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(Communicated by Ariel Barton)

Abstract. This paper focuses on a two-dimensional incompressible Oldroyd-
B model with mixed partial dissipation. The goal here is to establish the small
data global existence and stability in the Sobolev space H2(R2). The velocity

equation itself, without coupling with the equation of the non-Newtonian stress
tensor, is an anisotropic 2D Navier-Stokes whose solutions are not known to be
stable in Sobolev spaces due to potential rapid growth in time. By unearthing
the hidden wave structure of the system and exploring the smoothing and
stabilizing effect of the non-Newtonian stress tensor on the fluid, we are able
to solve the desired global existence and stability problem.

1. Introduction

A class of models of complex fluids is based on an equation for a solvent coupled
with a kinetic description of particles suspended in it. In the case of dilute sus-
pensions weakly confined by a Hookean spring potential, a rigorously established
exact closure for the moments in the kinetic equation of this Navier–Stokes–Fokker–
Planck system yields the Oldroyd-B system (see, e.g., [2, 8, 31]). The standard
Oldroyd-B model can be written as⎧⎪⎨⎪⎩

∂tu+ u · ∇u = −∇p+ νΔu+ μ1∇ · τ,
∂tτ + u · ∇τ +Q(τ,∇u) + aτ = ηΔτ + μ2D(u),

∇ · u = 0,

where u = u(x, t) represents the velocity field of the fluid, p = p(x, t) the pressure
and τ = τ (x, t) (a symmetric matrix) the non-Newtonian added stress tensor, and
ν, μ1, a, η and μ2 are nonnegative real parameters. Here D(u) is the symmetric part
of the velocity gradient defined by

D(u) =
1

2
(∇u+ (∇u)T ).

The bilinear term Q reads

Q(τ,∇u) = τW (u)−W (u)τ − b(D(u)τ + τD(u)),
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where b ∈ [−1, 1] is a parameter and W (u) is the skew-symmetric part of the ∇u,

W (u) =
1

2
(∇u− (∇u)T ).

Fundamental issues such as the global existence and the stability problems on
the Oldroyd-B models have recently attracted considerable interests. There are
substantial developments and significant progress has been made. Interested readers
may consult the references listed here (see, e.g., [1, 4–15,17–19,21, 22, 24, 25, 27, 29,
30, 36–39, 41–45]). Understandably this list represents only a small portion of the
large literature on this subject. This paper focuses on the following anisotropic
Oldroyd-B system

(1.1)

⎧⎪⎨⎪⎩
∂tu+ u · ∇u = −∇p+ ∂11u+∇ · τ, x ∈ R

2, t > 0,

∂tτ + u · ∇τ +Q(τ,∇u) + τ = ∂22τ +D(u),

∇ · u = 0,

which involves only horizontal kinematic dissipation and vertical dissipation in the
equation of τ . (1.1) may be relevant for certain anisotropic complex fluids. The
anisotropic Navier-Stokes equations have been used in the modeling of many fluids
such as turbulent flows in Ekman layers [32]. The equation of τ can be derived
from the equation of the conformation tensor by replacing the damping term re-
lated to the Weissenberg number by a dissipative differential operator term [11].
It has become a common practice in the modeling and numerical simulations of
viscoelastic fluids to add stress diffusion (sometimes anisotropic stress diffusion) in
order to effectively stabilize the stress and the numerical calculations. The effect
of stress diffusion on the dynamics of creeping viscoelastic flow has been analyzed
(see, e.g., [20,26,33,35]). The study of this paper would help fill the gap on how the
anisotropic stress tensor would affect the dynamics of viscoelastic flow. The goal of
this paper is to solve the small data global existence and stability problem. With-
out loss of generality, we have set the parameters in (1.1) equal to 1 for notational
convenience.

The lack of vertical velocity dissipation makes the stability problem concerned
here difficult. The corresponding vorticity ω = ∇× u satisfies

(1.2) ∂tω + u · ∇ω = ∂11ω +∇×∇ · τ, x ∈ R
2, t > 0

and it does not appear possible to establish any uniform-in-time bound on the
Sobolev norms of ω. Even when τ = 0, the vorticity gradient ∇ω for the anisotropic
2D Navier-Stokes equation

(1.3) ∂tω + u · ∇ω = ∂11ω, x ∈ R
2, t > 0

may grow in time. In fact, the only upper bound on ∇ω for (1.3) is double expo-
nential in time, for any 2 ≤ q ≤ ∞,

‖∇ω(t)‖Lq ≤ (‖∇ω0‖Lq )e
C ‖ω0‖L∞ t

.

The double exponential growth rate was confirmed for the 2D Euler equation in a
unit disk by Kiselev and Šverák [23]. The growth rate for the 2D Euler equation
on a more general smooth bounded domain was explored by Xu [40]. Whether the
double exponential upper bound for the 2D Euler or for the anisotropic Navier-
Stokes in the whole space R

2 is sharp remains an open problem.
In the case when the 2D Oldroyd-B model has both damping and full Laplacian

dissipation in the equation of τ , Elgindi and Rousset [13] were able to overcome
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the difficulty by considering a combined quantity G := ω − ∇ × ∇ · Δ−1τ and
its equation, and successfully solved the small data global well-posedness problem.
The 3D Oldroyd-B model has both damping and full Laplacian dissipation was
dealt with by Elgindi and Liu [12]. The damping term in the equation of τ plays a
crucial role in the approaches of [12, 13].

Very recently Constantin, Wu, Zhao and Zhu [11] considered the d-dimensional
(d = 2, 3) Oldroyd-B model with only fractional dissipation (−Δ)βτ and without
damping in τ . [11] derived a system of special wave equations satisfied by u and
P∇ · τ , where

P = I −∇Δ−1∇·
denotes the Leray projection operator. As a consequence, [11] observed that the
non-Newtonian stress has a stabilizing effect on the fluid and was able to establish
the small data global well-posedness and stability for any β ≥ 1

2 .
Our Oldroyd-B model in (1.1) also admits a wave structure. By applying the

Leray projection operator P to eliminate the pressure term, we obtain

(1.4) ∂tu = ∂11u+ P(∇ · τ ) +N1, N1 = P(−u · ∇u).

Applying P∇· to the equation of τ , we have

(1.5) ∂tP∇ · τ = ∂22P∇ · τ − P∇ · τ +
1

2
Δu+N2

with

N2 = −P∇ · (u · ∇τ )− P∇ ·Q(τ,∇u).

Differentiating (1.4) and (1.5) in time and making several substitutions, we find
(1.6){

∂ttu+ (1−Δ)∂tu− ∂11(1− ∂22)u− 1
2Δu = N3,

∂ttP(∇ · τ ) + (1−Δ)∂tP(∇ · τ )− ∂11(1− ∂22)P(∇ · τ )− 1
2ΔP(∇ · τ ) = N4,

where N3 and N4 are given by

N3 = (∂t + 1)N1 +N2, N4 = (∂t − ∂11)N2 +
1

2
ΔN1.

The wave structure derived above is a consequence of the coupling between the
equations of u and τ . Without the coupling and even for τ = 0, the linearized
equation of u is given by

(1.7) ∂tu = ∂11u.

Clearly the linearized wave equation for u given by

(1.8) ∂ttu+ (1−Δ)∂tu− ∂11(1− ∂22)u− 1

2
Δu = 0

is much more regularized than (1.7). We shall exploit the wave structure in (1.6)
to gain extra regularization and damping properties. One crucial regularity to be
extracted is the time integrability of the derivatives of u, not just the horizontal
derivatives. This is a consequence of the full Laplacian operator in (1.8). When
we seek a solution (u, τ ) of (1.1) in the Sobolev space H2, we expect to gain the
uniform time integrability, for a constant C > 0 and for any t > 0,

(1.9)

∫ t

0

‖∇u(s)‖2H1 ds ≤ C < ∞.
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Besides understanding the time integrability in (1.9) from the wave structure, there
is another simple way to comprehend (1.9). It is really the coupling in (1.4) and
(1.5) that allows us to transfer the time integrability from one function in the system
to another. More precisely, we can represent Δu in terms of the rest in (1.5),

(1.10) Δu = 2∂tP∇ · τ − 2∂22P∇ · τ + 2P∇ · τ − 2N2

then

‖∇u‖2H1 = −(u,Δu)− (∇u,∇Δu)

= −2

∫
u · ∂tP∇ · τ + 2

∫
u · ∂22P∇ · τ dx

− 2

∫
u · P∇ · τ dx+ 2

∫
u ·N2 dx

− 2

∫
∇u · ∇∂tP∇ · τ + 2

∫
∇u · ∇∂22P∇ · τ dx

− 2

∫
∇u · ∇P∇ · τ dx+ 2

∫
∇u · ∇N2 dx,

where (f, g) above denotes the L2-inner product. The time integrability of ‖∇u‖2H1

is then converted to the time integrability of other terms. This explains our strategy
on how to make use of the stabilizing effect of τ on the fluid to prevent the growth
of the Sobolev norms of the velocity. We are now ready to state our main result.

Theorem 1.1. Assume the initial data (u0, τ0) ∈ H2(R2), and ∇ · u0 = 0. Then,
there exists a constant ε > 0 such that, if

‖u0‖H2 + ‖τ0‖H2 ≤ ε,

then (1.1) has a unique global classical solution (u, τ ) satisfying, for any t > 0,

(‖u‖2H2+‖τ‖2H2)+2

∫ t

0

(‖∂1u(s)‖2H2+‖∂2τ (s)‖2H2+‖τ (s)‖2H2+‖∇u(s)‖2H1) ds ≤ C ε2,

where C > 0 is pure constant.

We make two remarks about Theorem 1.1.

Remark 1.2.

(1) The damping term in τ appears to be necessary in order to bound Q in
the L2-estimate. Q generates a term of the form ‖τ‖2L2 , which requires
damping in τ to yield a suitable upper bound.

(2) When the combination of ∂11u and ∂22τ is replaced by that of ∂22u and
∂11τ , Theorem 1.1 remains valid. We just need to slightly modify the
proof. Therefore, as long as the dissipation of u and τ are in different
directions, the nonlinear terms can be bounded suitably and the result
still holds. Physically the dissipation of u and τ in different directions
helps complement the regularization of each other, and thus controls the
nonlinearity.

The local-in-time existence and uniqueness of solutions to (1.1) can be shown
via standard approaches such as those in the book of Majda and Bertozzi [28]. Our
focus will be on the global-in-time bound of (u, τ ) in H2. One of the most suitable
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methods for this purpose is the bootstrapping argument (see, e.g., [34, p.21]). To
proceed, we first define a suitable energy functional

E(t) = E1(t) + E2(t),

with

E1(t) := sup
0≤s≤t

(‖u‖2H2 + ‖τ‖2H2) + 2

∫ t

0

(‖∂1u(s)‖2H2 + ‖∂2τ (s)‖2H2 + ‖τ (s)‖2H2) ds,

E2(t) :=

∫ t

0

‖∇u(s)‖2H1 ds.

E1 represents the standard energy consisting of the H2-norm of (u, τ ) and the
associated time integrals parts from the horizontal dissipation in u and the vertical
dissipation and damping in τ . E2 is the time integral in (1.9) representing the extra
regularization through the coupling. Our main efforts are devoted to proving that,
for any t > 0,

(1.11) E(t) ≤ C1E(0) + C2E
3
2 (t).

The bootstrapping argument applied to (1.11) then implies that, if E(0) ≤ ε2 for
some suitable ε > 0, then, for a constant C > 0 and any t > 0,

E(t) ≤ C ε2,

which, in particular, asserts the desired global bound on the H2-norm of (u, τ ).
The details are provided in Section 2.

2. Proof of Theorem 1.1

This section details the proof of Theorem 1.1. First we list several anisotropic
inequalities to be used frequently in the proof.

The first is an anisotropic upper bound for a triple product, a very useful tool
in bounding the nonlinearity when the dissipation is anisotropic. Its proof can be
found in [3].

Lemma 2.1. Assume that f , g, ∂2g, h and ∂1h are all in L2(R2). Then,∣∣∣∣∫
R2

fgh dx

∣∣∣∣ ≤ 2
3
2 ‖f‖L2‖g‖

1
2

L2‖∂2g‖
1
2

L2‖h‖
1
2

L2‖∂1h‖
1
2

L2 .

The second lemma provides an upper bound for the L∞-norm of a 2D function
in terms of the H1-norm of its horizontal or vertical derivatives.

Lemma 2.2. The following estimates hold when the right-hand sides are all bounded.

‖f‖L∞(R2) ≤ C‖f‖
1
4

L2(R2)‖∂1f‖
1
4

L2(R2)‖∂2f‖
1
4

L2(R2)‖∂12f‖
1
4

L2(R2).

Consequently,

‖f‖L∞ ≤ C‖f‖
1
2

H1‖∂1f‖
1
2

H1 , ‖f‖L∞ ≤ C‖f‖
1
2

H1‖∂2f‖
1
2

H1 .

The proof of Lemma 2.2 can be found in [16].
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Proof. As explained in the introduction, it suffices to prove (1.11). For the sake of
clarity, we prove the following two inequalities, one for E1 and one for E2,

E1 ≤ E(0) + C1 E
3
2
1 (t) + C2E

3
2
2 (t),(2.1)

E2 ≤ C3E(0) + C4E1(t) + C5E
3
2
1 (t) + C6E

3
2
2 (t),(2.2)

where C1 through C6 are positive pure constants. Then E1 +
1

2C4
E2 yields

E1 +
1

2C4
E2 ≤ E(0) + C1 E

3
2
1 (t) + C2 E

3
2
2 (t)

+
C3

2C4
E(0) +

1

2
E1(t) +

C5

2C4
E

3
2
1 (t) +

C6

2C4
E

3
2
2 (t)

or

1

2
E1 +

1

2C4
E2 ≤

(
1 +

C3

2C4

)
E(0) +

(
C1 +

C5

2C4

)
E

3
2
1 (t) +

(
C2 +

C6

2C4

)
E

3
2
2 (t)

or

(2.3) E(t) ≤ C̃1E(0) + C̃2E
3
2 (t).

We take the initial data (u0, τ0) to be sufficiently small, say

E(0) = ‖(u0, τ0)‖2H2 ≤ 1

16C̃1 C̃2
2

:= ε2.

Then the bootstrapping argument applied to (2.3) yields, for all

E(t) ≤ 1

8C̃2
2

:= 2C̃1ε
2.

In fact, if we make the ansatz that

(2.4) E(t) ≤ 1

4C̃2
2

,

then (2.3) implies

E(t) ≤ C̃1E(0) + C̃2
1

2C̃2

E(t) or
1

2
E(t) ≤ C̃1E(0)

or

E(t) ≤ 1

8C̃2
2

,

which is half of the bound in the ansatz (2.4). The bootstrapping argument then
asserts that this bound actually holds for all t > 0. This yields the desired global
uniform bound on ‖(u(t), τ (t))‖H2.

It remains to prove (2.1) and (2.2). We first prove (2.1). Due to the equivalence

(2.5) ‖f‖H2 ∼ ‖f‖L2 + ‖Δf‖L2 ,

we just need to bound ‖(u, τ )‖L2 and ‖(Δu,Δτ )‖L2 . Dotting (1.1) by (u, τ ), and
applying Δ to (1.1) and dotting the resulting equation by (Δu,Δτ ), we find

1

2

d

dt
(‖(u, τ )‖2L2 + ‖(Δu,Δτ )‖2L2)

+ ‖∂1u‖2L2 + ‖∂1Δu‖2L2 + ‖∂2τ‖2L2 + ‖Δ∂2τ‖2L2 + ‖τ‖2L2 + ‖Δτ‖2L2

= I1 + I2 + I3,(2.6)
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where

I1 = −(Δ(u · ∇u),Δu),

I2 = −(Δ(u · ∇τ ),Δτ ),

I3 = −(Q(τ,∇u), τ )− (ΔQ(τ,∇u),Δτ ).

Here we have used the facts, due to ∇ · u = 0 and τij = τji for i, j = 1, 2,∫
u · (u · ∇u) dx = 0,

∫
τ · (u · ∇τ ) dx = 0,∫

(u · (∇ · τ ) +D(u) · τ ) dx = 0,

∫
(Δu ·Δ(∇ · τ ) + ΔD(u) ·Δτ ) dx = 0.

We now bound I1. By ∇ · u = 0 and Lemma 2.1,

I1 = −
∫

Δu · (Δu · ∇u) dx− 2

∫
Δu · (∇u · ∇2u) dx

≤ C ‖Δu‖L2 ‖Δu‖
1
2

L2 ‖∂1Δu‖
1
2

L2 ‖∇u‖
1
2

L2 ‖∂2∇u‖
1
2

L2

+ C ‖Δu‖L2 ‖∇2u‖
1
2

L2 ‖∂1∇2u‖
1
2

L2 ‖∇u‖
1
2

L2 ‖∂2∇u‖
1
2

L2

≤ C ‖u‖H2 ‖∇u‖
3
2

H1 ‖∂1u‖
1
2

H2

≤ C ‖u‖H2 (‖∇u‖2H1 + ‖∂1u‖2H2).

By ∇ · u = 0 and Lemma 2.1,

I2 = −
∫

Δτ · (Δu · ∇τ ) dx− 2

∫
Δτ · (∇u · ∇2τ ) dx

≤ C ‖Δτ‖L2 ‖Δu‖
1
2

L2 ‖∂1Δu‖
1
2

L2 ‖∇τ‖
1
2

L2 ‖∂2∇τ‖
1
2

L2

+ C ‖Δτ‖L2 ‖∇u‖
1
2

L2 ‖∂1∇u‖
1
2

L2 ‖∇2τ‖
1
2

L2 ‖∂2∇2τ‖
1
2

L2

≤ C (‖u‖H2 + ‖τ‖H2) (‖τ‖2H2 + ‖∂1u‖2H2 + ‖∂2τ‖2H2).

Naturally I3 is divided into two parts I3 = I3,1 + I3,2 with

I3,1 = −(Q(τ,∇u), τ ), I3,2 = (ΔQ(τ,∇u),Δτ ).

By Lemma 2.1,

I3,1 ≤ C‖τ‖L2‖∇u‖
1
2

L2‖∂1∇u‖
1
2

L2‖τ‖
1
2

L2‖∂2τ‖
1
2

L2 ≤ C‖u‖H2‖τ‖2H2 .

To distinguish between the horizontal and the vertical derivatives, we rewrite I3,2
as

I3,2 = −
∫

ΔQ ·Δτ dx = −
∫
(∂11Q+ ∂22Q) · (∂11τ + ∂22τ ) dx

= −
∫
(∂11Q · ∂11τ + ∂11Q · ∂22τ + ∂22Q · ∂11τ + ∂22Q · ∂22τ ) dx

= I3,2,1 + I3,2,2 + I3,2,3 + I3,2,4.
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By Hölder’s inequality and Lemma 2.2,

I3,2,1 = −
∫

∂11τ · ∇u · ∂11τ + 2∂1τ · ∂1∇u · ∂11τ + τ · ∂11∇u · ∂11τ dx

≤ C‖∂11τ‖L2‖∇u‖L∞‖∂11τ‖L2 + C‖∂1τ‖L∞‖∂1∇u‖L2‖∂11τ‖L2

+ C‖τ‖L∞‖∂11∇u‖L2‖∂11τ‖L2

≤ C‖τ‖2H2‖∇u‖
1
2

H1‖∂1∇u‖
1
2

H1 + C‖∂1τ‖
1
2

H1‖∂2∂1τ‖
1
2

H1‖∂1∇u‖L2‖τ‖H2

+ C‖∂1u‖H2‖τ‖2H2

≤ C(‖u‖H2 + ‖τ‖H2)(‖∂1u‖2H2 + ‖τ‖2H2 + ‖∂2τ‖2H2).

By integration by parts and Lemma 2.2,

I3,2,2 =

∫
∂1Q · ∂122τ dx

≤ ‖τ‖L∞‖∂1∇u‖L2‖∂2∂12τ‖L2 + ‖∂1τ‖L2‖∇u‖L∞‖∂2∂12τ‖L2

≤ ‖∂2τ‖H2‖τ‖H2‖u‖H2 + ‖τ‖H2‖∂1u‖
1
2

H2‖u‖
1
2

H2‖∂2τ‖H2

≤ C(‖u‖H2 + ‖τ‖H2)(‖∂1u‖2H2 + ‖τ‖2H2 + ‖∂2τ‖2H2).

I3,2,3 has the same bound as I3,2,2. The estimate for I3,2,4 is also similar,

I3,2,4 =

∫
∂2Q · ∂222τ dx

≤ C‖τ‖L∞‖∂2∇u‖L2‖∂222τ‖L2 + ‖∂2τ‖L2‖∇u‖L∞‖∂222τ‖L2

≤ C‖∂2τ‖H2‖τ‖H2‖u‖H2 + ‖∂2τ‖
3
2

H2‖τ‖
1
2

H2‖∂1u‖
1
2

H2‖u‖
1
2

H2

≤ C(‖u‖H2 + ‖τ‖H2)(‖∂1u‖2H2 + ‖τ‖2H2 + ‖∂2τ‖2H2).

Combining the bounds above leads to

I3 = I3,1 + I3,2 ≤ C(‖u‖H2 + ‖τ‖H2)(‖∂1u‖2H2 + ‖τ‖2H2 + ‖∂2τ‖2H2),

I1 + I2 + I3 ≤ C ‖u‖H2 (‖∇u‖2H1 + ‖∂1u‖2H2)

+ C(‖u‖H2 + ‖τ‖H2)(‖∂1u‖2H2 + ‖τ‖2H2 + ‖∂2τ‖2H2).

Inserting the upper bound for I1+ I2+ I3 in (2.6), integrating in time and invoking
the norm equivalence (2.5), we find

‖(u, τ )‖2H2 + 2

∫ t

0

(‖∂1u‖2H2 + ‖∂2τ‖2H2 + ‖τ‖2H2) ds

≤ ‖(u0, τ0)‖2H2 + C

∫ t

0

‖u‖H2 (‖∇u‖2H1 + ‖∂1u‖2H2) ds

+ C

∫ t

0

(‖u‖H2 + ‖τ‖H2)(‖∂1u‖2H2 + ‖τ‖2H2 + ‖∂2τ‖2H2) ds

≤ ‖(u0, τ0)‖2H2 + C sup
0≤s≤t

‖u(s)‖H2

∫ t

0

(‖∇u‖2H1 + ‖∂1u‖2H2) ds

+ C sup
0≤s≤t

(‖u‖H2 + ‖τ‖H2)

∫ t

0

(‖∂1u‖2H2 + ‖τ‖2H2 + ‖∂2τ‖2H2) ds

≤ E(0) + C E
3
2
1 (t) + C E

3
2
2 (t).
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This proves (2.1), namely

E1(t) ≤ E(0) + C E
3
2
1 (t) + C E

3
2
2 (t).

To prove (2.2), we invoke (1.5) or (1.10) to write ‖∇u‖2H1 as

‖∇u‖2H1 = −(u,Δu)− (∇u,∇Δu)

= −2

∫
u · ∂tP∇ · τ dx+ 2

∫
u · ∂22P∇ · τ dx

− 2

∫
u · P∇ · τ dx+ 2

∫
u ·N2 dx

− 2

∫
∇u · ∇∂tP∇ · τ dx+ 2

∫
∇u · ∇∂22P∇ · τ dx

− 2

∫
∇u · ∇P∇ · τ dx+ 2

∫
∇u · ∇N2 dx,(2.7)

where

N2 = −P∇ · (u · ∇τ )− P∇ ·Q(τ,∇u).

In addition,

∫
u · ∂tP∇ · τ dx =

d

dt

∫
u · P∇ · τdx−

∫
P∇ · τ · ∂tu dx

=
d

dt

∫
u · P∇ · τdx

−
∫

P∇ · τ · (∂11u+ P(∇ · τ ) + P(−u · ∇u)) dx.

Similarly,

∫
∇u · ∂t∇P∇ · τ dx =

d

dt

∫
∇u · ∇P∇ · τdx

−
∫

∇P∇ · τ · ∇(∂11u+ P(∇ · τ ) + P(−u · ∇u)) dx.

Inserting the last two equations in (2.7), we find

(2.8) ‖∇u‖2H1 = J1 + J2 + J3 + J4 + J5 + J6 + J7 + J8,
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where

J1 = −2
d

dt

∫
u · P∇ · τdx− 2

d

dt

∫
∇u · ∇P∇ · τdx,

J2 = 2

∫
u · ∂22P∇ · τ dx+ 2

∫
∇u · ∇∂22P∇ · τ dx,

J3 = −2

∫
u · P∇ · τ dx− 2

∫
∇u · ∇P∇ · τ dx,

J4 = −2

∫
u · P∇ · (u · ∇τ ) dx− 2

∫
∇u · ∇P∇ · (u · ∇τ ) dx,

J5 = −2

∫
u · P∇ ·Q(τ,∇u) dx− 2

∫
∇u · ∇P∇ ·Q(τ,∇u) dx,

J6 = 2

∫
P∇ · τ · ∂11u dx+ 2

∫
∇P∇ · τ · ∇∂11u dx,

J7 = 2

∫
P∇ · τ · P(∇ · τ ) dx+ 2

∫
∇P∇ · τ · ∇P(∇ · τ ) dx,

J8 = −2

∫
P∇ · τ · P(u · ∇u) dx− 2

∫
∇P∇ · τ · ∇P(u · ∇u) dx.

We first have ∫ t

0

J1 ds ≤ C ‖u(t)‖L2‖τ (t)‖H1 + C ‖u0‖L2‖τ0‖H1

+ C ‖u(t)‖H1‖τ (t)‖H2 + C ‖u0‖H1‖τ0‖H2

≤ C ‖u(t)‖H1‖τ (t)‖H2 + C ‖u0‖H1‖τ0‖H2 .

By integration by parts and Hölder’s inequality,

|J2| ≤ ‖∇u‖H1 ‖∂2τ‖H2 , |J3| ≤ ‖∇u‖H1‖τ‖H1 ,

|J6| ≤ ‖∇τ‖H1 ‖∂1u‖H2 , |J7| ≤ ‖∇ · τ‖2H1 ≤ ‖τ‖2H2 .

By integration by parts, Hölder’s inequality and Lemma 2.1,

|J4| ≤ ‖∇u‖L2 ‖u‖L∞‖∇τ‖L2 + C ‖Δu‖L2 ‖∇u‖
1
2

L2 ‖∂1∇u‖
1
2

L2 ‖∇τ‖
1
2

L2 ‖∂2∇τ‖
1
2

L2

+ C ‖Δu‖L2 ‖u‖L∞‖Δτ‖L2

≤ C ‖u‖H2(‖∇u‖2H1 + ‖∇τ‖2H1) + C ‖∇u‖
1
2

L2 ‖∇τ‖
1
2

L2‖∇u‖H1‖∂1u‖
1
2

H2 ‖∂2τ‖
1
2

H2

≤ C (‖u‖H2 + ‖τ‖H2)(‖∇u‖2H1 + ‖∂1u‖2H2 + ‖∇τ‖2H1 + ‖∂2τ‖2H2).

Similarly,

|J5| ≤ ‖∇u‖L2 ‖τ‖L∞‖∇u‖L2 + C ‖Δu‖L2 ‖∇u‖
1
2

L2 ‖∂1∇u‖
1
2

L2 ‖∇τ‖
1
2

L2 ‖∂2∇τ‖
1
2

L2

+ C ‖Δu‖L2 ‖τ‖L∞‖Δu‖L2

≤ C ‖τ‖H2 ‖∇u‖2H1 + C ‖∇u‖
1
2

L2 ‖∇τ‖
1
2

L2‖∇u‖H1‖∂1u‖
1
2

H2 ‖∂2τ‖
1
2

H2

≤ C (‖u‖H2 + ‖τ‖H2)(‖∇u‖2H1 + ‖∂1u‖2H2 + ‖∇τ‖2H1 + ‖∂2τ‖2H2)
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and

|J8| ≤ 2‖∇τ‖L2‖u‖L∞ ‖∇u‖L2 + C‖Δτ‖
1
2

L2 ‖∂2Δτ‖
1
2

L2 ‖∇u‖
3
2

L2‖∂1∇u‖
1
2

L2

+ C ‖Δτ‖
1
2

L2 ‖∂2Δτ‖
1
2

L2 ‖u‖
1
2

L2‖∂1u‖
1
2

L2‖Δu‖L2

≤ C ‖u‖H2‖∇τ‖L2‖∇u‖L2

+ C (‖u‖H2 + ‖τ‖H2)(‖∇u‖2H1 + ‖∂1u‖2H2 + ‖∂2τ‖2H2)

≤ C (‖u‖H2 + ‖τ‖H2)(‖∇u‖2H1 + ‖∂1u‖2H2 + ‖τ‖H2 + ‖∂2τ‖2H2).

Inserting the bounds above in (2.8) and integrating in time, we obtain

E2(t) :=

∫ t

0

‖∇u(s)‖2L2 ds = −2

∫
u · P∇ · τdx+ 2

∫
u0 · P∇ · τ0 dx

− 2

∫
∇u · ∇P∇ · τdx+ 2

∫
∇u0 · ∇P∇ · τ0 dx

+

∫ t

0

(J1 + J2 + · · ·+ J8) ds

≤ C ‖u(t)‖H1‖τ (t)‖H2 + C ‖u0‖H1‖τ0‖H2

+ CE1(t) +
1

2
E2(t) + CE

3
2
1 (t) + CE

3
2
2 (t),

≤ CE(0) + CE1(t) +
1

2
E2(t) + CE

3
2
1 (t) + CE

3
2
2 (t),(2.9)

where we have used several Hölder’s inequalities,∫ t

0

‖∇u‖H1 ‖∂2τ‖H2ds ≤ 1

4

∫ t

0

‖∇u‖2H1 ds+ C

∫ t

0

‖∂2τ‖2H2ds

≤ 1

4
E2(t) + C E1(t),∫ t

0

‖∇u‖H1‖τ‖H1 ds ≤ 1

4
E2(t) + C E1(t),∫ t

0

‖∇τ‖H1 ‖∂1u‖H2 ≤ C E1(t),

∫ t

0

‖∇ · τ‖2H1ds ≤ ‖τ‖2H2 ds ≤ C E1(t)

and ∫ t

0

(‖u‖H2 + ‖τ‖H2)(‖∇u‖2H1 + ‖∂1u‖2H2 + ‖τ‖H2 + ‖∂2τ‖2H2) ds

≤ CE
3
2
1 (t) + CE

3
2
2 (t).

It then follows from (2.9) that

1

2
E2(t) ≤ CE(0) + CE1(t) + CE

3
2
1 (t) + CE

3
2
2 (t),

which is (2.2). This completes the proof of Theorem 1.1. �
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