
Nonlinearity
            

PAPER

3D anisotropic Navier–Stokes equations in :
stability and large-time behaviour
To cite this article: Ruihong Ji et al 2023 Nonlinearity 36 3219

 

View the article online for updates and enhancements.

You may also like
Splitting and coexistence of 2-D strange
attractors in a general family of Expanding
Baker Maps
A Marqués-Lobeiras, A Pumariño, J Á
Rodríguez et al.

-

On the 1-prevalent continuous functions
on compact sets and dimensions
Jia Liu, Bo Tan and Jun Wu

-

Positive solutions of the Gross–Pitaevskii
equation for energy critical and
supercritical nonlinearities
Dmitry E Pelinovsky, Juncheng Wei and
Yuanze Wu

-

This content was downloaded from IP address 129.74.56.136 on 24/08/2023 at 19:26

https://doi.org/10.1088/1361-6544/acd160
/article/10.1088/1361-6544/acdf34
/article/10.1088/1361-6544/acdf34
/article/10.1088/1361-6544/acdf34
/article/10.1088/1361-6544/acd908
/article/10.1088/1361-6544/acd908
/article/10.1088/1361-6544/acd90a
/article/10.1088/1361-6544/acd90a
/article/10.1088/1361-6544/acd90a


Nonlinearity

Nonlinearity 36 (2023) 3219–3237 https://doi.org/10.1088/1361-6544/acd160

3D anisotropic Navier–Stokes equations in
T2×R: stability and large-time behaviour

Ruihong Ji1, Ling Tian2,∗ and Jiahong Wu3

1 College of Mathematics and Physics, and Geomathematics Key Laboratory of
Sichuan Province, Chengdu University of Technology, Chengdu 610059, People’s
Republic of China
2 College of Mathematics, Sichuan University, Chengdu 610059, People’s Republic of
China
3 Department of Mathematics, Oklahoma State University, Stillwater, OK 74078,
United States of America

E-mail: 1666982816@qq.com

Received 31 October 2021; revised 7 March 2023
Accepted for publication 28 April 2023
Published 11 May 2023

Recommended by Dr Tasso J Kaper

Abstract
The study on the large-time behaviour of solutions to the 3D incompressible
anisotropic Navier–Stokes (ANS) equations is very recent. Powerful tools
designed for the Navier–Stokes equations with full Laplacian dissipation such
as the Fourier splitting method no longer apply to the case when there is only
horizontal dissipation. For the whole spaceR3, as t→∞, solutions of the ANS
equations converge to the trivial solution and the convergence rate is algebraic.
This paper is devoted to the case when the spatial domain Ω is T2 ×R. Our
results reveal that the large-time behaviour for T2 ×R is quite different from
that for R3. We show that any small initial velocity field u0 ∈ H2(Ω) leads to
a unique global solution u that remains small in H2(Ω). More importantly, as
t→∞, the velocity field u converges to a nontrivial steady state. The first two
components of the steady state are given by the horizontal average of the first
two components of u0 while the third component vanishes. In addition, this
convergence is exponentially fast.
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1. Introduction

The goal of this paper is to understand the stability and the precise large-time behaviour of
solutions to the 3D Navier–Stokes (NS) equations with only horizontal dissipation{

∂tu+ u ·∇u=−∇P+ ν∆hu, x ∈ Ω, t> 0,
∇· u= 0, x ∈ Ω, t> 0,

(1.1)

where u= (u1(x, t),u2(x, t),u3(x, t)) denotes the velocity field of the fluid, P= P(x, t) the pres-
sure, and ν > 0 the kinematic viscosity. The spatial domain is taken to be Ω= T2 ×R with
T2 = [0,1]2 being the 2D periodic box. Here △h = ∂2

1 + ∂2
2 and, for notational convenience,

wewrite ∂i for ∂xi with i = 1,2,3. In addition, we use∇h := (∂1,∂2) for the horizontal gradient
and uh = (u1,u2) for the horizontal velocity components.

The anisotropic Navier–Stokes (ANS) equations arise in the modeling of laminar and tur-
bulent flows in Ekman layers ([3], [17, chapter 4]) as well as in various centrifuge studies (see,
e.g. [2]). Ekman layers are boundary layers in which there is a balance between the viscous
force and the Coriolis acceleration. They are typically quite thin in the vertical direction. In
these thin layers, the horizontal diffusion of velocity dominates the vertical diffusion and (1.1)
is relevant.

There have been substantial recent developments on the 3D ANS equations in the whole
space R3. Significant progress has been on the well-posedness of (1.1) in various Sobolev
and Besov spaces (see, e.g. [3, 4, 13, 15, 18, 19, 29, 30]). But no study has been done on the
ANS equations in the domain focused in this paper. The approach for the whole space case R3

may not work for the domain T2 ×R. The estimates on the nonlinear term are actually quite
different. A detailed explanation is given later. In addition, our investigation reveals that the
large-time behaviour of solutions for the domain T2 ×R is significantly different from the R3

case. It is hoped that the results of this paper will help us gain a more complete understanding
of the ANS equations.

As we know, the global existence and regularity problem on the 3D NS equations with a
general smooth initial data remains an outstanding open problem. The ANS equations in (1.1)
are less regularized than the NS equations due to the lack of vertical dissipation. Many fun-
damental issues on (1.1) such as the global regularity problem are not well understood. The
main difficulty is due to the fact that the dissipation is insufficient to control the nonlinearity
for general solutions.

When the initial data is small, even the anisotropic dissipation may dominate since the non-
linearity is quadratic and may be even smaller. The Sobolev space is a very natural functional
setting that allows us to quantity the size of the solutions. Here we choose the Sobolev space
H2(Ω). To understand the global existence and regularity problem, we consider the evolution
of the Sobolev norm of the solution, namely ∥u(t)∥H 2 . The energy method is a powerful tool
for this purpose. It starts with taking up to the second-order weak derivatives of (1.1) and then
taking the inner product with the corresponding derivatives of u. This yields

1
2
d
dt
∥u(t)∥2H 2 + ν∥∇hu(t)∥2H 2 =−J,

where

J :=
∑

α1+α2+α3⩽2

ˆ
T2×R

∂α1
1 ∂α2

2 ∂α3
3 (u ·∇u) · ∂α1

1 ∂α2
2 ∂α3

3 udx.
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Obviously J comes from the nonlinearity. The whole issue is then how to obtain a suitable
upper bound on J. Due to the lack of dissipation in the vertical direction, the most difficult
parts in J are those with many vertical derivatives such as

J1 :=
ˆ
T2×R

∂2
3(u ·∇u) · ∂2

3udx.

Some of the vertical derivatives may be converted to horizontal derivatives via the
divergence-free condition,

∂3u3 =−(∂1u1 + ∂2u2).

Unfortunately there are terms in J1 for which such conversions are not possible and one
such term is

J11 :=
ˆ
T2×R

∂2
3uh ·∇huh · ∂2

3uh dx, (1.2)

J11 involves a product of three terms (triple product) and a natural way of estimating it is to
first apply Hölder’s inequality followed by Sobolev’s embedding inequalities.

In the case of full Laplacian dissipation, we have smoothing and control in all directions
and the standard Sobolev inequalities suffice. When the dissipation is anisotropic, the lack
of vertical regularization makes it harder to control J11. This motivated the developments of
anisotropic upper bounds for triple products. When the spatial domain is the whole space R3,
the anisotropic upper bound reads∣∣∣∣ˆ

R3

fghdx

∣∣∣∣ ⩽ C∥ f∥
1
2
L2(R3)

∥∂1 f∥
1
2
L2(R3)

∥g∥
1
2
L2(R3)

∥∂2g∥
1
2
L2(R3)

×∥h∥
1
2
L2(R3)

∥∂3h∥
1
2
L2(R3)

. (1.3)

The bound on the right-hand side of (1.3) only requires partial derivatives ∂1 f, ∂2g and
∂3h. In comparison, the classical upper bounds require full gradient of these functions. There-
fore, (1.3) is much sharper than the classical triple product estimates and removes unnecessary
requirements on the derivatives.

Mathematically (1.3) is proven by first bounding the triple product by anisotropic Hölder
inequalities (Hölder inequalities with different indices in different directions) and then invok-
ing the following 1D Sobolev inequality on R,

∥ f∥L∞(R) ⩽
√
2∥ f∥

1
2
L2(R)∥ f

′∥
1
2
L2(R). (1.4)

A detailed proof of (1.3) can be found in [27]. The 2D version of (1.3) was obtained in [7].
Intuitively (1.3) can be understood as follows. The triple product would be bounded when the
functions f, g nd h have enough high integrability. This requirement is fulfilled if f is essentially
bounded in x1, g in x2 and h in x3. Sobolev’s inequality then translates these conditions into
partial derivatives.

As we know, Sobolev’s inequality for bounded domains usually contains an extra integ-
rability term of the function itself. For example, the 1D Sobolev inequality for the periodic
domain T (a special bounded domain) assumes the form,

∥ f∥L∞(T) ⩽
√
2∥ f∥

1
2
L2(T)∥ f

′∥
1
2
L2(T) + ∥ f∥L2(T), (1.5)
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which contains the extra term ∥ f∥L2(T). As a consequence, when Ω= T2 ×R, (1.3) needs to
be changed to ∣∣∣∣ˆ

Ω

fghdx

∣∣∣∣⩽ C∥ f∥
1
2
L2(Ω)

(
∥ f∥L2(Ω) + ∥∂1 f∥L2(Ω)

) 1
2

×∥g∥
1
2
L2(Ω)

(
∥g∥L2(Ω) + ∥∂2g∥L2(Ω)

) 1
2 ∥h∥

1
2
L2(Ω)

∥∂3h∥
1
2
L2(Ω)

. (1.6)

A rigorous proof of (1.6) can be achieved by first applying anisotropic Hölder’s inequality
and then (1.5). Intuitively the triple products on Ω can be bounded in terms of directional
high integrability, which can be further controlled by directional derivatives along with low
integrability terms. The 2D version of this type of inequalities have been used in [10, 11].

The difference between (1.3) for R3 and (1.6) for Ω generates a different upper bound on
the nonlinearity in the case of R3 from the one for Ω. In fact, applying (1.3) to (1.2) in the
whole space R3 yields

|J11|⩽ C∥∂2
3uh∥

1
2
L2(R3)

∥∂1∂2
3uh∥

1
2
L2(R3)

∥∇huh∥
1
2
L2(R3)

∥∂3∇huh∥
1
2
L2(R3)

×∥∂2
3uh∥

1
2
L2(R3)

∥∂2∂2
3uh∥

1
2
L2(R3)

⩽ C∥u∥H 2 ∥∇hu||2H 2 ,

which is the desired upper bound. When we apply (1.6), we no longer obtain the desired

upper bound C∥u∥H 2 ∥∇hu||2H 2 due to the presence of
(
∥ f∥L2(Ω) + ∥∂1 f∥L2(Ω)

) 1
2 instead of

∥∂1 f∥
1
2
L2(Ω)

. Therefore the approach for the whole space R3 no longer applies to the domain

Ω= T2 ×R.
This paper presents some new ideas. One strategy is to split u into two parts

u= u+ ũ, (1.7)

where u denotes the horizontal average, namely

u(x3, t) =
ˆ
T2

u(xh,x3, t)dxh.

ũ= u− u is the corresponding oscillation part. This decomposition is orthogonal in any
Hm(T2 ×R) for integer m⩾ 0, that is,∑

|α|=m

ˆ
T2×R

∂αu · ∂αũdx= 0, ∥u∥2Ḣm = ∥u∥2Ḣm + ∥ũ∥2Ḣm .

We remark that the decomposition in (1.7) has been used before for the case when only one
direction is periodic and the average is taken over a single variable (see, e.g. [8, 10, 11, 20,
26]). Here the average is taken over the 2D periodic domain or torus. In addition, due to its
zero horizontal average, ũ has some crucial properties that we need. For example, ũ obeys a
strong version of the Poincaré type inequality,

∥ũ∥L2(Ω) ⩽ C∥∇hũ∥L2(Ω), (1.8)

where the full gradient in the standard Poincaré type inequality is replaced by∇h. The strong
Poincaré type inequality in (1.8) has mostly been used in the case when the right-hand side
of (1.8) involves partial derivatives in a single direction (see, e.g. [10, 11, 20]). This decomposi-
tion allows us to separate u into two pieces with quite different properties. It will be extensively
used in the estimates of the nonlinear parts, especially in J11. Then we can write
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J11 =
ˆ
Ω

∂2
3(uh+ ũh) ·∇h(uh+ ũh) · ∂2

3(uh+ ũh)dx

=

ˆ
Ω

∂2
3uh ·∇hũh · ∂2

3 ũh dx+
ˆ
Ω

∂2
3 ũh ·∇hũh · ∂2

3uh dx+
ˆ
Ω

∂2
3 ũh ·∇hũh · ∂2

3 ũh dx, (1.9)

where we have used the fact∇huh = 0 andˆ
Ω

∂2
3uh ·∇hũh · ∂2

3uh dx= 0.

In addition, we also make use of the following anisotropic inequality, for Ω= T2 ×R,∣∣∣∣ˆ
Ω

fghdx

∣∣∣∣⩽ C
(
∥ f∥L2(Ω) + ∥∇h f∥L2(Ω)

) 1
2
(
∥ f∥L2(Ω) + ∥∂3f∥L2(Ω)

) 1
2

×∥g∥
1
2
L2(Ω)

(
∥g∥L2(Ω) + ∥∇hg∥L2(Ω)

) 1
2 ∥h∥L2(Ω). (1.10)

Cao et al [5] have proved and used this inequality when they study the Hasegawa-Mima model
in a periodic domain. We can check that (1.10) is still valid for the domain Ω= T2 ×R. The
anisotropic upper bound inequality in (1.10) can be easily understood intuitively. As afore-
mentioned, the triple product is bounded if the functions involved have enough anisotropic
integrability. This would be the case if f is in the Lebesgue space L4 in terms of the hori-
zontal two variables and L∞ in terms of the vertical variable, and g is in the Lebesgue space
L4 in terms of the horizontal two variables. Sobolev’s inequality states that L4-norm in 2D
can be controlled by the L2-norm of half-derivative, and L∞-norm in 1D can be more or less
controlled by the L2-norm of half-derivative. This fact gives the terms on the right-hand side
of (1.10). Combining with (1.8), (1.10) is then reduced to∣∣∣∣ˆ

Ω

f̃ g̃ hdx

∣∣∣∣⩽ C∥∇h f̃∥L2(Ω)

(
∥ f̃∥L2(Ω) + ∥∂3 f̃∥L2(Ω)

) 1
2

×∥∇hg̃∥L2(Ω) ∥h∥L2(Ω), (1.11)

where f̃ and g̃ denote the oscillation parts of f and g, respectively. Applying (1.11) to the terms
in (1.9) would lead to the desired upper bound

C∥u∥H 2 ∥∇hu||2H 2 .

This explains the major differences between the approaches for two different domains R2

and T2 ×R. Implementing the strategy outlined above and applying the bootstrapping argu-
ment, we are able to establish the following well-posedness and stability result.

Theorem 1.1. LetΩ= T2 ×R. Assume the initial data u0 ∈ H2(Ω)with∇· u0 = 0. Then there
exists a constant ε= ε(ν)> 0 such that, if

∥u0∥H 2 ⩽ ε, (1.12)

then (1.1) has a unique global solution

u ∈ L∞(0,∞;H2(Ω)). (1.13)

In addition, for an absolute constant C0 > 0,

sup
τ∈[0,t]

∥u(τ)∥2H 2 + ν

ˆ t

0
∥∇hu(τ)∥2H 2 dτ ⩽ C2

0 ε
2,

for any t> 0.
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Our second goal is to understand the large-time behaviour of solutions obtained in theorem
1.1. As we shall reveal, this behaviour relies crucially on the spatial domain. The large-time
behaviour for Ω= T2 ×R will be quite different from that for the whole space R3.

Large-time behaviour has been a prominent topic in the study of many PDE models. For
the 3D NS equations with full Laplacian dissipation, a set of effective approaches such as the
Fourier splitting method of Schonbek have been created to capture their large-time behaviour
(see, e.g. [21–24]). However, when the dissipation is anisotropic and only in the horizontal
direction, the methods designed for the full dissipation case no longer apply. Several very
recent papers have succeeded in establishing the large-time behaviour of solutions to the ANS
equations in the whole spaceR3. Ji et al [14] showed that, if the initial data u0 obeys∇· u0 = 0
and, for σ ∈ [3/4,1),

∥u0∥H4(R3) + ∥u0∥Ḣ−σ,0(R3) + ∥∂3u0∥Ḣ−σ,0(R3) ⩽ ε,

for some sufficiently small ε> 0, then the corresponding solution u to (1.1) has the following
decay rates:

∥u(t)∥L2(R3) + ∥∂3u(t)∥L2(R3) ⩽ Cε(1+ t)−
σ
2 , ∥∇hu(t)∥L2(R3) ⩽ Cε(1+ t)−

1+σ
2 .

Here the norm ∥ f∥Ḣs,s1 (R3) is defined by

∥ f∥Ḣs,s1 (R3) =

[ˆ
R3

|ξh|2s |ξ3|2s1 |̂ f(ξ)|2 dξ
] 1

2

.

The work of Xu and Zhang [28] weakens the regularity assumption of [14] on the initial
data by employing anisotropic Besov spaces. They also observed the remarkable enhanced
dissipation in the third component of the velocity, which decays faster than the first two com-
ponents! In addition, Fujii [12] considered solutions of (1.1) in a subspace ofHs(R3)∩L1(R3)
with s⩾ 5, and established algebraic decay rates in Lq(R3) for 1⩽ q⩽∞. Large-time asymp-
totic behaviour is also established. Fujii [12] reaffirmed the enhanced dissipation in the third
velocity component.

When the spatial domain Ω is T2 ×R, the large-time behaviour of solutions to (1.1) is
different. Here the initial data u0 is assumed to be in H2(Ω) only. The corresponding solution
u of (1.1) may not even decay in L2(Ω). Our idea here is to decompose u into its horizontal
average u and the oscillation part ũ, as in (1.7). We can show that ũ decays exponentially to
zero in H1(Ω) as t→∞. As a consequence, the ANS equations in (1.1) converges to an 1D
system involving the horizontal average of the first two velocity components u1 and u2, and
with the horizontal average of the third component u3 remaining a constant. More precisely,
we obtain the following result.

Theorem 1.2. Let Ω= T2 ×R. Assume u0 ∈ H2(Ω) satisfies∇· u0 = 0 and

∥u0∥H 2(Ω) ⩽ ε,

for sufficiently small ε> 0. Let u be the corresponding solution of (1.1) obtained in theorem
1.1. Then the H1-norm of the oscillation part ũ decays exponentially in time, for a constant
C1 > 0,

∥ũ(t)∥H1 ⩽ ∥ũ0∥H1e−C1t, (1.14)
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for all t> 0. As a consequence, (1.1) converges to
∂tu1 + u03 ∂3u1 = 0,

∂tu2 + u03 ∂3u2 = 0,

u3(x3, t) = u03,

(1.15)

which, together with u03 = 0 due to the incompressibility and functional setting, leads to the
large-time asymptotics

u(x1,x2,x3, t) = (u01(x3),u02(x3),0)+O(e−Ct), (1.16)

where u01, u02 and u03 are the horizontal averages of the initial velocity components.

Equation (1.16) states that the velocity field u converges to a nontrivial steady state solution.
The first two components of the steady state are given by the horizontal average of the initial
horizontal velocity u0h while the third component vanishes. In addition, the convergence to
the steady state is exponentially fast. This confirms our claim that the large-time behaviour
for Ω= T2 ×R is quite different from that for R3. In the cases of R3, solutions of the ANS
converge to the trivial solution and the convergence rate is algebraic.

We briefly explain why the third component of the steady state vanishes. Due to the incom-
pressibility condition ∇· u= 0, we have∇· u= 0. Since ∂1u1 = 0 and ∂2u2 = 0, we have

∂3u3 = 0.

That is, u3 depends only on t. But u3 ∈ L2(T2 ×R) forces u3 = 0. It is clear that the solution
of (1.15) is given by

(u01(x3 − u03t),u02(x3 − u03t),u03).

The first two components are propagating waves with the constant speed u03 and the ini-
tial profiles given by the horizontal average of the horizontal components. When u03 = 0, the
solution becomes the steady-state given in (1.16).

To prove (1.14), we first derive the system governing the oscillation part ũ,{
∂tũ+ ũ ·∇ũ+ ũ3∂3u=−∇p̃+ ν∆hũ,
∇· ũ= 0.

Applying the decomposition in (1.7), Poincaré’s inequality (1.8) and various anisotropic
inequalities, we estimate ∥ũ∥22 and ∥∇ũ∥22 to obtain the following inequality

d
dt
∥ũ(t)∥2H1 +(2ν−C∥u∥H 2)∥∇hũ∥2H1 ⩽ 0. (1.17)

When the initial norm satisfies ∥u0∥H2 ⩽ ε for sufficiently small ε> 0 , we have ∥u(t)∥H2 ⩽
C0ε and

2ν−C∥u∥H 2 ⩾ ν.

Applying the strong Poincaré’s inequality to (1.17) then yields the desired exponential decay.
Finally we state a more general version of theorems 1.1 and 1.2. This general result can be

similarly shown as the theorems.

Corollary 1.1. Consider (1.1) with ν > 0. Let m⩾ 2 be an integer. Assume u0 ∈ Hm(Ω) with
∇· u0 = 0. Then there exists ε> 0 such that, if

∥u0∥Hm(Ω) ⩽ ε,
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then (1.1) has a unique global solution u ∈ L∞(0,∞;Hm(Ω)) satisfying

sup
τ∈[0,t]

∥u(τ)∥2Hm + ν

ˆ t

0
∥∇hu(τ)∥2Hm dτ ⩽ C2ε2.

Furthermore, then the Hm-norm of the oscillation part ũ of u decays exponentially in time

∥ũ(t)∥Hm−1 ⩽ C∥ũ0∥Hm−1e−Ct,

for some constant C> 0 and for all t> 0.

The rest of this paper is divided into three sections. Section 2 presents several anisotropic
inequalities and some fine properties related to the orthogonal decomposition. Section 3 proves
theorem 1.1 while section 4 is devoted to establishing theorem 1.2.

2. Orthogonal decomposition and anisotropic inequalities

This section presents properties associatedwith the orthogonal decomposition in (1.7), a strong
version of the Poincaré’s inequality and various anisotropic Sobolev inequalities. These prop-
erties and inequalities will be used in the proofs of theorems 1.1 and 1.2.

Let T2 = [0,1]2 be a 2D periodic box. Let f = f(xh,x3) with (xh,x3) ∈ T2 ×R be integrable
in xh on T2. Define

f(x3) =
ˆ
T2

f(xh,x3)dxh. (2.1)

We decompose f into f and the corresponding oscillation portion f̃ with

f̃ = f− f. (2.2)

The properties stated in the following lemma follows directly from the definitions of
f and f̃.

Lemma 2.1. LetΩ= T2 ×R. Assume that f = f(xh,x3) defined onΩ is sufficiently regular. Let
f and f̃ be defined as in (2.1) and (2.2), respectively.

(1) The following basic properties hold,

∂j f= ∂j f= 0, j= 1,2; ∂3f= ∂3 f, f̃ = 0.

(2) Partial derivatives commute with the bar and the tilde operates, namely

∂αf= ∂αf, ∂̃αf= ∂α f̃,

for any partial derivative ∂α. As a consequence, if ∇· u= 0, then

∇· u= 0, ∇· ũ= 0.

(3) f and f̃ are orthogonal in Ḣm(Ω) for any integer m⩾ 0, namely

( f, f̃)Ḣm :=
∑
|α|=m

ˆ
Ω

∂αf · ∂α f̃ dx= 0, ∥ f∥2Ḣm = ∥ f∥2Ḣm + ∥ f̃∥2Ḣm .
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More generally, for any f,g ∈ Ḣm(Ω) with integer m⩾ 0,

( f, g̃)Ḣm = 0.

The following lemma states a strong version of the Poincaré’s inequality for the oscillation
portion f̃.

Lemma 2.2. Let Ω= T2 ×R. Assume f ∈ Ḣ1(Ω) and let f̃ be the corresponding oscillation
part. Then there is a constant C> 0 such that

∥ f̃∥L2(Ω) ⩽ C∥∇h f̃∥L2(Ω).

We need several anisotropic Sobolev inequalities in order to deal with the 3D ANS inequal-
ities. The 1D Sobolev inequalities play a crucial role in the derivation of the 3D anisotropic
inequalities. For the 1D function defined on the whole line R, f ∈ H1(R) implies

∥ f∥L∞(R) ⩽ C∥ f∥
1
2
L2(R) ∥ f

′∥
1
2
L2(R). (2.3)

For a function defined on the 1D periodic box T, the Sobolev inequality is different. In fact,
for f ∈ H1(T),

∥ f∥L∞(T) ⩽ C∥ f∥
1
2
L2(T)

(
∥ f∥L2(T) + ∥ f ′∥L2(T)

) 1
2 . (2.4)

However, the oscillation piece f̃ still obeys the same inequality as in (2.3). If f ∈ H1(T) and
f̃ is the corresponding oscillation piece, then

∥ f̃∥L∞(T) ⩽ C∥ f̃∥
1
2
L2(T) ∥ f̃

′∥
1
2
L2(T). (2.5)

As a consequence of (2.3), the anisotropic inequality in R3 is given by∣∣∣∣ˆ
R3

fghdx

∣∣∣∣ ⩽ C∥ f∥
1
2
L2(R3)

∥∂1 f∥
1
2
L2(R3)

×∥g∥
1
2
L2(R3)

∥∂2g∥
1
2
L2(R3)

∥h∥
1
2
L2(R3)

∥∂3h∥
1
2
L2(R3)

. (2.6)

Due to (2.4) and (2.5), the anisotropic Sobolev inequalities stated in the following lemma
hold.

Lemma 2.3. Let Ω= T2 ×R. Assume f,∂1f,g,∂2g,h,∂3h ∈ L2(Ω). Then∣∣∣∣ˆ
Ω

fghdx

∣∣∣∣ ⩽ C∥ f∥
1
2
L2(Ω)

(
∥ f∥L2(Ω) + ∥∂1 f∥L2(Ω)

) 1
2

×∥g∥
1
2
L2(Ω)

(
∥g∥L2(Ω) + ∥∂2g∥L2(Ω)

) 1
2 ∥h∥

1
2
L2(Ω)

∥∂3h∥
1
2
L2(Ω)

,

where the last part has only ∥∂3h∥
1
2
L2(Ω)

instead of
(
∥h∥L2(Ω) + ∥∂3h∥L2(Ω)

) 1
2 due to the whole

line setting for x3. When f and g are replaced by their corresponding oscillation pieces f̃ and
g̃, then the inequality resembles the whole space case,∣∣∣∣ˆ

Ω

f̃ g̃hdx

∣∣∣∣ ⩽ C∥ f̃∥
1
2
L2(Ω)

∥∂1 f̃∥
1
2
L2(Ω)

∥g̃∥
1
2
L2(Ω)

∥∂2g̃∥
1
2
L2(Ω)

∥h∥
1
2
L2(Ω)

∥∂3h∥
1
2
L2(Ω)

. (2.7)

We will also make use of the anisotropic inequality stated in the following lemma. The
periodic version of this inequality was shown and used by Cao et al [5] when they study the
Hasegawa–Mimamodel in a periodic domain.We have found that this inequality remains valid
for the domain Ω= T2 ×R.
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Lemma 2.4. Let Ω= T2 ×R. There exists a constant C> 0 such that, for any f ∈ H1(Ω) and
g,∇hg,h ∈ L2(Ω), we haveˆ

Ω

| fgh|dx⩽ C(∥ f∥L2 + ∥∇h f∥L2)
1
2 (∥ f∥L2 + ∥∂3 f∥L2)

1
2

×∥g∥
1
2
L2(∥g∥L2 + ∥∇hg∥L2)

1
2 ∥h∥L2 .

A special consequence of lemma 2.4 and the Poincaré’s inequality in lemma 2.2 is the
anisotropic inequality when one or two functions involved are the oscillation parts.

Corollary 2.5. Let Ω= T2 ×R. There exists a constant C> 0 such that, for any f ∈ H1(Ω)
and g,∇hg,h ∈ L2(Ω), we haveˆ

Ω

| f̃ gh|dx⩽ C∥∇h f̃∥
1
2
L2(∥ f̃∥L2 + ∥∂3 f̃∥L2)

1
2 ∥g∥

1
2
L2(∥g∥L2 + ∥∇hg∥L2)

1
2 ∥h∥L2 , (2.8)

and ˆ
Ω

| f̃ g̃h|dx⩽ C∥∇h f̃∥
1
2
L2(∥ f̃∥L2 + ∥∂3 f̃∥L2)

1
2 ∥∇hg̃∥L2∥h∥L2 , (2.9)

here f̃ and g̃ denote the oscillation parts of f and g, respectively.

3. Proof of theorem 1.1

This section proves theorem 1.1. The local (in time) existence part can be shown via a rather
standard procedure such as Friedrichs’ method of cutoff in Fourier space (see, e.g. [1]). There-
fore our focus is on the global a priori bound on the solution in H2(Ω). We employ the boot-
strapping argument. A rigorous statement of the abstract bootstrapping principle can be found
in T. Tao’s book (see [25]).

Proof of theorem 1.1. The centerpiece of the proof is the energy inequality, for a constant
C> 0 and any t> 0,

E(t)⩽ E(0)+ CE(t)
3
2 , (3.1)

where E(t) denotes the energy functional

E(t) = sup
τ∈[0,t]

∥u(τ)∥2H 2 + ν

ˆ t

0
∥∇hu(τ)∥2H 2 dτ.

To prove (3.1), we estimate ∥u∥H 2 . The L2 bound is immediate,

∥u(t)∥2L2 + 2ν
ˆ t

0
∥∇hu(τ)∥2L2 dτ = ∥u0∥2L2 . (3.2)

It remains to bound the Ḣ2-norm of u. Applying ∇2 to (1.1) and then dotting by ∇2u, we
find

1
2
d
dt
∥∇2u∥2L2 + ν∥∇2∇hu∥2L2 = I1 + I2, (3.3)

where the pressure term vanishes due to∇· u= 0, and

I1 =−
2∑
i=1

ˆ
Ω

∂2
i (u ·∇u) · ∂2

i udx, I2 =−
ˆ
Ω

∂2
3(u ·∇u) · ∂2

3udx.
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Invoking the decomposition u= u+ ũ and using lemma 2.1, we have

I1 =−
2∑
i=1

ˆ
Ω

∂2
i u ·∇u · ∂2

i udx− 2
2∑
i=1

ˆ
Ω

∂iu ·∇∂iu · ∂2
i udx

=−
2∑
i=1

ˆ
Ω

∂2
i ũ ·∇u · ∂2

i ũdx− 2
2∑
i=1

ˆ
Ω

∂iũ ·∇∂iũ · ∂2
i ũdx,

where we have used ∂i u= 0 for i = 1,2. By (2.7) in lemma 2.3,

|I1|⩽ C
2∑
i=1

∥∂2
i ũ∥

1
2
L2∥∂1∂

2
i ũ∥

1
2
L2 ∥∇u∥

1
2
L2 ∥∂3∇u∥

1
2
L2 ∥∂

2
i ũ∥

1
2
L2∥∂2∂

2
i ũ∥

1
2
L2

+C
2∑
i=1

∥∂iũ∥
1
2
L2 ∥∂3∂iũ∥

1
2
L2 ∥∂i∇ũ∥

1
2
L2 ∥∂1∂i∇ũ∥

1
2
L2 ∥∂

2
i ũ∥

1
2
L2 ∥∂2∂

2
i ũ∥

1
2
L2

⩽ C∥u∥H 2∥∇hu∥2H 2 . (3.4)

We further decompose I2 into two terms,

I2 = −
ˆ
Ω

∂2
3(uh ·∇hu+ u3∂3u) · ∂2

3udx := I21 + I22.

Writing u= u+ ũ and using lemma 2.1, we have

I21 =−
2∑

k=1

Ck2

ˆ
Ω

∂k3(uh+ ũh) · ∂2−k
3 ∇hũ · ∂2

3(u+ ũ)dx

=−
2∑

k=1

Ck2

(ˆ
Ω

∂k3uh · ∂2−k
3 ∇hũ · ∂2

3 ũdx−
ˆ
Ω

∂k3ũh · ∂2−k
3 ∇hũ · ∂2

3udx

−
ˆ
Ω

∂k3ũh · ∂2−k
3 ∇hũ · ∂2

3 ũdx

)
:= I211 + I212 + I213,

where Ck2 denotes the binomial coefficient, and we have used the fact that
ˆ
Ω

∂2
3uh ·∇hũ · ∂2

3udx=
ˆ
R
∂2
3uh ·

(ˆ
T2

∇hũdxh

)
· ∂2

3udx3 = 0.

By lemma 2.5, we have

I211 ⩽ C
2∑

k=1

∥∇h∂
2−k
3 ∇hũ∥

1
2
L2(∥∂

2−k
3 ∇hũ∥L2 + ∥∂3∂2−k

3 ∇hũ∥L2)
1
2

×∥∇h∂
2
3 ũ∥L2∥∂k3uh∥L2

⩽ C∥u∥H 2∥∇hu∥2H 2 ,

I212 ⩽ C
2∑

k=1

∥∇h∂
2−k
3 ∇hũ∥

1
2
L2(∥∂

2−k
3 ∇hũ∥L2 + ∥∂3∂2−k

3 ∇hũ∥L2)
1
2

×∥∇h∂
k
3ũh∥L2∥∂2

3u∥L2
⩽ C∥u∥H 2∥∇hu∥2H 2 ,
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and

I213 ⩽ C
2∑

k=1

∥∇h∂
2−k
3 ∇hũ∥

1
2
L2(∥∂

2−k
3 ∇hũ∥L2 + ∥∂3∂2−k

3 ∇hũ∥L2)
1
2

×∥∇h∂
k
3ũh∥L2∥∂2

3 ũ∥L2
⩽ C∥u∥H 2∥∇hu∥2H 2 .

We now turn to the estimates of I22,

I22 = −
2∑

k=1

Ck2

ˆ
Ω

∂k3u3∂
2−k
3 ∂3u · ∂2

3udx

=
2∑

k=1

Ck2

ˆ
Ω

∂k−1
3 ∇h · ũh∂3−k

3 u · ∂2
3udx

=
2∑

k=1

Ck2

ˆ
Ω

(
∂k−1
3 ∇h · ũh∂3−k

3 ũ · ∂2
3u+ ∂k−1

3 ∇h · ũh∂3−k
3 u · ∂2

3 ũ
)
dx

:= I221 + I222.

By lemma 2.5, we have

I221 ⩽ C∥∇h∂
k−1
3 ∇h · ũh∥

1
2
L2(∥∂

k−1
3 ∇h · ũh∥L2 + ∥∂3∂k−1

3 ∇h · ũh∥L2)
1
2

×∥∇h∂
3−k
3 ũ∥L2∥∂2

3u∥L2
⩽ C∥u∥H 2∥∇hu∥2H 2 .

and

I222 ⩽ C∥∇h∂
k−1
3 ∇h · ũh∥

1
2
L2(∥∂

k−1
3 ∇h · ũh∥L2 + ∥∂3∂k−1

3 ∇h · ũh∥L2)
1
2

×∥∇h∂
2
3 ũ∥L2∥∂3−k

3 u∥L2
⩽ C∥u∥H 2∥∇hu∥2H 2 .

Combining all the estimates for I2, we have

I2 ⩽ C∥u∥H 2∥∇hu∥2H 2 . (3.5)

Equations (3.4) and (3.5) yield

I1 + I2 ⩽ C∥u∥H 2∥∇hu∥2H 2 . (3.6)

It then follows from (3.3) that

∥∇2u∥2L2 + 2ν
ˆ t

0
∥∇2∇hu∥2L2 dτ ⩽ C

ˆ t

0
∥u∥H 2∥∇hu∥2H 2 dτ

⩽ C sup
τ∈[0,t]

∥u(τ)∥H 2

ˆ t

0
∥∇hu(τ)∥2H 2 dτ.

Adding this inequality to (3.2) gives

E(t)⩽ E(0)+CE(t)
3
2 .

A bootstrapping argument implies that, there is ε> 0, such that, if E(0)< ε2, then

E(t)⩽ C2
0 ε

2,
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for an absolute constant C0 > 0 and for all t> 0. This finishes the global stability and a priori
bound part.

We now prove the uniqueness part of theorem 1.1. We show that if two solutions (u(1),P(1))
and (u(2),P(2)) of (1.1) are in the regularity class L∞(0,T;H2), then they must coincide. Their
difference (u∗,P∗) with

u∗ = u(1) − u(2), P∗ = P(1) −P(2),

satisfies {
∂tu∗ + u(1) ·∇u∗ + u∗ ·∇u(2) =−∇P∗ + ν ∆hu∗, x ∈ Ω, t> 0,
∇· u∗ = 0,

(3.7)

Taking the inner product of u∗ with (3.7) yields

d
dt
∥u∗∥2L2 + 2ν∥∇hu

∗∥2L2 =−
ˆ
Ω

u∗ ·∇u(2) · u∗dx. (3.8)

Since the dissipation is only in the horizontal direction, we need an anisotropic upper bound
for the term on the right-hand side. By Hölder’s, Sobolev’s and Minkowski’s inequalities, we
get

−
ˆ
Ω

u∗ ·∇u(2) · u∗dx⩽ ∥u∗∥2L4hL2x3
∥∇u(2)∥L2hL∞x3

⩽ C∥u∗∥2L4hL2x3
∥∇u(2)∥

1
2
L2∥∂3∇u

(2)∥
1
2
L2

⩽ C∥u∗∥L2∥∇hu
∗∥L2∥∇u(2)∥

1
2
L2∥∂3∇u

(2)∥
1
2
L2

⩽ ν∥∇hu
∗∥2L2 +C(ν)∥u(2)∥2H 2∥u∗∥2L2 .

Incorporating this upper bound in (3.8) yields

d
dt
∥u∗∥2L2 + ν∥∇hu

∗∥2L2 ⩽ C(ν)∥u(2)∥2H 2∥u∗∥2L2 ,

which leads to the uniqueness due to u(2) ∈ L∞(0,T;H2). This completes the proof of
theorem 1.1.

4. Proof of theorem 1.2

This section is devoted to the proof of theorem 1.2. We will use the fact stated in the following
lemma. This lemma was proven and used in [9].

Lemma 4.1. Let f = f(y) with y ∈ R be a nonnegative continuous function. Assume f is integ-
rable on R, ˆ

R
f(y)dy<∞. (4.1)

If f is uniformly continuous on R, then

f(y)→ 0 as |y| →∞.
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Proof of theorem 1.2. The proof is naturally divided into two parts. The first part verifies that
the H1-norm of the oscillation part ũ decays exponentially for large time. The second part
establishes the large-time asymptotics for u.

Taking the horizontal average of (1.1) yields ∂tu+ u ·∇ũ+ u3∂3u=

 0
0

−∂3p

 ,

∂3u3 = 0,

(4.2)

where we have invoked∆hu= 0 and

u ·∇u= u ·∇ũ+ u ·∇u= u ·∇ũ+ u3∂3u,

due to ∂1u= ∂2u= 0. Taking the difference of (1.1) and (4.2), we find{
∂tũ+ ũ ·∇ũ+ ũ3∂3u=−∇p̃+ ν∆hũ,
∇· ũ= 0.

(4.3)

Here we have used

u ·∇u− (u ·∇ũ+ u3∂3u) = u ·∇ũ− u ·∇ũ+ u ·∇u− u3∂3u

= ũ ·∇ũ+ u3∂3u− u3∂3u

= ũ ·∇ũ+ ũ3∂3u.

The L2-estimate gives

1
2
d
dt
∥ũ(t)∥2L2 + ν∥∇hũ∥2L2 = −

ˆ
Ω

ũ ·∇ũ · ũdx−
ˆ
Ω

ũ3∂3u · ũdx

:= A1 +A2. (4.4)

Using ∇· u= 0 and a property in lemma 2.1, we have

A1 =−
ˆ
Ω

ũ ·∇ũ · ũdx=−
ˆ
Ω

u ·∇ũ · ũdx+
ˆ
Ω

u ·∇ũ · ũdx= 0.

The second part above is zero due to
´
Ω
f · g̃dx= 0 or a direct verification,

ˆ
Ω

u ·∇ũ · ũdx=
ˆ
R
u ·∇ũ(x3)

ˆ
T2

ũdxhdx3 =
ˆ
R
u ·∇ũ · ũdx3 = 0.

By lemmas 2.2 and 2.5,

A2 = −
ˆ
Ω

ũ3∂3u · ũdx

⩽ C(∥∂3u∥L2 + ∥∇h∂3u∥L2)
1
2 (∥∂3u∥L2 + ∥∂3∂3u∥L2)

1
2 ∥∇hũ∥L2∥ũ3∥L2

⩽ C∥u∥H2∥∇hũ∥2L2 .

It then follows from (4.4) that

d
dt
∥ũ(t)∥2L2 +(2ν−C∥u∥H 2)∥∇hũ∥2L2 ⩽ 0. (4.5)
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By theorem 1.1, if ε> 0 is sufficiently small and ∥u0∥H2 ⩽ ε, then ∥u(t)∥H2 ⩽ C0ε and

2ν−C∥u∥H2 ⩾ ν. (4.6)

Equations (4.5) and (4.6) and Poincaré type inequality in lemma 2.2 leads to the desired
exponential decay for ∥ũ∥L2 ,

∥ũ(t)∥L2 ⩽ ∥ũ0∥L2e−C1t, (4.7)

where C1 = C1(ν)> 0.
We now prove the exponential decay of ∥∇ũ(t)∥2. Applying ∇ to (4.3) yields

∂t∇ũ+∇(ũ ·∇ũ)+∇(ũ3∂3u) =−∇∇p̃+ ν∆h∇ũ. (4.8)

Taking the L2 inner product of (4.8) with ∇ũ, we have

1
2
d
dt
∥∇ũ(t)∥2L2 + ν∥∇h∇ũ∥2L2

= d−
ˆ
Ω

∇(ũ ·∇ũ) ·∇ũdx−
ˆ
Ω

∇(ũ3∂3u) ·∇ũdx

:= B1 +B2. (4.9)

By lemma 2.1, B1 can be further written as

B1 = −
ˆ
Ω

∇(ũ ·∇ũ) ·∇ũdx

= −
ˆ
Ω

∇(u ·∇ũ) ·∇ũdx+
ˆ
Ω

∇(u ·∇ũ) ·∇ũdx

= −
ˆ
Ω

∇(uh ·∇hũ+ u3∂3ũ) ·∇ũdx

:= B11 +B12.

Using lemma 2.5, B11 can be bounded by

B11 = −
ˆ
Ω

∇uh ·∇hũ ·∇ũdx

⩽ C(∥∇uh∥L2 + ∥∇h∇uh∥L2)
1
2 (∥∇uh∥L2 + ∥∂3∇uh∥L2)

1
2 ∥∇h∇hũ∥L2∥∇ũ∥L2

⩽ C∥u∥H2∥∇h∇ũ∥2L2 ,

and

B12 = −
ˆ
Ω

∇u3∂3ũ ·∇ũdx

⩽ C(∥∇u3∥L2 + ∥∇h∇u3∥L2)
1
2 (∥∇u3∥L2 + ∥∂3∇u3∥L2)

1
2 ∥∇h∂3ũ∥L2∥∇ũ∥2

⩽ C∥u∥H2∥∇h∇ũ∥2L2 .

Therefore, B1 is bounded by

|B1|⩽ C∥u∥H2∥∇h∇ũ∥2L2 .
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To bounded B2, we first write it explicitly as

B2 = −
ˆ
Ω

∇(ũ3∂3u) ·∇ũdx

= −
ˆ
Ω

∇ũ3 ·∇ũ · ∂3udx−
ˆ
Ω

ũ3∂31u · ∂1ũdx

−
ˆ
Ω

ũ3∂32u · ∂2ũdx−
ˆ
Ω

ũ3∂33u · ∂3ũdx

:= B21 + · · ·+B24.

By the simple property that ∂1u= ∂2u= 0,

B22 =−
ˆ
Ω

ũ3 ∂31u · ∂1ũdx= 0, B23 =−
ˆ
Ω

ũ3 ∂32u · ∂2ũdx= 0.

By lemmas 2.2 and 2.5,

B21 = −
ˆ
Ω

∇ũ3 ·∇ũ · ∂3udx

⩽ C(∥∂3u∥L2 + ∥∇h∂3u∥L2)
1
2 (∥∂3u∥L2 + ∥∂3∂3u∥L2)

1
2 ∥∇∇hũ3∥L2∥∇ũ∥L2

⩽ C∥u∥H2∥∇h∇ũ∥2L2 ,

and

B24 = −
ˆ
Ω

ũ3∂33u · ∂3ũdx

⩽ C∥∇hũ3∥
1
2
L2(∥ũ3∥L2 + ∥∂3ũ3∥L2)

1
2 ∥∂3∇hũ∥L2∥∂33u∥L2

⩽ C∥u∥H2∥∇h∇ũ∥2L2 .

Thus

|B2|⩽ C∥u∥H2∥∇h∇ũ∥2L2 .

Inserting the estimates for B1 through B2 in (4.9), we obtain

d
dt
∥∇ũ(t)∥2L2 +(2ν−C∥u∥H 2)∥∇h∇ũ∥2L2 ⩽ 0.

As in the estimate of ∥ũ∥L2 , choosing ε sufficiently small and invoking the Poincaré’s type
inequality in lemma 2.2, we obtain the exponential decay result for ∥∇ũ∥L2 ,

∥∇ũ(t)∥L2 ⩽ ∥∇ũ0∥L2e−C1t. (4.10)

Combining estimates (4.7) and (4.10), we obtain the desired decay result.
The second part of the proof is devoted to the large-time asymptotics of u. Taking the hori-

zontal average of (1.1) and using the facts that ∂1u= ∂2u= 0, we have ∂tu+ ∂3(u3u) =

 0
0

−∂3p

 ,

∂3u3 = 0.

(4.11)
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∂3u3 = 0 implies that u3 is independent of x3. We first simplify the equations of the first two
components in (4.11). By lemma 2.1,

∂3(u3u1) = ∂3((u3 + ũ3)(u1 + ũ1))

= ∂3(u3u1)+ ∂3(ũ3u1)+ ∂3(u3ũ1)+ ∂3(ũ3ũ1)

= ∂3(u3u1)+ ∂3(ũ3u1)+ ∂3(u3ũ1)+ ∂3(ũ3ũ1)

= u3∂3u1 + ∂3(ũ3ũ1),

due to ũ1 = ũ3 = 0 and the fact that u3 is independent of x3. Therefore, the equations of the
first two components are given by{

∂tu1 + u3∂3u1 + ∂3(ũ3ũ1) = 0,

∂tu2 + u3∂3u2 + ∂3(ũ3ũ2) = 0.
(4.12)

Now we show, for a constant C> 0,∣∣∣∂3(ũ3ũ1)∣∣∣⩽ Cε2 e−2C1t,
∣∣∣∂3(ũ3ũ2)∣∣∣⩽ Cε2 e−2C1t. (4.13)

It suffices to prove the first inequality in (4.13). The proof for the second one is similar. To
simplify the notation, we set

F(x3, t) := ∂3(ũ3ũ1), x3 ∈ R.

Since u ∈ H2(Ω), we can easily check that F as a function of x3 is in H1(R), namely

F ∈ H1(R).

By the 1D Sobolev embedding, for any α ∈ [0, 12 ),

F ∈ H1(R) ↪→ Cα(R),

where Cα denotes the standard Hölder space. In particular, F is uniformly continuous on R.
Next we check that

ε−2e2C1tF ∈ L1(R). (4.14)

In fact, by the exponential decay upper bound on ∥ũ(t)∥H1 ,

ε−2e2C1t
ˆ
R
|F(x3, t)|dx3 = ε−2e2C1t

ˆ
R

∣∣∣∣ˆ
T2

∂3(ũ3ũ1)dxh

∣∣∣∣ dx3
⩽ ε−2e2C1t

ˆ
R

ˆ
T2

(|ũ1∂3ũ3|+ |ũ3∂3ũ1|)dxhdx3

⩽ ε−2e2C1t∥ũ(t)∥L2 ∥∇ũ(t)∥L2

⩽ C,

which verifies (4.14). It then follows from lemma 4.1 that

ε−2e2C1t|F(x3, t)| → 0 as |x3| →∞.

Especially, ε−2e2C1tF is uniformly bounded on R or

∥F(·, t)∥L∞(R) ⩽ Cε2e−2C1t,
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This verifies (4.13). Therefore, for large time t> 0, (4.12) is majorized by{
∂tu1 + u3∂3u1 = 0,

∂tu2 + u3∂3u2 = 0.
(4.15)

Since u3 is a constant, the transport equations in (4.15) are solved by

u1(x3, t) = u01(x3 − u3t), u2(x3, t) = u02(x3 − u3t).

The fact that the constant function u3 is in L2(R) leads to u3 = 0. Then u1(x3, t) and
u2(x3, t) asymptotically approach u01(x3) and u02(x3), respectively. This completes the proof
of theorem 1.2.
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