
𝐻2 𝑑𝜏. (19)

The inclusion of these two parts in the energy functional helps overcome the first difficulty
described above.
To address the second difficulty (due to the lack of horizontal magnetic diffusion), our

observation is that, in the process of energy estimates, each of the three triple products originated
from the nonlinear terms 𝑏 ⋅ ∇𝑏, 𝑢 ⋅ ∇𝑏, and 𝑏 ⋅ ∇𝑢 contains 𝑢 and its derivatives as a component.
The regularity of 𝑢 due to damping and enhanced dissipation coupled with the vertical magnetic
diffusion allows us to obtain suitable upper bounds. Technically this is not trivial. We distinguish
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634 CHEN et al.

derivatives in different directions and employ various anisotropic tools such as anisotropic
Sobolev inequalities and anisotropic upper bounds for triple products.
Our main efforts are devoted to implementing the ideas and strategies outlined above to estab-

lish the desired global bounds on (𝑢, 𝑏) in 𝐻3. We use the bootstrapping argument. The center
piece is the proof of the following energy inequality, for a constant 𝐶0 and for any 𝑡 > 0,

𝐸(𝑡) ≤ 𝐶0𝐸(0) + 𝐶0𝐸
3

2 (𝑡). (20)

The task of proving (20) is naturally divided into two parts, for positive constants 𝐶1 through 𝐶5

𝐸1(𝑡) ≤ 𝐶1𝐸(0) + 𝐶2𝐸
3

2 (𝑡), (21)

𝐸2(𝑡) ≤ 𝐶3𝐸1(0) + 𝐶4𝐸1(𝑡) + 𝐶5𝐸
3

2 (𝑡). (22)

Once (20) is established, an application of the bootstrap argument (see Ref. 14, p. 21) would imply
the desired global stability. Clearly, the key part of the proof is to establish the estimates (21) and
(22). Here, we implement a very efficient approach to prove (22). Clearly the proof of (22) relies
on the aforementioned vertical smoothing and the interaction between 𝑢 and 𝑏. To obtain (22), it
suffices to bound

∫
𝑡

0

‖𝜕2𝑢(𝜏)‖2
𝐿2𝑑𝜏 and ∫

𝑡

0

‖𝜕2∇𝜔(𝜏)‖2
𝐿2𝑑𝜏. (23)

To bound the first integral, we replace 𝜕2𝑢 by the equation of 𝑏,

𝜕2𝑢 = 𝜕𝑡𝑏 + 𝑢 ⋅ ∇𝑏 − 𝜂 𝜕2
2
𝑏 − 𝑏 ⋅ ∇𝑢 (24)

to write

∫
𝑡

0

‖𝜕2𝑢(𝜏)‖2
𝐿2𝑑𝜏 = ∫

𝑡

0

(𝜕2𝑢, 𝜕𝑡𝑏 + 𝑢 ⋅ ∇𝑏 − 𝜂 𝜕2
2
𝑏 − 𝑏 ⋅ ∇𝑢)𝑑𝜏, (25)

Here, (𝑓, 𝑔) denotes the 𝐿2-inner product of 𝑓 and 𝑔. By further shifting the time derivative and
invoking the velocity equation, we are able to control all the terms suitably. To bound the second
time integral in (23), we invoke the equations of 𝜔 and 𝑗,{

𝜕𝑡𝜔 + (𝑢 ⋅ ∇)𝜔 = 𝛾2
1
𝜔 + (𝑏 ⋅ ∇)𝑗 + 𝜕2𝑗,

𝜕𝑡𝑗 + (𝑢 ⋅ ∇)𝑗 = 𝜂 𝜕2
2
𝑗 + (𝑏 ⋅ ∇)𝜔 + 𝜕2𝜔 + 𝑄,

(26)

where

𝑄 = 2𝜕1𝑏1(𝜕2𝑢1 + 𝜕1𝑢2) − 2𝜕1𝑢1(𝜕2𝑏1 + 𝜕1𝑏2). (27)

In addition, the second equation in (26) is used to convert ‖𝜕2∇𝜔(𝜏)‖2
𝐿2 into the inner product,

‖𝜕2∇𝜔‖2
𝐿2 = (𝜕2∇𝜔, 𝜕𝑡∇𝑗 + ∇(𝑢 ⋅ ∇)𝑗 − 𝜂𝜕2

2
∇𝑗 − ∇(𝑏 ⋅ ∇)𝜔 − ∇𝑄). (28)

The time derivative on∇𝑗 is further shifted to 𝜕2∇𝜔 and the equation of𝜔 is invoked.More details
will be provided in Section 2.
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CHEN et al. 635

We remark that the MHD system has been extensively studied since it was initially derived by
H. Alfvén.15 The well-posedness problem was first examined by the pioneering work of Duvaut
and Lions,16 and of Sermange and Temam.17 There have been substantial recent developments.
Significant progress has been made on the well-posedness and stability problems concerning var-
ious MHD systems such as those partial or fractional dissipation (see, e.g., Refs. 5–7, 9–11, 18–56).
This list of references is by no means exhaustive.
We finally list several basic facts to be used in the subsequent sections,

‖∇𝑢‖𝐿2 = ‖𝜔‖𝐿2 , ‖∇2𝑢‖𝐿2 = ‖∇𝜔‖𝐿2 , ‖∇3𝑢‖𝐿2 = ‖∇2𝜔‖𝐿2 ,

‖∇𝑏‖𝐿2 = ‖𝑗‖𝐿2 , ‖∇2𝑏‖𝐿2 = ‖∇𝑗‖𝐿2 , ‖∇3𝑏‖𝐿2 = ‖∇2𝑗‖𝐿2 . (29)

In addition, we use the norm notation ‖(𝑢, 𝑏)‖2
𝑋 for ‖𝑢‖2

𝑋 + ‖𝑏‖2
𝑋 .

The rest of the paper is divided into two sections. Section 2 proves the global well-posedness
part of Theorem 1. Most of the efforts are devoted to the proof of (30), which is naturally divided
into two parts, the bound (21) for 𝐸1(𝑡) and the bound (22) for 𝐸2(𝑡). Section 3 focuses on proving
the large time asymptotic behavior of the global solution.

2 PROOF OF THE GLOBALWELL-POSEDNESS

This section proves the global well-posedness part of Theorem 1. The procedure of proving the
global well-posedness is to first construct a sequence of global and smooth approximate solu-
tions, and then establish the global bounds that are uniform for the sequence, and finally extract
a convergent subsequence with its limit solving (5). Because the construction of the approximat-
ing sequence and the limiting process are more or less standard, the task is reduced to the proof
of the global bounds on solutions of (5). We only provide the proof for the global bounds.
We use the bootstrapping argument. The center piece is the estimate

𝐸(𝑡) ≤ 𝐶0𝐸(0) + 𝐶0𝐸
3

2 (𝑡). (30)

The proof of (30) is naturally divided into two parts stated in the following two propositions.

Proposition 1. Suppose that (𝑢, 𝑏) is the solution of the system (5). Then it holds,

𝐸1(𝑡) ≤ 𝐶1𝐸(0) + 𝐶2𝐸
3

2 (𝑡) (31)

for two positive constants 𝐶1, 𝐶2.

Proposition 2. Let (𝑢, 𝑏) be the solution of the system (5). Then there exist constants 𝐶3, 𝐶4, 𝐶5 > 0

such that

𝐸2(𝑡) ≤ 𝐶3𝐸1(0) + 𝐶4𝐸1(𝑡) + 𝐶5𝐸
3

2 (𝑡). (32)

The rest of this section is organized as follows. We first assume (30) and prove the
well-posedness part of Theorem 1. We then prove Proposition 1 and Proposition 2.
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636 CHEN et al.

Proof of the global well-posedness part in Theorem 1. The bootstrapping argument starts with an
ansatz that 𝐸(𝑡) is bounded by

𝐸(𝑡) ≤ 1

4𝐶2
0

. (33)

Next we show that 𝐸(𝑡) actually admits a smaller bound,

𝐸(𝑡) ≤ 1

8𝐶2
0

, (34)

provided that the initial data are sufficiently small. Then, the bootstrap argument asserts that (34)
holds for any time 𝑡 > 0. To prove (34), we use (30). Inserting (33) in (30) yields

𝐸(𝑡) ≤ 𝐶0𝐸(0) +
1

2
𝐸(𝑡) or 𝐸(𝑡) ≤ 2𝐶0𝐸(0). (35)

If we choose 𝜀 > 0 sufficiently small such that

𝜀 ≤
√

1

16𝐶3
0

, (36)

then it follows from (35) and (10) that

𝐸(𝑡) ≤ 1

8𝐶2
0

, (37)

which is (34). This proves the global well-posedness part in Theorem 1. ■

The rest of this section proves Propositions 1 and 2. We first recall a powerful tool for the esti-
mates of the nonlinear terms. It provides an anisotropic upper bound for a typical triple product.
The proof of this lemma can be found in Ref. 5.

Lemma 1. Assume 𝑓, 𝑔, ℎ, 𝜕1𝑔, 𝜕2ℎ ∈ 𝐿2(ℝ2). Then, for a constant 𝐶 > 0,

∬ 𝑓𝑔ℎ 𝑑𝑥1 𝑑𝑥2 ≤ 𝐶‖𝑓‖𝐿2(ℝ2)‖𝑔‖ 1

2

𝐿2(ℝ2)
‖𝜕1𝑔‖ 1

2

𝐿2(ℝ2)
‖ℎ‖ 1

2

𝐿2(ℝ2)
‖𝜕2ℎ‖ 1

2

𝐿2(ℝ2)
. (38)

Proof of Proposition 1. Due to the equivalence

‖𝑣‖2
𝐻3 ∼ ‖𝑣‖2

𝐿2 + ‖∇3𝑣‖2
𝐿2 , (39)

we only need to bound ‖(𝑢, 𝑏)‖𝐿2 and ‖(Δ𝜔, Δ𝑗)‖𝐿2 . Taking the 𝐿2-inner product of the system (5)
with (𝑢, 𝑏), integrating by parts and using the divergence free condition, we easily get

‖(𝑢, 𝑏)(𝑡)‖2
𝐿2 + 2∫

𝑡

0

(𝛾‖𝑢2(𝜏)‖2
𝐿2 + 𝜂‖𝜕2𝑏(𝜏)‖2

𝐿2)𝑑𝜏 = ‖𝑢0‖2
𝐿2 + ‖𝑏0‖2

𝐿2 . (40)
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CHEN et al. 637

Applying Δ to the system (26) and taking the 𝐿2-inner product of the resulting equations with
(Δ𝜔, Δ𝑗) yield

1

2

𝑑

𝑑𝑡
‖(Δ𝜔, Δ𝑗)‖2

𝐿2 + 𝛾‖𝜕1∇𝜔‖2
𝐿2 + 𝜂‖𝜕2Δ𝑗‖2

𝐿2

= − ∫ Δ(𝑢 ⋅ ∇)𝜔 ⋅ Δ𝜔 𝑑𝑥 + ∫ Δ(𝑏 ⋅ ∇)𝑗 ⋅ Δ𝜔 𝑑𝑥 − ∫ Δ(𝑢 ⋅ ∇)𝑗 ⋅ Δ𝑗 𝑑𝑥

+ ∫ Δ(𝑏 ⋅ ∇)𝜔 ⋅ Δ𝑗 𝑑𝑥 + ∫ Δ𝑄 ⋅ Δ𝑗 𝑑𝑥 ∶= 𝐼1 + 𝐼2 + ⋯ + 𝐼5, (41)

where we have used ∫ Δ2
1
𝜔 Δ𝜔 𝑑𝑥 = −‖Δ1𝜔‖2

𝐿2 = −‖𝜕1∇𝜔‖2
𝐿2 . Applying Hölder’s inequality

and Sobolev’s inequality, we have

𝐼1 = −∫ (Δ𝑢 ⋅ ∇𝜔) ⋅ Δ𝜔 𝑑𝑥 − 2∫ ∇𝑢 ⋅ ∇(∇𝜔) ⋅ Δ𝜔 𝑑𝑥

≤ ‖Δ𝑢‖𝐿4‖∇𝜔‖𝐿4‖Δ𝜔‖𝐿2 + 2‖∇𝑢‖𝐿∞‖∇2𝜔‖2
𝐿2

≤ 𝐶‖Δ𝑢‖𝐻1‖∇𝜔‖𝐻1‖Δ𝜔‖𝐿2 + 𝐶‖∇𝑢‖𝐻2‖∇2𝜔‖2
𝐿2

≤ 𝐶‖∇𝑢‖𝐻2‖∇𝜔‖2
𝐻1 . (42)

We bound 𝐼2 and 𝐼4 together. By means of the integration by parts and the divergence-free
condition, the terms involving three derivatives in 𝐼2 and 𝐼4 are canceled.

𝐼2 + 𝐼4 =∫ (Δ𝑏 ⋅ ∇𝑗) ⋅ Δ𝜔 𝑑𝑥 + 2∫ ∇𝑏 ⋅ ∇(∇𝑗) ⋅ Δ𝜔 𝑑𝑥

+ ∫ (Δ𝑏 ⋅ ∇𝜔) ⋅ Δ𝑗 𝑑𝑥 + 2∫ ∇𝑏 ⋅ ∇(∇𝜔) ⋅ Δ𝑗 𝑑𝑥

∶=𝐼21 + 𝐼22 + 𝐼23 + 𝐼24. (43)

It follows from Hölder’s inequality and Sobolev’s inequality that

𝐼21 = ∫ 𝜕2
1
𝑏1 𝜕1𝑗 𝜕2

1
𝜔 𝑑𝑥 + ∫ 𝜕2

1
𝑏2 𝜕2𝑗 𝜕2

1
𝜔 𝑑𝑥 + ∫ 𝜕2

2
𝑏 ⋅ ∇𝑗 𝜕2

2
𝜔 𝑑𝑥

≤ ‖𝜕2
1
𝑏2‖𝐿4‖𝜕2𝑗‖𝐿4‖𝜕2

1
𝜔‖𝐿2 + 𝐶‖𝜕2∇𝑏‖𝐿4‖∇𝑗‖𝐿4(‖𝜕2

1
𝜔‖𝐿2 + ‖𝜕2

2
𝜔‖𝐿2)

≤ 𝐶‖∇𝑗‖𝐻1(‖Δ𝜔‖2
𝐿2 + ‖𝜕2𝑗‖2

𝐻1) (44)

and

𝐼22 = 2∫ 𝜕1𝑏1 𝜕2
1
𝑗 𝜕2

1
𝜔 𝑑𝑥 + 2∫ 𝜕1𝑏2 𝜕1𝜕2𝑗 𝜕2

1
𝜔 𝑑𝑥 + 2∫ 𝜕2𝑏 ⋅ ∇(𝜕2𝑗) 𝜕

2
2
𝜔 𝑑𝑥

≤ 𝐶‖𝜕2𝑏‖𝐻2‖𝜕2
1
𝑗‖𝐿2‖𝜕2

1
𝜔‖𝐿2 + 𝐶‖∇𝑏‖𝐻2‖∇𝜕2𝑗‖𝐿2(‖𝜕2

1
𝜔‖𝐿2 + ‖𝜕2

2
𝜔‖𝐿2)

≤ 𝐶‖𝑗‖𝐻2(‖Δ𝜔‖2
𝐿2 + ‖𝜕2𝑏‖2

𝐻2). (45)
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638 CHEN et al.

For 𝐼23, we first split it into three parts and integrate by parts in the second part to get

𝐼23 = ∫ 𝜕2
1
𝑏1 𝜕1𝜔 𝜕2

1
𝑗 𝑑𝑥 − ∫ 𝜔 (𝜕2

1
𝜕2𝑏2 𝜕2

1
𝑗 + 𝜕2

1
𝑏2 𝜕2

1
𝜕2𝑗) 𝑑𝑥 + ∫ 𝜕2

2
𝑏 ⋅ ∇𝜔 𝜕2

2
𝑗 𝑑𝑥

≤ 𝐶‖𝜕2∇𝑏‖𝐿4‖∇𝜔‖𝐿4(‖𝜕2
1
𝑗‖𝐿2 + ‖𝜕2

2
𝑗‖𝐿2)

+ ‖𝑤‖𝐿∞

(‖𝜕2
1
𝜕2𝑏2‖𝐿2‖𝜕2

1
𝑗‖𝐿2 + ‖𝜕2

1
𝑏2‖𝐿2‖𝜕2

1
𝜕2𝑗‖𝐿2

)
≤ 𝐶‖∇𝑗‖𝐻1(‖𝜔‖2

𝐻2 + ‖𝜕2𝑗‖2
𝐻2). (46)

Similarly,

𝐼24 =2∫ 𝜕1𝑏1𝜕
2
1
𝜔 𝜕2

1
𝑗 𝑑𝑥 − 2∫ 𝜕1𝜔 (𝜕1𝜕2𝑏2 𝜕2

1
𝑗 + 𝜕1𝑏2 𝜕2

1
𝜕2𝑗) 𝑑𝑥

+ 2∫ 𝜕2𝑏 ⋅ ∇(𝜕2𝜔) 𝜕2
2
𝑗 𝑑𝑥

≤𝐶‖𝜕2𝑏‖𝐻2‖∇2𝜔‖𝐿2‖∇2𝑗‖𝐿2 + 𝐶‖𝜕1𝜔‖𝐿2

(‖𝜕1𝜕2𝑏‖𝐻2‖𝜕2
1
𝑗‖𝐿2 + ‖𝜕1𝑏‖𝐻2‖𝜕2

1
𝜕2𝑗‖𝐿2

)
≤𝐶‖𝑗‖𝐻2(‖∇𝜔‖2

𝐻1 + ‖𝜕2𝑏‖2
𝐻3). (47)

Consequently,

𝐼2 + 𝐼4 ≤ 𝐶‖𝑗‖𝐻2(‖𝜔‖2
𝐻2 + ‖𝜕2𝑏‖2

𝐻3). (48)

We turn back to estimate 𝐼3. First,

𝐼3 = −∫ (Δ𝑢 ⋅ ∇𝑗) ⋅ Δ𝑗 𝑑𝑥 − 2∫ ∇𝑢 ⋅ ∇(∇𝑗) ⋅ Δ𝑗 𝑑𝑥. (49)

For the first part of 𝐼3, by the incompressible condition 𝜕1𝑢1 = −𝜕2𝑢2 and the integration by parts,
we further split it in three parts to get

−∫ (Δ𝑢 ⋅ ∇𝑗) ⋅ Δ𝑗 𝑑𝑥 = − ∫ 𝜕2
1
𝑢1𝜕1𝑗 𝜕2

1
𝑗 𝑑𝑥 − ∫ 𝜕2

1
𝑢2 𝜕2𝑗 𝜕2

1
𝑗 𝑑𝑥 − ∫ 𝜕2

2
𝑢 ⋅ ∇𝑗 𝜕2

2
𝑗 𝑑𝑥

=∫ 𝜕1𝜕2𝑢2𝜕1𝑗 𝜕2
1
𝑗 𝑑𝑥 − ∫ 𝜕2

1
𝑢2 𝜕2𝑗 𝜕2

1
𝑗 𝑑𝑥 − ∫ 𝜕2

2
𝑢 ⋅ ∇𝑗 𝜕2

2
𝑗 𝑑𝑥

= − ∫ 𝜕1𝑢2(𝜕1𝜕2𝑗 𝜕2
1
𝑗 + 𝜕1𝑗 𝜕2

1
𝜕2𝑗) 𝑑𝑥 − ∫ 𝜕2

1
𝑢2 𝜕2𝑗 𝜕2

1
𝑗 𝑑𝑥

− ∫ 𝜕2
2
𝑢 ⋅ ∇𝑗 𝜕2

2
𝑗 𝑑𝑥. (50)

Then, Hölder’s inequality and Sobolev’s inequality yield

−∫ (Δ𝑢 ⋅ ∇𝑗) ⋅ Δ𝑗 𝑑𝑥 ≤‖𝜕1𝑢2‖𝐿∞(‖𝜕1𝜕2𝑗‖𝐿2‖𝜕2
1
𝑗‖𝐿2 + ‖𝜕1𝑗‖𝐿2‖𝜕2

1
𝜕2𝑗‖𝐿2)

+ ‖𝜕2
1
𝑢‖𝐿4‖𝜕2𝑗‖𝐿4‖𝜕2

1
𝑗‖𝐿2 + ‖𝜕2

2
𝑢‖𝐿4‖∇𝑗‖𝐿2‖𝜕2

2
𝑗‖𝐿4

≤𝐶‖∇𝑗‖𝐻1(‖∇𝑢‖2
𝐻2 + ‖𝜕2𝑗‖2

𝐻2). (51)
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CHEN et al. 639

Similarly, we have

−2∫ ∇𝑢 ⋅ ∇(∇𝑗) ⋅ Δ𝑗 𝑑𝑥 = −4∫ 𝑢2 𝜕2
1
𝑗 𝜕2

1
𝜕2𝑗 − 2∫ 𝜕1𝑢2𝜕1𝜕2𝑗 𝜕2

1
𝑗 𝑑𝑥

− 2∫ 𝜕2𝑢 ⋅ ∇𝜕2𝑗 𝜕2
2
𝑗 𝑑𝑥

≤ 𝐶‖𝑢2‖𝐻2‖𝜕2
1
𝑗‖𝐿2‖𝜕2

1
𝜕2𝑗‖𝐿2 + 𝐶‖∇𝑢‖𝐻1‖∇𝜕2𝑗‖𝐻1‖∇2𝑗‖𝐿2

≤ 𝐶‖∇2𝑗‖𝐿2(‖𝑢2‖2
𝐻2 + ‖∇𝑢‖2

𝐻1 + ‖𝜕2𝑗‖2
𝐻2). (52)

Thus, we obtain

𝐼3 ≤ 𝐶‖∇𝑗‖𝐻1(‖𝑢2‖2
𝐻2 + ‖∇𝑢‖2

𝐻2 + ‖𝜕2𝑗‖2
𝐻2). (53)

Now we deal with the last term 𝐼5. According to the definition of 𝑄, we divide it into two parts

𝐼5 = 2∫ Δ(𝜕1𝑏1(𝜕2𝑢1 + 𝜕1𝑢2)) ⋅ Δ𝑗 𝑑𝑥 − 2∫ Δ(𝜕1𝑢1(𝜕2𝑏1 + 𝜕1𝑏2)) ⋅ Δ𝑗 𝑑𝑥 ∶= 𝐼51 + 𝐼52. (54)

By Hölder’s and Sobolev’s inequalities,

𝐼51 ≤ 2∫ |Δ𝜕2𝑏2| |∇𝑢| |Δ𝑗|𝑑𝑥 + 4∫ |∇𝜕2𝑏2| |∇2𝑢| |Δ𝑗|𝑑𝑥 + 2∫ |𝜕2𝑏2| |∇3𝑢| |Δ𝑗|𝑑𝑥

≤ 𝐶
( ‖Δ𝜕2𝑏2‖𝐿2‖∇𝑢‖𝐻2 + ‖∇𝜕2𝑏2‖𝐻1‖∇2𝑢‖𝐻1 + ‖𝜕2𝑏2‖𝐻2‖∇3𝑢‖𝐿2

) ‖Δ𝑗‖𝐿2

≤ 𝐶‖Δ𝑗‖𝐿2(‖𝜕2𝑏‖2
𝐻2 + ‖∇𝑢‖2

𝐻2). (55)

For 𝐼52, we first split it into three parts and then bound it one by one.

𝐼52 = −2∫ Δ𝜕1𝑢1(𝜕2𝑏1 + 𝜕1𝑏2) ⋅ Δ𝑗 𝑑𝑥 − 4∫ ∇𝜕1𝑢1 ⋅ (∇𝜕2𝑏1 + ∇𝜕1𝑏2) ⋅ Δ𝑗 𝑑𝑥

− 2∫ 𝜕1𝑢1(Δ𝜕2𝑏1 + Δ𝜕1𝑏2) ⋅ Δ𝑗 𝑑𝑥

=∶ 𝐼52,1 + 𝐼52,2 + 𝐼52,3. (56)

By the divergence-free condition for 𝑢, integration by parts, Hölder’s inequality, and Sobolev’s
inequality, we derive

𝐼52,1 = −2∫ Δ𝑢2

[
(𝜕2

2
𝑏1 + 𝜕1𝜕2𝑏2) ⋅ Δ𝑗 + (𝜕2𝑏1 + 𝜕1𝑏2) ⋅ Δ𝜕2𝑗

]
𝑑𝑥

≤ 𝐶‖Δ𝑢2‖𝐿2(‖𝜕2∇𝑏‖𝐻2‖Δ𝑗‖𝐿2 + ‖∇𝑏‖𝐻2‖Δ𝜕2𝑗‖𝐿2)

≤ 𝐶‖𝑗‖𝐻2(‖Δ𝑢2‖2
𝐿2 + ‖𝜕2𝑗‖2

𝐻2). (57)
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640 CHEN et al.

Similarly, 𝐼52,2 and 𝐼52,3 can be bounded by

𝐼52,2 = −4∫ ∇𝑢2 ⋅
[
(∇𝜕2

2
𝑏1 + ∇𝜕1𝜕2𝑏2) ⋅ Δ𝑗 + (∇𝜕2𝑏1 + ∇𝜕1𝑏2) ⋅ Δ𝜕2𝑗

]
𝑑𝑥

≤ 𝐶‖𝑗‖𝐻2(‖∇𝑢2‖2
𝐻2 + ‖𝜕2𝑗‖2

𝐻2),

𝐼52,3 = −2∫ 𝑢2

[
(Δ𝜕2

2
𝑏1 + Δ𝜕1𝜕2𝑏2) ⋅ Δ𝑗 + (Δ𝜕2𝑏1 + Δ𝜕1𝑏2) ⋅ Δ𝜕2𝑗

]
𝑑𝑥

≤ 𝐶‖𝑗‖𝐻2(‖𝑢2‖2
𝐻2 + ‖𝜕2𝑗‖2

𝐻2). (58)

Collecting all the estimates above yields

𝐼5 ≤ 𝐶‖𝑗‖𝐻2(‖𝑢2‖2
𝐻3 + ‖∇𝑢‖2

𝐻2 + ‖𝜕2𝑗‖2
𝐻2). (59)

Inserting (42), (48), (53), and (59) in (41), we obtain

1

2

𝑑

𝑑𝑡
‖(Δ𝜔, Δ𝑗)(𝑡)‖2

𝐿2 + 𝛾‖𝜕1∇𝜔‖2
𝐿2 + 𝜂‖𝜕2Δ𝑗‖2

𝐿2

≤ 𝐶(‖𝜔‖𝐻2 + ‖𝑗‖𝐻2)(‖𝑢2‖2
𝐻3 + ‖∇𝑢‖2

𝐻2 + ‖𝜕2𝑏‖2
𝐻3). (60)

Then, integrating it on [0, 𝑡], we derive

‖(Δ𝜔, Δ𝑗)‖2
𝐿2 + 2∫

𝑡

0

(𝛾‖𝜕1∇𝜔(𝜏)‖2
𝐿2 + 𝜂‖𝜕2Δ𝑗(𝜏)‖2

𝐿2) 𝑑𝜏

≤ (‖Δ𝜔0‖2
𝐿2 + ‖Δ𝑗0‖2

𝐿2) + 𝐶𝐸
3

2 (𝑡). (61)

Recalling (40), we conclude

‖(𝑢, 𝑏)‖2
𝐻3 + ∫

𝑡

0

(𝛾‖𝑢2(𝜏)‖2
𝐻3 + 𝜂‖𝜕2𝑏(𝜏)‖2

𝐻3) 𝑑𝜏 ≤ 𝐶𝐸(0) + 𝐶𝐸
3

2 (𝑡), (62)

where we have used ‖𝜕1∇𝜔‖2
𝐿2 = ‖∇3𝑢2‖2

𝐿2 . This ends the proof of Proposition 1. ■

Next we prove Proposition 2, which provides the estimate on ∫ 𝑡

0
‖𝜕2𝑢‖2

𝐻2𝑑𝜏.

Proof of Proposition 2. Because the norm ‖𝑣‖2
𝐻2 is equivalent to ‖𝑣‖2

𝐿2 + ‖Δ𝑣‖2
𝐿2 , it is sufficient to

bound

∫
𝑡

0

‖𝜕2𝑢(𝜏)‖2
𝐿2𝑑𝜏 and ∫

𝑡

0

‖𝜕2∇𝜔(𝜏)‖2
𝐿2𝑑𝜏, (63)

where we have used the fact ‖𝜕2∇𝜔‖𝐿2 = ‖𝜕2Δ𝑢‖𝐿2 . By the equations in (5), we have

𝑑

𝑑𝑡
(𝜕2𝑢, 𝑏) = (𝜕2𝑢𝑡, 𝑏) + (𝜕2𝑢, 𝑏𝑡)

= (𝜕2(−𝑢 ⋅ ∇𝑢 − (0, 𝛾𝑢2) − ∇𝑃 + 𝑏 ⋅ ∇𝑏 + 𝜕2𝑏), 𝑏)

+
(
𝜕2𝑢, −𝑢 ⋅ ∇𝑏 + 𝜂 𝜕2

2
𝑏 + 𝑏 ⋅ ∇𝑢 + 𝜕2𝑢

)
, (64)
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CHEN et al. 641

where (𝐴, 𝐵) stands for the 𝐿2-inner product of 𝐴 and 𝐵. Thereby, we infer

−
𝑑

𝑑𝑡
(𝜕2𝑢, 𝑏) + ‖𝜕2𝑢‖2

𝐿2 − ‖𝜕2𝑏‖2
𝐿2

=∫ (𝜕2(𝑢 ⋅ ∇𝑢) ⋅ 𝑏 − 𝜕2𝑢 ⋅ (𝑏 ⋅ ∇𝑢)) 𝑑𝑥

+ ∫ (−𝜕2(𝑏 ⋅ ∇𝑏) ⋅ 𝑏 + 𝜕2𝑢 ⋅ (𝑢 ⋅ ∇𝑏)) 𝑑𝑥

+ ∫ (𝛾𝜕2𝑢2 𝑏2 − 𝜂 𝜕2𝑢 ⋅ 𝜕2
2
𝑏) 𝑑𝑥. (65)

By integration by parts, Hölder’s inequality and Sobolev’s inequality, we obtain

∫ (𝜕2(𝑢 ⋅ ∇𝑢) ⋅ 𝑏 − 𝜕2𝑢 ⋅ (𝑏 ⋅ ∇𝑢)) 𝑑𝑥

= −∫ ((𝑢 ⋅ ∇𝑢) ⋅ 𝜕2𝑏 + 𝜕2𝑢 ⋅ (𝑏 ⋅ ∇𝑢)) 𝑑𝑥

≤ ‖𝑢‖𝐿∞‖∇𝑢‖𝐿2‖𝜕2𝑏‖𝐿2 + ‖𝑏‖𝐿∞‖∇𝑢‖2
𝐿2

≤ 𝐶(‖𝑢‖𝐻2 + ‖𝑏‖𝐻2)(‖∇𝑢‖2
𝐿2 + ‖𝜕2𝑏‖2

𝐿2). (66)

The second part is first divided into three terms. Then, Lemma 1 togetherwith Sobolev’s inequality
leads to

∫ ((−𝜕2(𝑏 ⋅ ∇𝑏) ⋅ 𝑏 + 𝜕2𝑢 ⋅ (𝑢 ⋅ ∇𝑏)) 𝑑𝑥

=∫ (𝑏1𝜕1𝑏 ⋅ 𝜕2𝑏 + 𝑏2𝜕2𝑏 ⋅ 𝜕2𝑏 + 𝜕2𝑢 ⋅ (𝑢 ⋅ ∇𝑏)) 𝑑𝑥

≤𝐶‖𝑏1‖ 1

2

𝐿2‖𝜕1𝑏1‖ 1

2

𝐿2‖𝜕1𝑏‖ 1

2

𝐿2‖𝜕1𝜕2𝑏‖ 1

2

𝐿2‖𝜕2𝑏‖𝐿2 + 𝐶‖𝑏‖𝐻2‖𝜕2𝑏‖2
𝐿2

+ 𝐶‖𝑢‖ 1

2

𝐿2‖𝜕1𝑢‖ 1

2

𝐿2‖∇𝑏‖ 1

2

𝐿2‖𝜕2∇𝑏‖ 1

2

𝐿2‖𝜕2𝑢‖𝐿2

≤𝐶(‖𝑢‖𝐿2 + ‖𝑏‖𝐻2)(‖∇𝑢‖2
𝐿2 + ‖𝜕2𝑏‖2

𝐻1). (67)

Clearly, for the last part, we have

∫
(
𝛾𝜕2𝑢2 𝑏2 − 𝜂𝜕2𝑢 ⋅ 𝜕2

2
𝑏
)
𝑑𝑥 = −∫

(
𝛾𝑢2 𝜕2𝑏2 + 𝜂𝜕2𝑢 ⋅ 𝜕2

2
𝑏
)
𝑑𝑥

≤ 𝛾

2
‖𝑢2‖2

𝐿2 +
𝛾

2
‖𝜕2𝑏2‖2

𝐿2 +
𝜂2

2
‖𝜕2

2
𝑏‖2

𝐿2 +
1

2
‖𝜕2𝑢‖2

𝐿2 . (68)
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642 CHEN et al.

Combining all the estimates above and integrating in time, we obtain

∫
𝑡

0

‖𝜕2𝑢(𝜏)‖2
𝐿2𝑑𝜏 ≤(‖𝜕2𝑢‖2

𝐿2 + ‖𝑏‖2
𝐿2 + ‖𝜕2𝑢0‖2

𝐿2 + ‖𝑏0‖2
𝐿2

)
+ 𝐶 sup

0≤𝜏≤𝑡
(‖𝑢(𝜏)‖𝐻2 + ‖𝑏(𝜏)‖𝐻2)∫

𝑡

0

(‖∇𝑢(𝜏)‖2
𝐿2 + ‖𝜕2𝑏(𝜏)‖2

𝐻1)𝑑𝜏

+ ∫
𝑡

0

(
𝛾‖𝑢2(𝜏)‖2

𝐿2 + (𝛾 + 2)‖𝜕2𝑏(𝜏)‖2
𝐿2 + 𝜂2‖𝜕2

2
𝑏(𝜏)‖2

𝐿2

)
𝑑𝜏

≤𝐸1(0) + 𝐶𝐸1(𝑡) + 𝐶𝐸
3

2 (𝑡), (69)

where we have used the bound

∫
𝑡

0

𝑑

𝑑𝜏
(𝜕2𝑢, 𝑏)𝑑𝜏 ≤ 1

2

(‖𝜕2𝑢‖2
𝐿2 + ‖𝑏‖2

𝐿2

)
+

1

2

(‖𝜕2𝑢0‖2
𝐿2 + ‖𝑏0‖2

𝐿2

)
. (70)

Next, we present the estimate for ∫ 𝑡

0
‖𝜕2∇𝜔(𝜏)‖2

𝐿2𝑑𝜏 . We will make use of Equation (26) of
(𝑤, 𝑗) . By (26), a similar argument to (64) leads to

−
𝑑

𝑑𝑡
(𝜕2∇𝜔,∇𝑗) + ‖𝜕2∇𝜔‖2

𝐿2 − ‖𝜕2∇𝑗‖2
𝐿2

=∫ 𝜕2∇(𝑢 ⋅ ∇𝜔) ⋅ ∇𝑗 𝑑𝑥 − ∫ 𝜕2∇(𝑏 ⋅ ∇𝑗) ⋅ ∇𝑗 𝑑𝑥

+ ∫ 𝜕2∇𝜔 ⋅ ∇(𝑢 ⋅ ∇𝑗) 𝑑𝑥 − ∫ 𝜕2∇𝜔 ⋅ ∇(𝑏 ⋅ ∇𝜔) 𝑑𝑥

− ∫ ∇𝑄 ⋅ 𝜕2∇𝜔 𝑑𝑥 − 𝛾 ∫ 𝜕2∇2
1
𝜔 ⋅ ∇𝑗 𝑑𝑥 − 𝜂 ∫ 𝜕2∇𝜔 ⋅ 𝜕2

2
∇𝑗 𝑑𝑥

=𝐽1 + 𝐽2 + ⋯ + 𝐽7. (71)

Similarly to (66), 𝐽1 and 𝐽4 can be bounded as

𝐽1 + 𝐽4 = ∫ (𝑢 ⋅ ∇𝜔) 𝜕2Δ𝑗 𝑑𝑥 − ∫ 𝜕2∇𝜔 ⋅ (∇𝑏 ⋅ ∇𝜔 + (𝑏 ⋅ ∇)∇𝜔) 𝑑𝑥

≤ 𝐶‖𝑢‖𝐻2‖∇𝜔‖𝐿2‖𝜕2Δ𝑗‖𝐿2 + 𝐶
(‖∇𝑏‖𝐻2‖∇𝜔‖𝐿2 + ‖𝑏‖𝐻2‖∇2𝜔‖𝐿2

)‖𝜕2∇𝜔‖𝐿2

≤ 𝐶(‖𝑢‖𝐻2 + ‖𝑏‖𝐻3)(‖∇𝜔‖2
𝐻1 + ‖𝜕2Δ𝑗‖2

𝐿2). (72)

For 𝐽2 , using the integration by parts and applying (38) yield

𝐽2 = − ∫ (𝑏1𝜕1𝑗 + 𝑏2𝜕2𝑗) 𝜕2Δ𝑗 𝑑𝑥

≤𝐶‖𝑏1‖ 1

2

𝐿2‖𝜕1𝑏1‖ 1

2

𝐿2‖𝜕1𝑗‖ 1

2

𝐿2‖𝜕1𝜕2𝑗‖ 1

2

𝐿2‖𝜕2Δ𝑗‖𝐿2 + 𝐶‖𝑏‖𝐻2‖𝜕2𝑗‖𝐿2‖𝜕2Δ𝑗‖𝐿2

≤𝐶‖𝑏‖𝐻2‖𝜕2𝑏‖2
𝐻3 . (73)
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CHEN et al. 643

Similarly, by (38) and Sobolev’s inequality ‖𝑣‖𝐿4(ℝ2) ≤ 𝐶‖𝑣‖𝐻1(ℝ2)

𝐽3 =∫ (∇𝑢 ⋅ ∇𝑗 + 𝑢 ⋅ ∇(∇𝑗)) ⋅ 𝜕2∇𝜔 𝑑𝑥

≤𝐶‖∇𝑢‖𝐻1‖∇𝑗‖𝐻1‖𝜕2∇𝜔‖𝐿2 + 𝐶‖𝑢‖ 1

2

𝐿2‖𝜕1𝑢‖ 1

2

𝐿2‖∇2𝑗‖ 1

2

𝐿2‖𝜕2∇
2𝑗‖ 1

2

𝐿2‖𝜕2∇𝜔‖𝐿2

≤𝐶(‖𝑢‖𝐿2 + ‖∇𝑗‖𝐻1)(‖∇𝑢‖2
𝐻2 + ‖𝜕2∇

2𝑗‖2
𝐿2). (74)

Due to the good form of 𝑄 , the bound for 𝐽5 is simple.

𝐽5 = − 2∫ [𝜕1𝑏1(∇𝜕2𝑢1 + ∇𝜕1𝑢2) − 𝜕1𝑢1(∇𝜕2𝑏1 + ∇𝜕1𝑏2)] ⋅ 𝜕2∇𝜔 𝑑𝑥

− 2∫ [∇𝜕1𝑏1(𝜕2𝑢1 + 𝜕1𝑢2) − ∇𝜕1𝑢1(𝜕2𝑏1 + 𝜕1𝑏2)] ⋅ 𝜕2∇𝜔 𝑑𝑥

≤𝐶
(‖∇𝑏‖𝐿∞‖∇2𝑢‖𝐿2 + ‖∇𝑢‖𝐿∞‖∇2𝑏‖𝐿2

)‖𝜕2∇𝜔‖𝐿2

≤𝐶‖𝑏‖𝐻3‖∇𝑢‖2
𝐻2 . (75)

The linear integrals can be directly estimated as

𝐽6 + 𝐽7 ≤ 𝛾

2
(‖∇2𝑢2‖2

𝐿2 + ‖𝜕2∇𝑗‖2
𝐿2) +

1

2
‖𝜕2∇𝜔‖2

𝐿2 +
𝜂2

2
‖𝜕2

2
∇𝑗‖2

𝐿2 , (76)

where we have used ‖∇2
1
𝜔‖𝐿2 ≤ ‖𝜕1𝜔‖𝐿2 = ‖∇2𝑢2‖𝐿2 .

Inserting (72), (73), (74), (75), (76) in (77), integrating it on [0, 𝑡], we derive

∫
𝑡

0

‖𝜕2∇𝜔(𝜏)‖2
𝐿2 𝑑𝜏 ≤ ‖(𝜕2∇𝜔,∇𝑗)‖2

𝐿2 + ‖(𝜕2∇𝜔0,∇𝑗0)‖2
𝐿2 + 2∫

𝑡

0

‖𝜕2∇𝑗(𝜏)‖2
𝐿2 𝑑𝜏

+ 𝛾 ∫
𝑡

0

(‖∇2𝑢2(𝜏)‖2
𝐿2 + ‖𝜕2∇𝑗(𝜏)‖2

𝐿2) 𝑑𝜏 + 𝜂2 ∫
𝑡

0

‖𝜕2
2
∇𝑗(𝜏)‖2

𝐿2 𝑑𝜏

+ 𝐶 ∫
𝑡

0

(‖𝑢(𝜏)‖𝐻2 + ‖𝑏(𝜏)‖𝐻3)(‖∇𝑢(𝜏)‖2
𝐻2 + ‖𝜕2𝑏(𝜏)‖2

𝐻3) 𝑑𝜏

≤𝐸1(0) + 𝐶𝐸1(𝑡) + 𝐶𝐸
3

2 (𝑡), (77)

which together with (69) yields the desired bound (32). This completes the proof of Proposi-
tion 2. ■

Now we are ready to prove (30).

Proof (of (30)). Multiplying (32) by 1

2𝐶4

and adding to (31), we infer

𝐸(𝑡) ≤ 𝐶0𝐸(0) + 𝐶0𝐸
3

2 (𝑡) (78)

for a constant 𝐶0 > 0. This completes the proof of (30). ■
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644 CHEN et al.

3 PROOF OF THE LONG TIME BEHAVIOR

This section is devoted to proving the long time behavior (12). We will employ the following
lemma, which provides an easily verifiable condition under which a nonnegative and integrable
function actually approaches zero at infinity. The proof can be found in Ref. 57, Lemma 3.1.

Lemma 2. Assume 𝑓 = 𝑓(𝑡) with 𝑡 ∈ [0,∞) is a nonnegative and uniform continuous function
satisfying

∫
∞

0

𝑓(𝑡) 𝑑𝑡 < ∞. (79)

Then

𝑓(𝑡) → 0 as 𝑡 → ∞. (80)

Now we give the proof of (12).

Proof (of (12)). First, we have the following anisotropic Sobolev inequality

‖𝑣‖𝐿∞(ℝ2) ≤ 𝐶‖𝑣‖ 1

4

𝐿2(ℝ2)
‖𝜕1𝑣‖ 1

4

𝐿2(ℝ2)
‖𝜕2𝑣‖ 1

4

𝐿2(ℝ2)
‖𝜕1𝜕2𝑣‖ 1

4

𝐿2(ℝ2)
. (81)

In fact, by Minkowski’s inequality and the basic inequality for 𝑖 = 1, 2

‖𝑣‖𝐿∞(ℝ) ≤
√

2‖𝑣‖ 1

2

𝐿2
𝑥𝑖

(ℝ)
‖𝜕𝑖𝑣‖ 1

2

𝐿2
𝑥𝑖

(ℝ)
, (82)

we have

‖𝑣‖𝐿∞(ℝ2) = ‖‖‖𝑣‖𝐿∞
𝑥2

(ℝ)
‖‖𝐿∞

𝑥1
(ℝ)

≤ √
2‖𝑣‖ 1

2

𝐿2
𝑥2

𝐿∞
𝑥1

‖𝜕2𝑣‖ 1

2

𝐿2
𝑥2

𝐿∞
𝑥1

≤ 𝐶‖𝑣‖ 1

4

𝐿2(ℝ2)
‖𝜕1𝑣‖ 1

4

𝐿2(ℝ2)
‖𝜕2𝑣‖ 1

4

𝐿2(ℝ2)
‖𝜕1𝜕2𝑣‖ 1

4

𝐿2(ℝ2)
. (83)

Then, from (81) and the following Sobolev’s inequality,

‖𝑣‖𝐿𝑝(ℝ2) ≤ 𝐶‖𝑣‖ 2

𝑝

𝐿2(ℝ2)
‖∇𝑣‖1−

2

𝑝

𝐿2(ℝ2)
, for 2 ≤ 𝑝 < ∞, (84)

we claim that to prove (12), it suffices to prove the long time behavior of ‖𝑢2‖𝐿2 , ‖∇𝑢‖𝐻1 and‖𝜕2𝑏‖𝐻1 , that is,

‖𝑢2(𝑡)‖𝐿2 → 0, ‖∇𝑢(𝑡)‖𝐻1 → 0 and ‖𝜕2𝑏(𝑡)‖𝐻1 → 0 as 𝑡 → ∞. (85)

Invoking (11) and the fact ‖∇𝑢2‖𝐻1 = ‖𝜕1𝑢‖𝐻1 , we obtain

∫
∞

0

(‖𝑢2(𝑡)‖2
𝐿2 + ‖∇𝑢(𝑡)‖2

𝐻1 + ‖𝜕2𝑏(𝑡)‖2
𝐻1) 𝑑𝑡 < ∞. (86)
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CHEN et al. 645

Thus, we just need to verify ‖𝑢2‖𝐿2 , ‖∇𝑢‖𝐻1 , and ‖𝜕2𝑏‖𝐻1 satisfy the uniform continuity part of
Lemma 2. Multiplying the equation of 𝑢2 in (15) by 𝑢2 and integrating over ℝ2, we have

1

2

𝑑

𝑑𝑡
‖𝑢2(𝑡)‖2

𝐿2 + 𝛾‖1𝑢2‖2
𝐿2 = −∫ (ℙ(𝑢 ⋅ ∇𝑢))2 𝑢2 𝑑𝑥

+ ∫ (ℙ(𝑏 ⋅ ∇𝑏))2 𝑢2 𝑑𝑥 + ∫ 𝜕2𝑏2 𝑢2 𝑑𝑥. (87)

Recalling that ℙ = 𝐼 − ∇Δ−1∇⋅ and applying Hölder’s inequality, Sobolev’s inequality, and the
uniform bound (11) yield

|||∫ (ℙ(𝑢 ⋅ ∇𝑢))2 𝑢2 𝑑𝑥
||| = |||∫ Δ−1∇ ⋅ (𝑢 ⋅ ∇𝑢) 𝜕2𝑢2 𝑑𝑥

|||
=
|||∫ Δ−1∇ ⋅ ∇ ⋅ (𝑢 ⊗ 𝑢) 𝜕2𝑢2𝑑𝑥

||| ≤ ‖𝑢 ⊗ 𝑢‖𝐿2‖𝜕2𝑢2‖𝐿2

≤ ‖𝑢‖2
𝐿4‖𝜕2𝑢2‖𝐿2 ≤ 𝐶‖𝑢‖3

𝐻1 ≤ 𝐶𝜀3, (88)

wherewe have used the fact that the singular integral operatorΔ−1∇ ⋅ ∇⋅ is bounded on 𝐿2 (see58).
Similarly,

|||∫ (ℙ(𝑏 ⋅ ∇𝑏))2 𝑢2 𝑑𝑥
||| = |||∫ 𝑏 ⋅ ∇𝑏2 𝑢2 𝑑𝑥 + ∫ Δ−1∇ ⋅ (𝑏 ⋅ ∇𝑏) 𝜕2𝑢2 𝑑𝑥

|||
≤ ‖𝑏‖𝐿4‖∇𝑏‖𝐿2‖𝑢2‖𝐿4 + ‖𝑏‖2

𝐿4‖𝜕2𝑢2‖𝐿2

≤ 𝐶‖𝑏‖2
𝐻1‖𝑢2‖𝐻1 ≤ 𝐶𝜀3. (89)

Clearly,

|||∫ 𝜕2𝑏2 𝑢2 𝑑𝑥
||| ≤ 1

2
(‖𝜕2𝑏2‖2

𝐿2 + ‖𝑢2‖2
𝐿2) ≤ 𝐶𝜀2. (90)

Combining the bounds above, we derive

||| 𝑑

𝑑𝑡
‖𝑢2(𝑡)‖2

𝐿2

||| ≤ 𝐶(𝜀), (91)

where we have used the bound of the Riesz transform in 𝐿𝑞(1 < 𝑞 < ∞), namely,

‖1𝑢2‖𝐿2 ≤ ‖𝑢2‖𝐿2 ≤ 𝐶𝜀. (92)

Then, (91) implies the uniform continuity in Lemma 2. Consequently, we conclude

‖𝑢2(𝑡)‖𝐿2 → 0 as 𝑡 → ∞. (93)

We proceed to prove the uniform continuity for ‖∇𝑢‖𝐻1 . Taking the𝐻1-inner product of the 𝜔

equation in (26) with 𝜔, we have

1

2

𝑑

𝑑𝑡
‖𝜔(𝑡)‖2

𝐻1 + 𝛾‖𝜕1𝑢‖2
𝐻1 = −(𝑢 ⋅ ∇𝜔, 𝜔)𝐻1 + (𝑏 ⋅ ∇𝑗, 𝜔)𝐻1 + (𝜕2𝑗, 𝜔)𝐻1 , (94)
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646 CHEN et al.

where we have used (2
1
𝜔, 𝜔)𝐻1 = −‖1𝜔‖2

𝐻1 = −‖𝜕1𝑢‖2
𝐻1 . By the integration by parts and

incompressible condition, Hölder’s inequality, and Sobolev’s inequity, we infer

|(𝑢 ⋅ ∇𝜔, 𝜔)𝐻1 | = |||∫ (∇𝑢 ⋅ ∇𝜔) ⋅ ∇𝜔 𝑑𝑥
|||

≤ ‖∇𝑢‖𝐿∞‖∇𝜔‖2
𝐿2 ≤ 𝐶‖∇𝑢‖𝐻2‖∇𝜔‖2

𝐿2 ≤ 𝐶𝜀3. (95)

Similarly,

|(𝑏 ⋅ ∇𝑗, 𝜔)𝐻1 | = |||∫ (𝑏 ⋅ ∇𝑗) 𝜔 𝑑𝑥 + ∫ (∇𝑏 ⋅ ∇𝑗) ⋅ ∇𝜔 𝑑𝑥 + ∫ (𝑏 ⋅ ∇)∇𝑗 ⋅ ∇𝜔 𝑑𝑥
|||

≤ ‖𝑏‖𝐿∞(‖∇𝑗‖𝐿2‖𝜔‖𝐿2 + ‖∇2𝑗‖𝐿2‖∇𝜔‖𝐿2) + ‖∇𝑏‖𝐿∞‖∇𝑗‖𝐿2‖∇𝜔‖𝐿2

≤ 𝐶‖𝑏‖𝐻3‖∇𝑗‖𝐻1‖𝜔‖𝐻1 ≤ 𝐶𝜀3. (96)

Also,

|(𝜕2𝑗, 𝜔)𝐻1 | ≤ 1

2
(‖𝜕2𝑗‖2

𝐻1 + ‖𝜔‖2
𝐻1) ≤ 𝐶𝜀2. (97)

Therefore, we can conclude

||| 𝑑

𝑑𝑡
‖𝜔(𝑡)‖2

𝐻1 + 2𝛾‖𝜕1𝑢‖2
𝐻1

||| ≤ 𝐶(𝜀), (98)

which together with ‖𝜕1𝑢‖2
𝐻1 ≤ 𝐶𝜀2 yields the uniform continuity for ‖∇𝑢(𝑡)‖2

𝐻1 . Hence, we get

‖∇𝑢(𝑡)‖𝐻1 → 0 as 𝑡 → ∞. (99)

The uniform continuity for ‖𝜕2𝑏(𝑡)‖2
𝐻1 can be obtained in a similar way. Applying the operator

𝜕2 to the equation of 𝑏 in (5), taking the 𝐻1-inner product of the resulting equation with 𝜕2𝑏, we
have

1

2

𝑑

𝑑𝑡
‖𝜕2𝑏(𝑡)‖2

𝐻1 + 𝜂‖𝜕2
2
𝑏‖2

𝐻1 = −(𝜕2(𝑢 ⋅ ∇𝑏), 𝜕2𝑏)𝐻1 + (𝜕2(𝑏 ⋅ ∇𝑢), 𝜕2𝑏)𝐻1 + (𝜕2
2
𝑢, 𝜕2𝑏)𝐻1 . (100)

By Hölder’s inequality and Sobolev’s inequality, the three terms on the right can be bounded as:

| − (𝜕2(𝑢 ⋅ ∇𝑏), 𝜕2𝑏)𝐻1 | = |||∫ 𝑢 ⋅ ∇𝑏 ⋅ 𝜕2
2
𝑏 𝑑𝑥 + ∫ (∇𝑢 ⋅ ∇𝑏) ⋅ 𝜕2

2
∇𝑏 𝑑𝑥

+ ∫ (𝑢 ⋅ ∇)∇𝑏 ⋅ 𝜕2
2
∇𝑏 𝑑𝑥

|||
≤ ‖𝑢‖𝐿∞(‖∇𝑏‖𝐿2‖𝜕2

2
𝑏‖𝐿2 + ‖∇2𝑏‖𝐿2‖𝜕2

2
∇𝑏‖𝐿2)

+ ‖∇𝑢‖𝐿∞‖∇𝑏‖𝐿2‖𝜕2
2
∇𝑏‖𝐿2

≤ 𝐶‖𝑢‖𝐻3‖∇𝑏‖2
𝐻2 ≤ 𝐶𝜀3, (101)
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CHEN et al. 647

| − (𝜕2(𝑏 ⋅ ∇𝑢), 𝜕2𝑏)𝐻1 | = |||∫ 𝑏 ⋅ ∇𝑢 ⋅ 𝜕2
2
𝑏 𝑑𝑥 + ∫ (∇𝑏 ⋅ ∇𝑢) ⋅ 𝜕2

2
∇𝑏 𝑑𝑥

+ ∫ (𝑏 ⋅ ∇2𝑢) ⋅ 𝜕2
2
∇𝑏 𝑑𝑥

|||
≤ 𝐶‖𝑏‖2

𝐻3‖∇𝑢‖𝐻1 ≤ 𝐶𝜀3, (102)

and

|(𝜕2
2
𝑢, 𝜕2𝑏)𝐻1 | ≤ 1

2
(‖𝜕2

2
𝑢‖2

𝐻1 + ‖𝜕2𝑏‖2
𝐻1) ≤ 𝐶𝜀2. (103)

As a consequence, we get

||| 𝑑

𝑑𝑡
‖𝜕2𝑏(𝑡)‖2

𝐻1 + 2𝛾‖𝜕2
2
𝑏‖2

𝐻1

||| ≤ 𝐶(𝜀). (104)

The uniform continuity for ‖𝜕2𝑏‖𝐻1 then follows from (104) and the uniform bound of ‖𝜕2
2
𝑏‖2

𝐻1 .
We thus establish the large time behavior for ‖𝜕2𝑏(𝑡)‖𝐻1 . This completes the proof of (12) and thus
Theorem 1. ■
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